Using the CAM3.0 model, we investigated the respective effects of aerosol concentration increasing and decadal variation of global sea surface temperature(SST) around year 1976/77 on the East Asian precipitation in bo...Using the CAM3.0 model, we investigated the respective effects of aerosol concentration increasing and decadal variation of global sea surface temperature(SST) around year 1976/77 on the East Asian precipitation in boreal summer. By doubling the concentration of the sulfate aerosol and black carbon aerosol separately and synchronously in East Asia(100-150 °E, 20-50 °N), the climate effects of these aerosols are specifically investigated. The results show that both the decadal SST changing and aerosol concentration increasing could lead to rainfall decreasing in the center of East Asia, but increasing in the regions along southeast coast areas of China. However, the different patterns of rainfall over ocean and lower wind field over Asian continent between aerosol experiments and SST experiments in CAM3.0 indicate the presence of different mechanisms. In the increased aerosol concentration experiments, scattering effect is the main climate effect for both sulfate and black carbon aerosols in the Eastern Asian summer. Especially in the increased sulfate aerosol concentration experiment, the climate scattering effect of aerosol leads to the most significant temperature decreasing, sinking convection anomalies and decreased rainfall in the troposphere over the central part of East Asia. However, in an increased black carbon aerosol concentration experiment, weakened sinking convection anomalies exist at the southerly position. This weakened sinking and its compensating rising convection anomalies in the south lead to the heavy rainfall over southeast coast areas of China. When concentrations of both sulfate and black carbon aerosols increase synchronously, the anomalous rainfall distribution is somewhat like that in the increased black carbon concentration aerosol experiment but with less intensity.展开更多
This paper systematically evaluates the deviations that appear in the hindcasts of the East Asian summer precipitation(EASP) decadal change in the late 1990 s in two global coupled models(BCC-CGCM and BCC-CSM).The...This paper systematically evaluates the deviations that appear in the hindcasts of the East Asian summer precipitation(EASP) decadal change in the late 1990 s in two global coupled models(BCC-CGCM and BCC-CSM).The possible causes for the deviations between the model hindcasts and observations are analyzed.The results show that the hindcasts of EASP by BCC-CGCM and BCC-CSM deviate from observations,with the anomaly correlation coefficient(ACC) being-0.01 and-0.09 for the two models,respectively.The SST anomalies in North and West Pacific and the SST index values predicted by the two models also deviate from the observations,indicating that inconsistent SST fields may be the key factor leading to the deviation in the prediction of the EASP decadal shift.Thus,a dynamic-analogue scheme is proposed to correct the precipitation hindcasts by using SSTs,where SST and EASP are highly correlated,to select historical analogue cases.Cross validations show that the average ACC of the temporal-latitude distribution of the EASP between the corrected hindcasts and observations is 0.18 for BCC-CGCM and0.02 for BCC-CSM;both are much higher than the uncorrected hindcasts.Applying the dynamic-analogue correction scheme in both models successfully improves prediction of the EASP decadal change in the late1990 s.展开更多
In this study, long-term (1777–1997) precipitation data for Seoul, Korea, wetness indices from eastern China, and modern observations are used to identify the interdecadal variability in East Asian summer monsoon p...In this study, long-term (1777–1997) precipitation data for Seoul, Korea, wetness indices from eastern China, and modern observations are used to identify the interdecadal variability in East Asian summer monsoon precipitation over the last 220 years. In the East Asian monsoon region, two long-term timescales of dry–wet transitions for the interdecadal variability and quasi-40-and quasi-60-year timescales are dominant in the 220-year precipitation data of Seoul, as well as in the wetness indices over China. The wet and dry spells between Seoul (southern China) and northern China are out-of-phase (out-of-phase) at the quasi-60-year timescale, and in-phase (out-of-phase by approximately 90 ? before 1900 and in-phase after 1900) at the quasi-40-year timescale. In particular, during the last century, the dominant long-term timescales over East Asia tend to decrease from the quasi-60-year to the quasi-40-year with increasing time. The dominant quasi-40-year and quasi-60-year timescales of the Seoul precipitation in Korea are strongly correlated with these timescales of the northern Pacific Ocean.展开更多
Independent datasets consistently indicate a significant correlation between the sea ice variability in the Bering Sea during melt season and the summer rainfall variability in the Lake Baikal area and Northeastern Ch...Independent datasets consistently indicate a significant correlation between the sea ice variability in the Bering Sea during melt season and the summer rainfall variability in the Lake Baikal area and Northeastern China.In this study,four sea ice datasets(HadISST1,HadISST2.2,ERA-Interim and NOAA/NSIDC)and two global precipitation datasets(CRU V4.01 and GPCP V2.3)are used to investigate co-variations between melt season(March−April−May−June,MAMJ)Bering Sea ice cover(BSIC)and summer(June−July−August,JJA)East Asian precipitation.All datasets demonstrate a significant correlation between the MAMJ BSIC and the JJA rainfall in Lake Baikal−Northeastern China(Baikal−NEC).Based on the reanalysis datasets and the numerical sensitivity experiments performed in this study using Community Atmospheric Model version 5(CAM5),a mechanism to understand how the MAMJ BSIC influences the JJA Baikal−NEC rainfall is suggested.More MAMJ BSIC triggers a wave train and causes a positive sea level pressure(SLP)anomaly over the North Atlantic during MAMJ.The high SLP anomaly,associated with an anti-cyclonic wind stress circulation anomaly,favors the appearance of sea surface temperature(SST)anomalies in a zonal dipole-pattern in the North Atlantic during summer.The dipole SST anomaly drives a zonally orientated wave train,which causes a high anomaly geopotential height at 500 hPa over the Sea of Japan.As a result,the mean East Asian trough moves westward and a low geopotential height anomaly occurs over Baikal−NEC.This prevailing regional low pressure anomaly together with enhanced moisture transport from the western North Pacific and convergence over Baikal−NEC,positively influences the increased rainfall in summer.展开更多
This study investigates the relationship between the soil temperature in May and the East Asian summer monsoon (EASM) precipitation in June and July using station observed soil temperature data over Northwest China ...This study investigates the relationship between the soil temperature in May and the East Asian summer monsoon (EASM) precipitation in June and July using station observed soil temperature data over Northwest China from 1971 to 2000.It is found that the memory of the soil temperature at 80-cm depth can persist for at least 2 months,and the soil temperature in May is closely linked to the EASM precipitation in June and July.When the soil temperature is warmer in May over Northwest China,less rainfall occurs over the Yangtze and Huaihe River valley but more rainfall occurs over South China in June and July.It is proposed that positive anomalous soil temperature in May over Northwest China corresponds to higher geopotential heights over the most parts of the mainland of East Asia,which tend to weaken the ensuing EASM.Moreover,in June and July,a cyclonic circulation anomaly occurs over Southeast China and Northwest Pacific and an anticyclonic anomaly appears in the Yangtze and Huaihe River valley at 850 hPa.All the above tend to suppress the precipitation in the Yangtze and Huaihe River valley.The results also indicate that the soil temperature in May over Northwest China is closely related to the East Asia/Pacific (EAP) teleconnection pattern,and it may be employed as a useful predictor for the East Asian summer monsoon rainfall.展开更多
In previous statistical forecast models,prediction of summer precipitation along the Yangtze River valley and in North China relies heavily on its close relationships with the western Pacific subtropical high(WPSH),...In previous statistical forecast models,prediction of summer precipitation along the Yangtze River valley and in North China relies heavily on its close relationships with the western Pacific subtropical high(WPSH),the blocking high in higher latitudes,and the East Asian summer monsoon(EASM).These relationships were stable before the 1990 s but have changed remarkably in the recent two decades.Before the 1990 s,precipitation along the Yangtze River had a significant positive correlation with the intensity of the WPSH,but the correlation weakened rapidly after 1990,and the correlation between summer rainfall in North China and the WPSH also changed from weak negative to significantly positive.The changed relationships present a big challenge to the application of traditional statistical seasonal prediction models.Our study indicates that the change could be attributed to expansion of the WPSH after around 1990.Owing to global warming,increased sea surface temperatures in the western Pacific rendered the WPSH stronger and further westward.Under this condition,more moisture was transported from southern to northern China,leading to divergence and reduced(increased) rainfall over the Yangtze River(North China).On the other hand,when the WPSH was weaker,it stayed close to its climatological position(rather than more eastward),and the circulations showed an asymmetrical feature between the stronger and weaker WPSH cases owing to the decadal enhancement of the WPSH.Composite analysis reveals that the maximum difference in the moisture transport before and after 1990 appeared over the western Pacific.This asymmetric influence is possibly the reason why the previous relationships between monsoon circulations and summer rainfall have now changed.展开更多
The sensitivity of a regional climate model (RCM) to cumulus parameterization (CUPA) schemes in modeling summer precipitation over East Asia has been investigated by using the fifth-generation Pennsylvania State U...The sensitivity of a regional climate model (RCM) to cumulus parameterization (CUPA) schemes in modeling summer precipitation over East Asia has been investigated by using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (PSU-NCAR MM5). The feasibility of physical ensemble and the effect of interior (spectral) nudging are also assessed. The RCM simulations are evaluated against the NCEP/NCAR reanalysis data and NCEP/CPC precipitation data for three summers (JJA) in 1991, 1998, and 2003. The results show that the RCM is highly sensitive to CUPA schemes. Different CUPA schemes cause distinctive characteristics in the modeling of JJA precipitation and the intraseasonal (daily) variability of regional precipitation. The sensitivity of the RCM simulations to the CUPA schemes is reduced by adopting the spectral nudging technique, which enables the RCM to reproduce more realistic large-scale circulations at the upper levels of the atmosphere as well as near the surface, and better precipitation simulation in the selected experiments. The ensemble simulations using different CUPA schemes show higher skills than individual members for both control runs and spectral nudging runs. The physical ensemble adopting the spectral nudging technique shows the highest downscaling skill in capturing the general circulation patterns for all experiments and improved temporal distributions of precipitation in some regions.展开更多
基金National Key Program for Developing Basic Science(2016YFA0600303)National Natural Science Foundation of China(41675064,41621005,41330420,41275068)+2 种基金Jiangsu Province Science Foundation(SBK2015020577)Key Laboratory Project Foundation(KLME1501)Jiangsu Collaborative Innovation Center for Climate Change
文摘Using the CAM3.0 model, we investigated the respective effects of aerosol concentration increasing and decadal variation of global sea surface temperature(SST) around year 1976/77 on the East Asian precipitation in boreal summer. By doubling the concentration of the sulfate aerosol and black carbon aerosol separately and synchronously in East Asia(100-150 °E, 20-50 °N), the climate effects of these aerosols are specifically investigated. The results show that both the decadal SST changing and aerosol concentration increasing could lead to rainfall decreasing in the center of East Asia, but increasing in the regions along southeast coast areas of China. However, the different patterns of rainfall over ocean and lower wind field over Asian continent between aerosol experiments and SST experiments in CAM3.0 indicate the presence of different mechanisms. In the increased aerosol concentration experiments, scattering effect is the main climate effect for both sulfate and black carbon aerosols in the Eastern Asian summer. Especially in the increased sulfate aerosol concentration experiment, the climate scattering effect of aerosol leads to the most significant temperature decreasing, sinking convection anomalies and decreased rainfall in the troposphere over the central part of East Asia. However, in an increased black carbon aerosol concentration experiment, weakened sinking convection anomalies exist at the southerly position. This weakened sinking and its compensating rising convection anomalies in the south lead to the heavy rainfall over southeast coast areas of China. When concentrations of both sulfate and black carbon aerosols increase synchronously, the anomalous rainfall distribution is somewhat like that in the increased black carbon concentration aerosol experiment but with less intensity.
基金Supported by the National Natural Science Foundation of China(41575082 and 41305075)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306021)National Basic Research and Development(973)Program of China(2012CB955203)
文摘This paper systematically evaluates the deviations that appear in the hindcasts of the East Asian summer precipitation(EASP) decadal change in the late 1990 s in two global coupled models(BCC-CGCM and BCC-CSM).The possible causes for the deviations between the model hindcasts and observations are analyzed.The results show that the hindcasts of EASP by BCC-CGCM and BCC-CSM deviate from observations,with the anomaly correlation coefficient(ACC) being-0.01 and-0.09 for the two models,respectively.The SST anomalies in North and West Pacific and the SST index values predicted by the two models also deviate from the observations,indicating that inconsistent SST fields may be the key factor leading to the deviation in the prediction of the EASP decadal shift.Thus,a dynamic-analogue scheme is proposed to correct the precipitation hindcasts by using SSTs,where SST and EASP are highly correlated,to select historical analogue cases.Cross validations show that the average ACC of the temporal-latitude distribution of the EASP between the corrected hindcasts and observations is 0.18 for BCC-CGCM and0.02 for BCC-CSM;both are much higher than the uncorrected hindcasts.Applying the dynamic-analogue correction scheme in both models successfully improves prediction of the EASP decadal change in the late1990 s.
基金supported by the Korea Foundation for International Cooperation of Science and Technology (KICOS) througha grant provided by the Korean Ministry of Science and Technology (MOST) in 2009, and the Grant of NIMR-2009-B-2 at the National Institute of Meteorological Research, Korea Meteorological Administration
文摘In this study, long-term (1777–1997) precipitation data for Seoul, Korea, wetness indices from eastern China, and modern observations are used to identify the interdecadal variability in East Asian summer monsoon precipitation over the last 220 years. In the East Asian monsoon region, two long-term timescales of dry–wet transitions for the interdecadal variability and quasi-40-and quasi-60-year timescales are dominant in the 220-year precipitation data of Seoul, as well as in the wetness indices over China. The wet and dry spells between Seoul (southern China) and northern China are out-of-phase (out-of-phase) at the quasi-60-year timescale, and in-phase (out-of-phase by approximately 90 ? before 1900 and in-phase after 1900) at the quasi-40-year timescale. In particular, during the last century, the dominant long-term timescales over East Asia tend to decrease from the quasi-60-year to the quasi-40-year with increasing time. The dominant quasi-40-year and quasi-60-year timescales of the Seoul precipitation in Korea are strongly correlated with these timescales of the northern Pacific Ocean.
基金the National Key R&D Program of China(2017YFE0111800 and 2017YFA0603802)the National Natural Science Foundation of China(Grant No.41790472)the EU H2020 Blue-Action project(Grant No.727852).
文摘Independent datasets consistently indicate a significant correlation between the sea ice variability in the Bering Sea during melt season and the summer rainfall variability in the Lake Baikal area and Northeastern China.In this study,four sea ice datasets(HadISST1,HadISST2.2,ERA-Interim and NOAA/NSIDC)and two global precipitation datasets(CRU V4.01 and GPCP V2.3)are used to investigate co-variations between melt season(March−April−May−June,MAMJ)Bering Sea ice cover(BSIC)and summer(June−July−August,JJA)East Asian precipitation.All datasets demonstrate a significant correlation between the MAMJ BSIC and the JJA rainfall in Lake Baikal−Northeastern China(Baikal−NEC).Based on the reanalysis datasets and the numerical sensitivity experiments performed in this study using Community Atmospheric Model version 5(CAM5),a mechanism to understand how the MAMJ BSIC influences the JJA Baikal−NEC rainfall is suggested.More MAMJ BSIC triggers a wave train and causes a positive sea level pressure(SLP)anomaly over the North Atlantic during MAMJ.The high SLP anomaly,associated with an anti-cyclonic wind stress circulation anomaly,favors the appearance of sea surface temperature(SST)anomalies in a zonal dipole-pattern in the North Atlantic during summer.The dipole SST anomaly drives a zonally orientated wave train,which causes a high anomaly geopotential height at 500 hPa over the Sea of Japan.As a result,the mean East Asian trough moves westward and a low geopotential height anomaly occurs over Baikal−NEC.This prevailing regional low pressure anomaly together with enhanced moisture transport from the western North Pacific and convergence over Baikal−NEC,positively influences the increased rainfall in summer.
基金Supported by the National Natural Science Foundation of China(41025017 and 41230527)
文摘This study investigates the relationship between the soil temperature in May and the East Asian summer monsoon (EASM) precipitation in June and July using station observed soil temperature data over Northwest China from 1971 to 2000.It is found that the memory of the soil temperature at 80-cm depth can persist for at least 2 months,and the soil temperature in May is closely linked to the EASM precipitation in June and July.When the soil temperature is warmer in May over Northwest China,less rainfall occurs over the Yangtze and Huaihe River valley but more rainfall occurs over South China in June and July.It is proposed that positive anomalous soil temperature in May over Northwest China corresponds to higher geopotential heights over the most parts of the mainland of East Asia,which tend to weaken the ensuing EASM.Moreover,in June and July,a cyclonic circulation anomaly occurs over Southeast China and Northwest Pacific and an anticyclonic anomaly appears in the Yangtze and Huaihe River valley at 850 hPa.All the above tend to suppress the precipitation in the Yangtze and Huaihe River valley.The results also indicate that the soil temperature in May over Northwest China is closely related to the East Asia/Pacific (EAP) teleconnection pattern,and it may be employed as a useful predictor for the East Asian summer monsoon rainfall.
基金Supported by the National (Key) Basic Research and Development (973) Program of China(2013CB430203)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306033)
文摘In previous statistical forecast models,prediction of summer precipitation along the Yangtze River valley and in North China relies heavily on its close relationships with the western Pacific subtropical high(WPSH),the blocking high in higher latitudes,and the East Asian summer monsoon(EASM).These relationships were stable before the 1990 s but have changed remarkably in the recent two decades.Before the 1990 s,precipitation along the Yangtze River had a significant positive correlation with the intensity of the WPSH,but the correlation weakened rapidly after 1990,and the correlation between summer rainfall in North China and the WPSH also changed from weak negative to significantly positive.The changed relationships present a big challenge to the application of traditional statistical seasonal prediction models.Our study indicates that the change could be attributed to expansion of the WPSH after around 1990.Owing to global warming,increased sea surface temperatures in the western Pacific rendered the WPSH stronger and further westward.Under this condition,more moisture was transported from southern to northern China,leading to divergence and reduced(increased) rainfall over the Yangtze River(North China).On the other hand,when the WPSH was weaker,it stayed close to its climatological position(rather than more eastward),and the circulations showed an asymmetrical feature between the stronger and weaker WPSH cases owing to the decadal enhancement of the WPSH.Composite analysis reveals that the maximum difference in the moisture transport before and after 1990 appeared over the western Pacific.This asymmetric influence is possibly the reason why the previous relationships between monsoon circulations and summer rainfall have now changed.
基金Supported by the "973" National Basic Research Program of China under Grant Nos. 2011CB952004 and 2006CB400500the National Natural Science Foundation of China under Grant Nos. 40705029 and 40830639
文摘The sensitivity of a regional climate model (RCM) to cumulus parameterization (CUPA) schemes in modeling summer precipitation over East Asia has been investigated by using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (PSU-NCAR MM5). The feasibility of physical ensemble and the effect of interior (spectral) nudging are also assessed. The RCM simulations are evaluated against the NCEP/NCAR reanalysis data and NCEP/CPC precipitation data for three summers (JJA) in 1991, 1998, and 2003. The results show that the RCM is highly sensitive to CUPA schemes. Different CUPA schemes cause distinctive characteristics in the modeling of JJA precipitation and the intraseasonal (daily) variability of regional precipitation. The sensitivity of the RCM simulations to the CUPA schemes is reduced by adopting the spectral nudging technique, which enables the RCM to reproduce more realistic large-scale circulations at the upper levels of the atmosphere as well as near the surface, and better precipitation simulation in the selected experiments. The ensemble simulations using different CUPA schemes show higher skills than individual members for both control runs and spectral nudging runs. The physical ensemble adopting the spectral nudging technique shows the highest downscaling skill in capturing the general circulation patterns for all experiments and improved temporal distributions of precipitation in some regions.