The East Asian trough(EAT)profoundly influences the East Asian spring climate.In this study,the relationship of the EATs among the three spring months is investigated.Correlation analysis shows that the variation in M...The East Asian trough(EAT)profoundly influences the East Asian spring climate.In this study,the relationship of the EATs among the three spring months is investigated.Correlation analysis shows that the variation in March EAT is closely related to that of April EAT.Extended empirical orthogonal function(EEOF)analysis also confirms the co-variation of the March and April EATs.The positive/negative EEOF1 features the persistent strengthened/weakened EAT from March to April.Further investigation indicates that the variations in EEOF1 are related to a dipole sea surface temperature(SST)pattern over the North Atlantic and the SST anomaly over the tropical Indian Ocean.The dipole SST pattern over the North Atlantic,with one center east of Newfoundland Island and another east of Bermuda,could trigger a Rossby wave train to influence the EAT in March−April.The SST anomaly over the tropical Indian Ocean can change the Walker circulation and influence the atmospheric circulation over the tropical western Pacific,subsequently impacting the southern part of the EAT in March−April.Besides the SST factors,the Northeast Asian snow cover could change the regional thermal conditions and lead to persistent EAT anomalies from March to April.These three impact factors are generally independent of each other,jointly explaining large variations in the EAT EEOF1.Moreover,the signals of the three factors could be traced back to February,consequently providing a potential prediction source for the EAT variation in March and April.展开更多
The relationship between variations in the East Asian trough(EAT)intensity and spring extreme precipitation over Southwest China(SWC)during 1961-2020 is investigated.The results indicate that there is an interdecadal ...The relationship between variations in the East Asian trough(EAT)intensity and spring extreme precipitation over Southwest China(SWC)during 1961-2020 is investigated.The results indicate that there is an interdecadal increase in the relationship between the EAT and spring extreme precipitation over eastern SWC around the late1980 s.During the latter period,the weak(strong)EAT corresponds to a strong and large-scale anomalous anticyclone(cyclone)over the East Asia-Northwest Pacific region.The EAT-related anomalous southerlies(northerlies)dominate eastern SWC,leading to significant upward(downward)motion and moisture convergence(divergence)over the region,providing favorable(unfavorable)dynamic and moisture conditions for extreme precipitation over eastern SWC.In contrast,during the former period,the EAT-related circulation anomalies are weak and cover a relatively smaller region,which cannot significantly affect the moisture and dynamic conditions over eastern SWC;therefore,the response in extreme precipitation over eastern SWC to EAT is weak over the period.The interdecadal change in the relationship between eastern SWC spring extreme precipitation and the EAT could be related to the interdecadal change in the EAT variability.The large(small)variability of the EAT is associated with significant(insignificant)changes in spring extreme precipitation over eastern SWC during the latter(former)period.展开更多
We analyze the decadal variation of the stratosphere troposphere coupled system around the year 2000 by using the NCEP reanalysis-2 data.Specifically,the relationship between the Northern Hemisphere Annular Mode(NAM...We analyze the decadal variation of the stratosphere troposphere coupled system around the year 2000 by using the NCEP reanalysis-2 data.Specifically,the relationship between the Northern Hemisphere Annular Mode(NAM) and the tropospheric East Asian trough is investigated in order to find the effective stratospheric signals during cold air outbreaks in China.Statistical analyses and dynamic diagnoses both indicate that after 2000,increased stratospheric polar vortex disturbances occur and the NAM is mainly in negative phase.The tropospheric polar areas are directly affected by the polar vortex,and in the midlatitudes,the Ural blocking high and East Asian trough are more active,which lead to enhanced cold air activities in eastern and northern China.Further investigation reveals that under this circulation pattern,downward propagations of negative NAM index are closely related to the intensity variation of the East Asian trough.When negative NAM anomalies propagate down to the upper troposphere and reach a certain intensity(standardized NAM index less than 1),they result in apparent reinforcement of the East Asian trough,which reaches its maximum intensity about one week later.The northerly wind behind the trough transports cold air southward and eastward,and the range of influence and the intensity are closely associated with the trough location.Therefore,the NAM index can be used as a measure of the signals from the disturbed stratosphere to give some indication of cold air activities in China.展开更多
The modulation of the relationship between the Arctic Oscillation (AO) and the East Asian winter climate by the 11-year solar cycle was investigated. During winters with high solar activity (HS), robust warming ap...The modulation of the relationship between the Arctic Oscillation (AO) and the East Asian winter climate by the 11-year solar cycle was investigated. During winters with high solar activity (HS), robust warming appeared in northern Asia in a positive AO phase. This result corresponded to an enhanced anticyclonic flow at 850 hPa over northeastern Asia and a weakened East Asian trough (EAT) at 500 hPa. However, during winters with low solar activity (LS), both the surface warming and the intensities of the anticyclonic flow and the EAT were much less in the presence of a positive AO phase. The possible atmospheric processes for this 11-year solar-cycle modulation may be attributed to the indirect influence that solar activity induces in the structural changes of AO. During HS winters, the sea level pressure oscillation associated with the AO became stronger, with the significant influence of AO extending to East Asia. In the meantime, the AO-related zonal-mean zonal winds tended to extend more into the stratosphere during HS winters, which implies a stronger coupling to the stratosphere. These trends may have led to an enhanced AO phase difference; thus the associated East Asian climate anomalies became larger and more significant. The situation tended to reverse during LS winters. Further analyses revealed that the relationship between the winter AO and surface-climate anomalies in the following spring is also modulated by the 11-year solar cycle, with significant signals appearing only during HS phases. Solar-cycle variation should be taken into consideration when the AO is used to predict winter and spring climate anomalies over East Asia.展开更多
By analyzing the linkage of the Northern Annular Mode (NAM) anomaly to the East Asian jet and the East Asian trough during Stratospheric Sudden Warming (SSW), the influence of SSW on East Asian weather is studied....By analyzing the linkage of the Northern Annular Mode (NAM) anomaly to the East Asian jet and the East Asian trough during Stratospheric Sudden Warming (SSW), the influence of SSW on East Asian weather is studied. The results show that the East Asian jet is strengthened and the East Asian trough is deepened during SSW. With the downward propagation of SSW, the strengthened East Asian jet and the East Asian trough would move southward, expand westward and gradually influence the area of north and northeastern China. This implies that the winter monsoon tends to be enhanced over East Asia during SSW.展开更多
基于Had ISST(Hadley Centre Sea-ice and Sea surface Temperature Data Set)的月平均海温(SST)资料,对1960-2012年中国近海冬季SST的长期变化趋势进行了详细分析。结果显示冬季SST经历了一个显著的升温过程,增幅达0.018℃/年,在80年...基于Had ISST(Hadley Centre Sea-ice and Sea surface Temperature Data Set)的月平均海温(SST)资料,对1960-2012年中国近海冬季SST的长期变化趋势进行了详细分析。结果显示冬季SST经历了一个显著的升温过程,增幅达0.018℃/年,在80年代末期发生了显著的气候增暖过程。对东亚冬季风子系统与冬季东中国海SST关系的年代际变化进行了分析。结果发现在1960-2012年间,东亚冬季风5个关键子系统中,东亚大槽与东中国海冬季SST年际变率上关系最为密切。进一步研究发现,自20世纪80年代中期以来,东亚大槽和东中国海冬季SST都发生了明显的年代际变化,其中东亚大槽为年代际减弱,而东中国海冬季SST发生了年代际增暖。尽管1960-2012年间东亚大槽与东中国海冬季SST有显著的负相关关系,但这种统计相关在1989-2012年期间显著减弱。这种相关减弱的原因很可能是由于NPO(North Pacific Oscillation)的年代际变化背景下的东亚大槽的强度减弱有关。展开更多
基金the National Natural Science Foundation of China(Grant Nos.41825010 and 42005024).
文摘The East Asian trough(EAT)profoundly influences the East Asian spring climate.In this study,the relationship of the EATs among the three spring months is investigated.Correlation analysis shows that the variation in March EAT is closely related to that of April EAT.Extended empirical orthogonal function(EEOF)analysis also confirms the co-variation of the March and April EATs.The positive/negative EEOF1 features the persistent strengthened/weakened EAT from March to April.Further investigation indicates that the variations in EEOF1 are related to a dipole sea surface temperature(SST)pattern over the North Atlantic and the SST anomaly over the tropical Indian Ocean.The dipole SST pattern over the North Atlantic,with one center east of Newfoundland Island and another east of Bermuda,could trigger a Rossby wave train to influence the EAT in March−April.The SST anomaly over the tropical Indian Ocean can change the Walker circulation and influence the atmospheric circulation over the tropical western Pacific,subsequently impacting the southern part of the EAT in March−April.Besides the SST factors,the Northeast Asian snow cover could change the regional thermal conditions and lead to persistent EAT anomalies from March to April.These three impact factors are generally independent of each other,jointly explaining large variations in the EAT EEOF1.Moreover,the signals of the three factors could be traced back to February,consequently providing a potential prediction source for the EAT variation in March and April.
基金jointly supported by the National Natural Science Foundation of China[grant number 41825010]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA23090102]。
文摘The relationship between variations in the East Asian trough(EAT)intensity and spring extreme precipitation over Southwest China(SWC)during 1961-2020 is investigated.The results indicate that there is an interdecadal increase in the relationship between the EAT and spring extreme precipitation over eastern SWC around the late1980 s.During the latter period,the weak(strong)EAT corresponds to a strong and large-scale anomalous anticyclone(cyclone)over the East Asia-Northwest Pacific region.The EAT-related anomalous southerlies(northerlies)dominate eastern SWC,leading to significant upward(downward)motion and moisture convergence(divergence)over the region,providing favorable(unfavorable)dynamic and moisture conditions for extreme precipitation over eastern SWC.In contrast,during the former period,the EAT-related circulation anomalies are weak and cover a relatively smaller region,which cannot significantly affect the moisture and dynamic conditions over eastern SWC;therefore,the response in extreme precipitation over eastern SWC to EAT is weak over the period.The interdecadal change in the relationship between eastern SWC spring extreme precipitation and the EAT could be related to the interdecadal change in the EAT variability.The large(small)variability of the EAT is associated with significant(insignificant)changes in spring extreme precipitation over eastern SWC during the latter(former)period.
基金Supported by the National Natural Science Foundation of China(41275078 and 41205041)National Key Research and Development Program of China(2016YFA0600701)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306026)
文摘We analyze the decadal variation of the stratosphere troposphere coupled system around the year 2000 by using the NCEP reanalysis-2 data.Specifically,the relationship between the Northern Hemisphere Annular Mode(NAM) and the tropospheric East Asian trough is investigated in order to find the effective stratospheric signals during cold air outbreaks in China.Statistical analyses and dynamic diagnoses both indicate that after 2000,increased stratospheric polar vortex disturbances occur and the NAM is mainly in negative phase.The tropospheric polar areas are directly affected by the polar vortex,and in the midlatitudes,the Ural blocking high and East Asian trough are more active,which lead to enhanced cold air activities in eastern and northern China.Further investigation reveals that under this circulation pattern,downward propagations of negative NAM index are closely related to the intensity variation of the East Asian trough.When negative NAM anomalies propagate down to the upper troposphere and reach a certain intensity(standardized NAM index less than 1),they result in apparent reinforcement of the East Asian trough,which reaches its maximum intensity about one week later.The northerly wind behind the trough transports cold air southward and eastward,and the range of influence and the intensity are closely associated with the trough location.Therefore,the NAM index can be used as a measure of the signals from the disturbed stratosphere to give some indication of cold air activities in China.
基金supported by the National Key Basic Research Development Program (Grant No 2010CB428603)the National Natural Science Foundation of China (Grant Nos 41025017 and 40921160379)
文摘The modulation of the relationship between the Arctic Oscillation (AO) and the East Asian winter climate by the 11-year solar cycle was investigated. During winters with high solar activity (HS), robust warming appeared in northern Asia in a positive AO phase. This result corresponded to an enhanced anticyclonic flow at 850 hPa over northeastern Asia and a weakened East Asian trough (EAT) at 500 hPa. However, during winters with low solar activity (LS), both the surface warming and the intensities of the anticyclonic flow and the EAT were much less in the presence of a positive AO phase. The possible atmospheric processes for this 11-year solar-cycle modulation may be attributed to the indirect influence that solar activity induces in the structural changes of AO. During HS winters, the sea level pressure oscillation associated with the AO became stronger, with the significant influence of AO extending to East Asia. In the meantime, the AO-related zonal-mean zonal winds tended to extend more into the stratosphere during HS winters, which implies a stronger coupling to the stratosphere. These trends may have led to an enhanced AO phase difference; thus the associated East Asian climate anomalies became larger and more significant. The situation tended to reverse during LS winters. Further analyses revealed that the relationship between the winter AO and surface-climate anomalies in the following spring is also modulated by the 11-year solar cycle, with significant signals appearing only during HS phases. Solar-cycle variation should be taken into consideration when the AO is used to predict winter and spring climate anomalies over East Asia.
基金the National Natural Science Foundation of China(Grant No. 40633015).
文摘By analyzing the linkage of the Northern Annular Mode (NAM) anomaly to the East Asian jet and the East Asian trough during Stratospheric Sudden Warming (SSW), the influence of SSW on East Asian weather is studied. The results show that the East Asian jet is strengthened and the East Asian trough is deepened during SSW. With the downward propagation of SSW, the strengthened East Asian jet and the East Asian trough would move southward, expand westward and gradually influence the area of north and northeastern China. This implies that the winter monsoon tends to be enhanced over East Asia during SSW.
文摘基于Had ISST(Hadley Centre Sea-ice and Sea surface Temperature Data Set)的月平均海温(SST)资料,对1960-2012年中国近海冬季SST的长期变化趋势进行了详细分析。结果显示冬季SST经历了一个显著的升温过程,增幅达0.018℃/年,在80年代末期发生了显著的气候增暖过程。对东亚冬季风子系统与冬季东中国海SST关系的年代际变化进行了分析。结果发现在1960-2012年间,东亚冬季风5个关键子系统中,东亚大槽与东中国海冬季SST年际变率上关系最为密切。进一步研究发现,自20世纪80年代中期以来,东亚大槽和东中国海冬季SST都发生了明显的年代际变化,其中东亚大槽为年代际减弱,而东中国海冬季SST发生了年代际增暖。尽管1960-2012年间东亚大槽与东中国海冬季SST有显著的负相关关系,但这种统计相关在1989-2012年期间显著减弱。这种相关减弱的原因很可能是由于NPO(North Pacific Oscillation)的年代际变化背景下的东亚大槽的强度减弱有关。