Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-20...Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO).展开更多
The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size...The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size structure in summer 2017 in the YS and ECS were assessed using ZooScan imaging analysis.Zooplankton abundance and biovolume ranged 2.94–1187.14 inds./m^(3)and 3.13–3438.51 mm^(3)/m^(3),respectively.Based on the biovolume data of the categorized size classes of 26 identified taxonomic groups,the zooplankton community was classified into five groups,and each group was coupled with distinctive oceanographic features.Under the influence of the Yellow Sea Cold Water Mass,the Yellow Sea offshore group featured the lowest bottom temperature(10.84±3.42℃)and the most abundant Calanoids(mainly in the 2–3 mm size class).In the Yellow Sea inshore group,Hydrozoans showed the largest biovolume and dominated in the 3–4-mm and>5-mm size classes.The East China Sea offshore group,which was affected by the Kuroshio Branch Current,featured high temperature and salinity,and the lowest bottom dissolved oxygen(2.58±0.5 mg/L).The lowest values of zooplankton abundance and biovolume in the East China Sea offshore group might be attributed to the bottom dissolved oxygen contents.The East China Sea inshore group,which was mainly influenced by the Zhejiang-Fujian Coastal Current and Changjiang Diluted Water,was characterized by high chlorophyll a and the largest biovolume of carnivorous Siphonophores(280.82±303.37 mm^(3)/m^(3)).The Changjiang River estuary offshore group showed the most abundant Cyclopoids,which might be associated with the less turbid water mass in this region.Seawater temperature was considered the most important factor in shaping the size compositions of Calanoids in different groups.展开更多
Excessive carbon emissions have resulted in the greenhouse effect, causing considerable global climate change. Marine carbon storage has emerged as a crucial approach to addressing climate change. The Qiantang Sag(QTS...Excessive carbon emissions have resulted in the greenhouse effect, causing considerable global climate change. Marine carbon storage has emerged as a crucial approach to addressing climate change. The Qiantang Sag(QTS) in the East China Sea Shelf Basin, characterized by its extensive area, thick sedimentary strata, and optimal depth, presents distinct geological advantages for carbon dioxide(CO_(2)) storage. Focusing on the lower section of the Shimentan Formation in the Upper Cretaceous of the QTS, this study integrates seismic interpretation and drilling data with core and thin-section analysis. We reveal the vertical variation characteristics of the strata by providing a detailed stratigraphic description. We use petrophysical data to reveal the development characteristics of high-quality carbon-storage layers and favorable reservoircaprock combinations, thereby evaluating the geological conditions for CO_(2) storage in various stratigraphic sections. We identify Layer B of the lower Shimentan Formation as the most advantageous stratum for marine CO_(2) storage. Furthermore, we analyze the carbon emission trends in the adjacent Yangtze River Delta region. Considering the characteristics of the source and sink areas, we suggest a strong correlation between the carbon emission sources of the Yangtze River Delta and the CO_(2) storage area of the QTS, making the latter a priority area for conducting experiments on marine CO_(2) storage.展开更多
The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang F...The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang Formation in the Xihu Depression are still controversial.Under the guidance of sedimentology and stratigraphy,this study documented a marine-terrestrial transitional environment in the restricted bay setting of the Oligocene Huagang Formation through core description,well logging,and seismic data analysis.This study also revealed that the Oligocene Huagang Formation is dominated by tidal delta,estuary,and gravity flow deposits in the central anticline zone of the Xihu Depression.The new understanding of the sedimentary systems and the discovery of the transgressive gap in the eastern Diaoyu Islands uplift explain the origin of fine-grained sediments and the EW-trending sand bodies in the central depression and the sand bodies parallel to shoreline in the west slope belt,which cannot be explained by previous study results,such as southern transgression or fluvial deltas and even lacustrine deposition.Moreover,the tidal channels,tidal sand flats,and gravity flow sand bodies formed by the transgressive tides are high-quality reservoirs.The study will provide a basis for well placement and serve as guidance for the selection of favorable hydrocarbon exploration areas in the Xihu Depression.展开更多
The composition,provenance,and genetic mechanism of sediment on different sedimentary units of the East China Sea(ECS)shelf are essential for understanding the depositional dynamics environment in the ECS.The sediment...The composition,provenance,and genetic mechanism of sediment on different sedimentary units of the East China Sea(ECS)shelf are essential for understanding the depositional dynamics environment in the ECS.The sediments in the northern ECS shelf are distributed in a ring-shaped distribution centered on the southwestern Cheju Island Mud.From the inside to the outside,the grain size goes from fine to coarse.Aside from the“grain size effect”,hydrodynamic sorting and mineral composition are important restrictions on the content of rare earth elements(REEs).Based on the grain size,REEs,and clay mineral composition of 300 surface sediments,as well as the sedimentary genesis,the northern ECS shelf is divided into three geochemical zones:southwestern Cheju Island Mud Area(ZoneⅠ),Changjiang Shoal Sand Ridges(ZoneⅡ-1),Sand Ridges of the East China Sea shelf(ZoneⅡ-2).The northern ECS shelf is mostly impacted by Chinese mainland rivers(the Changjiang River and Huanghe River),and the provenance and transport mechanism of sediments of different grain sizes is diverse.The bulk sediments come primarily from the Changjiang River,with some material from the Huanghe River carried by the Yellow Sea Coastal Current and the North Jiangsu Coastal Current,and less from Korean rivers.Among them,surface sediments in the southwestern Cheju Island Mud Area(ZoneⅠ)come mostly from the Changjiang River and partly from the Huanghe River.It was formed by the counterclockwise rotating cold eddies in the northern ECS shelf,which caused the sedimentation and accumulation of the fine-grained sediments of the Changjiang River and the Huanghe River.The Changjiang Shoal Sand Ridges(ZoneⅡ-1)were developed during the early-middle Holocene sea-level highstand.It is the modern tidal sand ridge sediment formed by intense hydrodynamic action under the influence of the Yellow Sea Coastal Current,North Jiangsu Coastal Current,and Changjiang Diluted Water.The surface sediments mainly originate from the Changjiang River and Huanghe River,with the Changjiang River dominating,and the Korean River(Hanjiang River)influencing just a few stations.Sand Ridges of the East China Sea shelf(ZoneⅡ-2)are the relict sediments of the paleo-Changjiang River created by sea invasion at the end of the Last Deglaciation in the Epipleistocene.The clay mineral composition of the surface sediments in the study area is just dominated by the Changjiang River,with the North Jiangsu Coastal Current and the Changjiang Diluted Water as the main transporting currents.展开更多
This paper deals with the distribution and community structure of phytoplankton revealed by data obtained in a cruise in April and one in Oct.-Nov., 1994. Among 140 species of phytoplankton (including varieties and fo...This paper deals with the distribution and community structure of phytoplankton revealed by data obtained in a cruise in April and one in Oct.-Nov., 1994. Among 140 species of phytoplankton (including varieties and formas) identified, 104 species belonged to Bacillariophyta and 32 species belonged to Pyrrhophyta. In April, the biomass of phytoplankton was 0.09×10 4-465×10 6 cells/m 3, and the dense area was located in the Zhejiang coastal zone and the estuary of the Changjiang River; the density of the studied area’s west part was always higher than that of the east part. In October and November, the phytoplankton biomass was 0.42×10 4-289.9×10 4 cells/m 3, and the dense area was located in the upwelling zone near the Zhejiang coast. In spring and autumn, biomass was very low in the outer part of the East China Sea continental shelf area, where phytoplankton was classifiable into two communities based on the phytoplankton’s ecological characteristics and environmental parameters such as water temperature and salinity, i.e. neritic community environment characterized by warm temperature and low salinity and pelagic community environment characterized by high temperature and high salinity.展开更多
Harmful algal blooms (HABs) are a serious worldwide issue which has posed great risks on marine ecosystems and public health by directly releasing toxins or indirectly leading to anoxia in marine environment. In recen...Harmful algal blooms (HABs) are a serious worldwide issue which has posed great risks on marine ecosystems and public health by directly releasing toxins or indirectly leading to anoxia in marine environment. In recent years HABs have caused huge economic losses in China, particularly in the Yangtze Estuary and the adjacent East China Sea (ECS). The present study investigated the spatial-temporal and species characteristics of large-scale HABs in this area using geographic information system (GIS) Kernel Density Estimation (KDE) spatial analysis, statistical methods and satellite image interpretation. Results revealed that the Yangtze Estuary, Zhoushan island, Xiangshan bay and Jiushan island are the regions with highest frequency of large-scale HABs. HABs in the ECS reached a peak in terms of total number and area in 2003 to 2005 and occupied a high percentage (around 70% in area and 60% in occurrence) in the four Chinese coastal waters. The number of large-scale HABs (> 1000 km2) in the Yangtze Estuary and the adjacent ECS declined after 2005 while that of HABs (> 100 km2) declined after 2008. Large-scale HABs occurrences concentrated in summer (May to July), and the averaged duration increased continually from the shortest time (1.3 days) in 2001 to the longest (10.9 days) in 2010 for each HAB. 17 causative species were found with Prorocentrum dentutam as the most frequent dominant species, followed by Skeletonema costatum, Karenia mikimotoi, and Chaetoceros curvisetus. Water discoloration observed in MODIS satellite true color images was well consistent with the corresponding HABs reported by State Oceanic Administration of China (SOA). Multiple factors involving eutrophication, physical dynamics, topography and deposition conditions contributed to the formation of frequent HABs in the ECS. Three strategies including establishing a synthesized system, improving the previous database and investigating multiple contributors were proposed for future HABs monitoring and management.展开更多
For understanding more about the water exchange between the Kuroshio and the East China Sea,We studied the variability of the Kuroshio in the East China Sea(ECS) in the period of 1991 to 2008 using a three-dimensional...For understanding more about the water exchange between the Kuroshio and the East China Sea,We studied the variability of the Kuroshio in the East China Sea(ECS) in the period of 1991 to 2008 using a three-dimensional circulation model,and calculated Kuroshio onshore volume transport in the ECS at the minimum of 0.48 Sv(1 Sv ;106 m3/s) in summer and the maximum of 1.69 Sv in winter.Based on the data of WOA05 and NCEP,The modeled result indicates that the Kuroshio transport east of Taiwan Island decreased since 2000.Lateral movements tended to be stronger at two ends of the Kuroshio in the ECS than that of the middle segment.In addition,we applied a spectral mixture model(SMM) to determine the exchange zone between the Kuroshio and the shelf water of the ECS.The result reveals a significantly negative correlation(coefficient of-0.78) between the area of exchange zone and the Kuroshio onshore transport at 200 m isobath in the ECS.This conclusion brings a new view for the water exchange between the Kuroshio and the East China Sea.Additional to annual and semi-annual signals,intra-seasonal signal of probably the Pacific origin may trigger the events of Kuroshio intrusion and exchange in the ECS.展开更多
In the East China Sea(ECS),chub mackerel Scomber japonicus constitutes an important coastal-pelagic fishery resource that is mainly exploited by Chinese,Japanese,and Korean light-purse seine fisheries.Because the earl...In the East China Sea(ECS),chub mackerel Scomber japonicus constitutes an important coastal-pelagic fishery resource that is mainly exploited by Chinese,Japanese,and Korean light-purse seine fisheries.Because the early life history of chub mackerel plays a significant role in its recruitment,we developed an individual-based model to study the distribution,growth,and survival rate of chub mackerel larvae and juveniles in the ECS to improve our understanding of the chub mackerel population structure and recruitment.Our results show that as body length rapidly increases,the swimming capacity of chub mackerel larvae and juveniles improves quickly,and their spatial distribution depends more on their habitat conditions than the ocean currents.Correspondingly,the juveniles from the central and southern ECS spawning ground are scarcely recruited into the Japan/East Sea(JES)or the western Pacific Ocean,but a significant proportion of juveniles from the northern ECS spawning ground still enter the JES and there are exchanges between the stocks in the ECS and JES.Thus,it seems more reasonable to assess and manage the chub mackerels in the ECS and JES as a stock.The water temperature and ocean primary production in the ECS are two important factors influencing the chub mackerel habitat conditions and their spatial and temporal distribution are significantly different as the spawning time changes.Therefore,the spawning time and location play an important role in the growth and survival rate of the larvae and juveniles.Generally,when chub mackerel spawns at the southern ECS spawning ground in March,the larva and juvenile growth and survival rate is relatively high;as spawning time moves forward,higher growth and survival rates would be expected for the chub mackerel spawned coastward or northward.For specific spawning sites,early or delayed spawning will reduce the survival rate.展开更多
Both Pinghu and Huagang formations are important hydrocarbon reservoirs of the Xihu Depression in the East China Sea Shelf Basin.Clarifying the source suppliers and restoring source-to-sink transport routes are of gre...Both Pinghu and Huagang formations are important hydrocarbon reservoirs of the Xihu Depression in the East China Sea Shelf Basin.Clarifying the source suppliers and restoring source-to-sink transport routes are of great significance to the future petroleum and gas undertakings.Previous researchers were largely confined by either limitation of geological records,highly dependence on a singular method or low-precision dating techniques.Our study integrated heavy mineral assemblages,geochemical analyses and detrital zircon U-Pb dating to reconstruct multiple source-to-sink pathways,and to provide a better understanding on the provenance evolution for the upper Pinghu–lower Huagang depositions of the Xihu Depression.At least three major provenances have been confirmed and systematically investigated for their separate compositional features.The Hupijiao Uplift(or even farther northern area)was dominated by a major Paleoproterozoic population peaked at ca.1830 Ma along with minor Mesozoic clusters.The Haijiao Uplift to the west and the Yushan Low Uplift to the southwest,on the other hand,generate opposite U-Pb age spectra with apparently larger peaks of Indosinian and Yanshanian-aged zircons.To be noted,both Indosinian and Paleoproterozoic peaks are almost identical in proportion for the Haijiao Uplift.The overall sedimentary pattern of late Eocene-early Oligocene was featured by both spatial and temporal distinction.The Hupijiao Uplift was likely to cast limited impact during the late Eocene,whereas the broad southern Xihu Depression was transported by a large abundance of materials from the nearby Haijiao and Yushan Low Uplifts.The northern source substantially extended its influence to the farther south during the early Oligocene by delivering plentiful sediments of higher-degree metamorphic parent rocks.Combined with the proximal western and southwestern suppliers,the overall Xihu Depression was under control from both distant and local provenances.展开更多
The fluvial-deltaic reservoirs of the Oligocene Huagang Formation in the Xihu sag of the East China Sea shelf basin reflect rapid lateral change in sedimentary facies and poor morphology of conventional slice attribut...The fluvial-deltaic reservoirs of the Oligocene Huagang Formation in the Xihu sag of the East China Sea shelf basin reflect rapid lateral change in sedimentary facies and poor morphology of conventional slice attributes,which bring difficulties to the reservoir prediction for subsequent exploration and development of lithologic reservoirs.The traditional seismic sedimentology technology is optimized by applying the characteristic technologies such as frequency-boosting interpretation,inversion-conventional–90°phase shift joint construction of seismic lithologic bodies,nonlinear slices,paleogeomorphology restoration,and multi-attribute fusion,to obtain typical slice attributes,which are conducive to geological form description and sedimentary interpretation.The Huagang Formation developed three types of sedimentary bodies:braided river,meandering river and shallow water delta,and the vertical sedimentary evolution was controlled by the mid-term base-level cycle and paleogeomorphology.In the early–middle stage of the mid-term base-level ascending cycle,braided channel deposits were dominant,and vertical superimposed sand bodies were developed.In the late stage of the ascending half-cycle and the early stage of the descending half-cycle,meandering river deposits were dominant,and isolated sand bodies were developed.In the middle–late stage of the descending half-cycle,shallow-water delta deposits were dominant,and migratory medium–thick sand bodies were developed.Restricted paleogeomorphology controlled the sand body distribution,while non-restricted paleogeomorphology had little effect on the sand body distribution.Based on reservoir characterization,the fault sealing type and reservoir updip pinch-out type structural lithological traps are proposed as the main directions for future exploration and development in the Xihu sag.展开更多
The East China Sea(ECS),which is located in the transitional zone between land and ocean,is the main site for the burial of sedimentary organic carbon.Despite good constraints of the modern source to the sinking proce...The East China Sea(ECS),which is located in the transitional zone between land and ocean,is the main site for the burial of sedimentary organic carbon.Despite good constraints of the modern source to the sinking process of organic carbon,its fate in response to changes in climate and sea level since the last deglaciation remains poorly understood.We aim to fill this gap by presenting a high-resolution sedimentary record of core EC2005 to derive a better understanding of the evolution of the depositional environment and its control on the organic deposition since 17.3 kyr.Our results suggest that sedimentary organic carbon was deposited in a terrestrial environment before the seawater reached the study area around 13.1 kyr.This significant transition from a terrestrial environment to a marine environment is reflected by the decrease in TOC/TN and TOC/TS ratios,which is attributed to deglacial sea level rise.The sea level continued to rise until it reached its highstand at approximately 7.3 kyr when the mud depocenter was developed.Our results further indicate that the deposition of the sedimentary organic carbon could respond quickly to abrupt cold events,including the Heinrich stadial 1 and the Younger Dryas during the last deglaciation,as well as‘Bond events'during the Holocene.We propose that the rapid response of the organic deposition to those cold events in the northern hemisphere is linked to the East Asian winter monsoon.These new findings demonstrate that organic carbon deposition and burial on the inner shelf could effectively document sea level and climatic changes.展开更多
The East China Sea(ECS)boasts a vast continental shelf,where strong tidal motions play an important role in the substance transport and energy budget.In this study,the tide-induced mixing in the bottom boundary layer ...The East China Sea(ECS)boasts a vast continental shelf,where strong tidal motions play an important role in the substance transport and energy budget.In this study,the tide-induced mixing in the bottom boundary layer in the western ECS is analyzed based on records measured by moored acoustic Doppler current profilers from June to October 2014.Results show that the M_(2) tide is strong and shows a barotropic feature,whereas the O_(1) tide is much weaker.Based on the M_(2) tidal currents,the eddy viscosity in the bottom Ekman boundary layer is estimated with three schemes.The estimated eddy viscosity values vary within 10^(-4)–10^(-2)m^(2) s^(−1),reaching a maximum at approximately 5 m height from the bottom and decreasing exponentially with the height at all three stations.Moreover,the shear production of turbulent kinetic energy is calculated to quantify the mixing induced by different tidal constituents.The results show that the shear production of the M_(2) tide is much stronger than that of the O_(1) tide and shows a bottom intensified feature.展开更多
The East China Sea Shelf Basin generated a series of back-arc basins with thick successions of marine-and terrestrial-facies sediments during Cenozoic.It is enriched with abundant oil and gas resources and is of great...The East China Sea Shelf Basin generated a series of back-arc basins with thick successions of marine-and terrestrial-facies sediments during Cenozoic.It is enriched with abundant oil and gas resources and is of great significance to the petroleum exploration undertakings.Therein,the Lishui Sag formed fan delta,fluvial delta and littoral-to-neritic facies sediments during Paleocene–Eocene,and the research on its sedimentary environment and sediment source was controversial.This study analyzed the paleontological combination characteristics,and conducted a source-to-sink comparative analysis to restore the sedimentary environment and provenance evolution of the Lishui Sag during Paleocene–Eocene based on the integration of detrital zircon U-Pb age spectra patterns with paleontological assemblages.The results indicated that Lishui Sag was dominated by littoral and neritic-facies environment during time corroborated by large abundance of foraminifera,calcareous nannofossils and dinoflagellates.Chronological analysis of detrital zircon U-Pb revealed that there were significant differences in sediment sources between the east and west area of the Lishui Sag.The western area was featured by deeper water depths in the Paleocene–Eocene,and the sediment was characterized by a single Yanshanian peak of zircon U-Pb age spectra,and mainly influenced from Yanshanian magmatic rocks of South China Coast and the surrounding paleo-uplifts.However,its eastern area partly showed Indosinian populations.In particular,the upper Eocene Wenzhou sediments were featured by increasingly plentiful Precambrian zircons in addition to the large Indosinian-Yanshanian peaks,indicating a possible impact from the Yushan Low Uplift to the east.Therefore,it is likely that the eastern Lishui Sag generated large river systems as well as deltas during time.Due to the Yuquan Movement,the Lishui Sag experienced uplifting and exhumation in the late stage of the late Eocene and was not deposited with sediments until Miocene.Featured by transitional-facies depositions of Paleocene–Eocene,the Lishui Sag thus beared significant potential for source rock and oil-gas reservoir accumulation.展开更多
The giant jellyfish Nemopilema nomurai is the largest and most dangerous jellyfish species in East Asian waters,and the N.nomurai bloom causes serious problem in coastal industries,fisheries,and tourism.In the previou...The giant jellyfish Nemopilema nomurai is the largest and most dangerous jellyfish species in East Asian waters,and the N.nomurai bloom causes serious problem in coastal industries,fisheries,and tourism.In the previous surveys,we found N.nomurai could not be observed in the south of 30°N.In this paper,we analyzed the mechanism of this phenomenon.After exploring the possible impacts of different environmental factors,we found that physical processes are essential to the distribution pattern of N.nomurai rather than biological or chemical factors in the East China Sea.The combination of the location of the initial breeding places of N.nomurai and the current system determine the distribution pattern.This study could provide important insights to the potential control of the giant jellyfish in the Chinese coastal waters.展开更多
Past hydroclimatic conditions in southern China are poorly constrained owing to the lack of high-resolution marine-sediment records. In this study, we present high-resolution geochemical and grain-size records of mari...Past hydroclimatic conditions in southern China are poorly constrained owing to the lack of high-resolution marine-sediment records. In this study, we present high-resolution geochemical and grain-size records of marine sediments from the coastal shelf of the northern South China Sea to investigate regional hydrological variations.Results suggest a warm and humid climate during the interval 9 200–7 600 cal a BP, followed by a cold and dry climate from 7 600 cal a BP to 6 500 cal a BP, and progressive humidification during the period 6 500–6 200 cal a BP.A prominent hydrological anomaly occurred during 7 600–6 500 cal a BP. This abrupt event corresponds closely to tropical Pacific and interhemispheric temperature gradients, suggesting that moisture variations in southern China may have been driven by interhemispheric and zonal Pacific temperature gradients via modulation of the intensity and location of the West Pacific subtropical high.展开更多
The hydrocarbon gases in the L1 gas field of the Lishui-Jiaojiang Sag have been commonly interpreted to be an accumulation of pure sapropelic-type thermogenic gas.In this study,chemical components,stable isotopic comp...The hydrocarbon gases in the L1 gas field of the Lishui-Jiaojiang Sag have been commonly interpreted to be an accumulation of pure sapropelic-type thermogenic gas.In this study,chemical components,stable isotopic compositions,and light hydrocarbons were utilized to shed light on the origins of the hydrocarbon fluids in the L1gas pool.The hydrocarbon fluids in the L1 gas pool are proposed to be a mixture of three unique components:mid-maturity oil from the middle Paleocene coastal marine Lingfeng source rock,oil-associated(late oil window)gas generated from the lower Paleocene lacustrine Yueguifeng source rock,and primary microbial gas from the paralic deposits of the upper Paleocene Mingyuefeng source rock.Here,for the first time,the hydrocarbon gases in the L1 gas pool are diagnosed as mixed oil-associated sapropelic-type gas and microbial gas via four pieces of principal evidence:(1)The abnormal carbon isotopic distributions of all methane homologues from C_(1)(CH_(4)or methane)to C_(5)(C_(5)H_(12)or pentane)shown in the Chung plot;(2)the diagnostic~(13)C-depleted C_(1)compared with the thermogenic sapropelic-type gas model,whileδ^(13)C_(2)(C_(2)H_(6)or ethane)andδ^(13)C_(3)(C_(3)H_(8)or propane)both fit perfectly;(3)the excellent agreement of the calculated carbon isotopic compositions of the pure thermogenic gas with the results of the thermal simulated gas from the type-II1 kerogen-rich Yueguifeng source rock;and(4)the oil-associated gas inferred from various binary genetic diagrams with an abnormally elevated gas oil ratio.Overall,the natural gases of the L1 gas pool were quantified in this study to comprise approximately 13%microbial gas,nearly 48%oil-associated sapropelic-type gas,and 39%of nonhydrocarbon gas.The microbial gas is interpreted to have been codeposited and entrained in the humic-kerogen-rich Mingyuefeng Formation under favorable lowtemperature conditions during the late Paleocene-middle Eocene.The microbial gas subsequently leaked into the structurally and stratigraphically complex L1 trap with oil-associated sapropelic-type gas from the Yueguifeng source rock during the late Eocene-Oligocene uplifting event.A small amount of humic-kerogen-generated oil in the L1 gas pool is most likely to be derived from the underlying Lingfeng source rock.The detailed geological and geochemical considerations of source rocks are discussed to explain the accumulation history of hydrocarbon fluids in the L1 gas pool.This paper,therefore,represents an effort to increase the awareness of the pitfalls of various genetic diagrams,and an integrated geochemical and geological approach is required for hydrocarbonsource correlation.展开更多
This paper’s simple ecological model to simulate the ecosystem variation and the vertical carbon flux in the central part of the East China Sea in spring, inter-reated the phytoplankton, zooplankton,autotrophic and h...This paper’s simple ecological model to simulate the ecosystem variation and the vertical carbon flux in the central part of the East China Sea in spring, inter-reated the phytoplankton, zooplankton,autotrophic and heterotrophic bacterioplankton, nitrate, and dissolved organic carbon (DOC) in a run lasting 90 days. Except for DOC, because of poor observation precision,the major seasonal features of the vertical distribution for these components can be simulated by this model. The results show that spring bloom is just a short period of 1-2 weeks and that deposit carbon flux at the bottom interface is about 200 mg /m2 ·d in the first 20 days and then reaches its maximum of 1500mg/m2·d about 2 months later after the spring bloom.展开更多
Based on the data of four seasonal oceanographic censuses in the East China Sea (23°30'-33°00'N, 118°30'-128°00'E) in 1997-2000, the species composition and the diversity of Euphausiacea were...Based on the data of four seasonal oceanographic censuses in the East China Sea (23°30'-33°00'N, 118°30'-128°00'E) in 1997-2000, the species composition and the diversity of Euphausiacea were discussed as well as their relations with environmental variables. Results showed that there were totally 23 different species of Euphausiacea, in which 16 occurred in spring and autumn respectively; 15 were present in summer and only 10 were observed in winter. According to the calculated alternation fraction (R), the species composition showed a clear seasonal alternation with the changes of seasons. Moreover, the environmental variables had different impacts on the distribution of Euphausiacea in different seasons. The distribution in summer was not significantly related to water temperature and salinity. However, the surface salinity was a major determinant of the distribution in spring. In autumn, both surface and bottom temperatures were influencing factors. The distribution in winter depended on salinity at the surface and 10 m depth as well as the temperature at 10 m depth. Regarding to the seasonal variation of species composition, the variations in spring, summer and autumn were not so significant as those in winter. Except in summer, the species number changed with synchronous water temperature and salinity, as a result of the presence of warm currents in the East China Sea and the habitability of the dominant species. Since Euphausiacea tend to agglomerate, the distribution of different species was uneven, which was the major reason for the low diversity of Euphausiacea in the East China Sea.展开更多
A new planktonic dinoflagellate, Prorocentrum donghaiense Lu sp. nov., is described in the present paper. The water sample was collected from the Changjiang Estuary, the East China Sea. The species identification is b...A new planktonic dinoflagellate, Prorocentrum donghaiense Lu sp. nov., is described in the present paper. The water sample was collected from the Changjiang Estuary, the East China Sea. The species identification is based on shape, size, surface micro morphology, ornamentation of thecal plates and the architecture of the periflagellar area and the intercalary bands as seen by light and scanning electron microscope. Prorocentrum donghaiense Lu sp. nov. is compared with other prorocentrum species with respect to morphological characteristics and bloom behavior. It is not known whether Prorocentrum donghaiense Lu sp. nov produces phycotoxins like some other Prorocentrum species. Four other red tide species in the family Prorocentraceae (Dinophyceae), namely P. balticum , P. minimum, P. micans, P. triestinum , were examined and identified by light and scanning electron microscope. They have been recorded as bloom forming species. Some aggregates of Prorocentrum are observed at the end of blooms. An event of strong discoloration caused by P. donghaiense could be detected by satellite sensor in the East China Sea in the late spring of 1995.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities(Nos.202341017,202313024)。
文摘Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO).
基金the International Science Partnership Program of the Chinese Academy of Sciences(No.133137KYSB20200002)the Laoshan Laboratory(No.LSKJ202204005)+3 种基金the State Key Program of National Natural Science of China(No.42130411)the International Science Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)the Aoshan Science and Technology Innovation Program(No.2016ASKJ02-4)the Taishan Scholars Project(to Song SUN)。
文摘The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size structure in summer 2017 in the YS and ECS were assessed using ZooScan imaging analysis.Zooplankton abundance and biovolume ranged 2.94–1187.14 inds./m^(3)and 3.13–3438.51 mm^(3)/m^(3),respectively.Based on the biovolume data of the categorized size classes of 26 identified taxonomic groups,the zooplankton community was classified into five groups,and each group was coupled with distinctive oceanographic features.Under the influence of the Yellow Sea Cold Water Mass,the Yellow Sea offshore group featured the lowest bottom temperature(10.84±3.42℃)and the most abundant Calanoids(mainly in the 2–3 mm size class).In the Yellow Sea inshore group,Hydrozoans showed the largest biovolume and dominated in the 3–4-mm and>5-mm size classes.The East China Sea offshore group,which was affected by the Kuroshio Branch Current,featured high temperature and salinity,and the lowest bottom dissolved oxygen(2.58±0.5 mg/L).The lowest values of zooplankton abundance and biovolume in the East China Sea offshore group might be attributed to the bottom dissolved oxygen contents.The East China Sea inshore group,which was mainly influenced by the Zhejiang-Fujian Coastal Current and Changjiang Diluted Water,was characterized by high chlorophyll a and the largest biovolume of carnivorous Siphonophores(280.82±303.37 mm^(3)/m^(3)).The Changjiang River estuary offshore group showed the most abundant Cyclopoids,which might be associated with the less turbid water mass in this region.Seawater temperature was considered the most important factor in shaping the size compositions of Calanoids in different groups.
基金Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural ResourcesChengdu University of Technology:DGERA20231110。
文摘Excessive carbon emissions have resulted in the greenhouse effect, causing considerable global climate change. Marine carbon storage has emerged as a crucial approach to addressing climate change. The Qiantang Sag(QTS) in the East China Sea Shelf Basin, characterized by its extensive area, thick sedimentary strata, and optimal depth, presents distinct geological advantages for carbon dioxide(CO_(2)) storage. Focusing on the lower section of the Shimentan Formation in the Upper Cretaceous of the QTS, this study integrates seismic interpretation and drilling data with core and thin-section analysis. We reveal the vertical variation characteristics of the strata by providing a detailed stratigraphic description. We use petrophysical data to reveal the development characteristics of high-quality carbon-storage layers and favorable reservoircaprock combinations, thereby evaluating the geological conditions for CO_(2) storage in various stratigraphic sections. We identify Layer B of the lower Shimentan Formation as the most advantageous stratum for marine CO_(2) storage. Furthermore, we analyze the carbon emission trends in the adjacent Yangtze River Delta region. Considering the characteristics of the source and sink areas, we suggest a strong correlation between the carbon emission sources of the Yangtze River Delta and the CO_(2) storage area of the QTS, making the latter a priority area for conducting experiments on marine CO_(2) storage.
文摘The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang Formation in the Xihu Depression are still controversial.Under the guidance of sedimentology and stratigraphy,this study documented a marine-terrestrial transitional environment in the restricted bay setting of the Oligocene Huagang Formation through core description,well logging,and seismic data analysis.This study also revealed that the Oligocene Huagang Formation is dominated by tidal delta,estuary,and gravity flow deposits in the central anticline zone of the Xihu Depression.The new understanding of the sedimentary systems and the discovery of the transgressive gap in the eastern Diaoyu Islands uplift explain the origin of fine-grained sediments and the EW-trending sand bodies in the central depression and the sand bodies parallel to shoreline in the west slope belt,which cannot be explained by previous study results,such as southern transgression or fluvial deltas and even lacustrine deposition.Moreover,the tidal channels,tidal sand flats,and gravity flow sand bodies formed by the transgressive tides are high-quality reservoirs.The study will provide a basis for well placement and serve as guidance for the selection of favorable hydrocarbon exploration areas in the Xihu Depression.
基金The National Natural Science Foundation of China under contract Nos 42276084 and 42176078the Special survey items of the China Geological Survey under contract Nos DD20190205 and DD20221710。
文摘The composition,provenance,and genetic mechanism of sediment on different sedimentary units of the East China Sea(ECS)shelf are essential for understanding the depositional dynamics environment in the ECS.The sediments in the northern ECS shelf are distributed in a ring-shaped distribution centered on the southwestern Cheju Island Mud.From the inside to the outside,the grain size goes from fine to coarse.Aside from the“grain size effect”,hydrodynamic sorting and mineral composition are important restrictions on the content of rare earth elements(REEs).Based on the grain size,REEs,and clay mineral composition of 300 surface sediments,as well as the sedimentary genesis,the northern ECS shelf is divided into three geochemical zones:southwestern Cheju Island Mud Area(ZoneⅠ),Changjiang Shoal Sand Ridges(ZoneⅡ-1),Sand Ridges of the East China Sea shelf(ZoneⅡ-2).The northern ECS shelf is mostly impacted by Chinese mainland rivers(the Changjiang River and Huanghe River),and the provenance and transport mechanism of sediments of different grain sizes is diverse.The bulk sediments come primarily from the Changjiang River,with some material from the Huanghe River carried by the Yellow Sea Coastal Current and the North Jiangsu Coastal Current,and less from Korean rivers.Among them,surface sediments in the southwestern Cheju Island Mud Area(ZoneⅠ)come mostly from the Changjiang River and partly from the Huanghe River.It was formed by the counterclockwise rotating cold eddies in the northern ECS shelf,which caused the sedimentation and accumulation of the fine-grained sediments of the Changjiang River and the Huanghe River.The Changjiang Shoal Sand Ridges(ZoneⅡ-1)were developed during the early-middle Holocene sea-level highstand.It is the modern tidal sand ridge sediment formed by intense hydrodynamic action under the influence of the Yellow Sea Coastal Current,North Jiangsu Coastal Current,and Changjiang Diluted Water.The surface sediments mainly originate from the Changjiang River and Huanghe River,with the Changjiang River dominating,and the Korean River(Hanjiang River)influencing just a few stations.Sand Ridges of the East China Sea shelf(ZoneⅡ-2)are the relict sediments of the paleo-Changjiang River created by sea invasion at the end of the Last Deglaciation in the Epipleistocene.The clay mineral composition of the surface sediments in the study area is just dominated by the Changjiang River,with the North Jiangsu Coastal Current and the Changjiang Diluted Water as the main transporting currents.
文摘This paper deals with the distribution and community structure of phytoplankton revealed by data obtained in a cruise in April and one in Oct.-Nov., 1994. Among 140 species of phytoplankton (including varieties and formas) identified, 104 species belonged to Bacillariophyta and 32 species belonged to Pyrrhophyta. In April, the biomass of phytoplankton was 0.09×10 4-465×10 6 cells/m 3, and the dense area was located in the Zhejiang coastal zone and the estuary of the Changjiang River; the density of the studied area’s west part was always higher than that of the east part. In October and November, the phytoplankton biomass was 0.42×10 4-289.9×10 4 cells/m 3, and the dense area was located in the upwelling zone near the Zhejiang coast. In spring and autumn, biomass was very low in the outer part of the East China Sea continental shelf area, where phytoplankton was classifiable into two communities based on the phytoplankton’s ecological characteristics and environmental parameters such as water temperature and salinity, i.e. neritic community environment characterized by warm temperature and low salinity and pelagic community environment characterized by high temperature and high salinity.
文摘Harmful algal blooms (HABs) are a serious worldwide issue which has posed great risks on marine ecosystems and public health by directly releasing toxins or indirectly leading to anoxia in marine environment. In recent years HABs have caused huge economic losses in China, particularly in the Yangtze Estuary and the adjacent East China Sea (ECS). The present study investigated the spatial-temporal and species characteristics of large-scale HABs in this area using geographic information system (GIS) Kernel Density Estimation (KDE) spatial analysis, statistical methods and satellite image interpretation. Results revealed that the Yangtze Estuary, Zhoushan island, Xiangshan bay and Jiushan island are the regions with highest frequency of large-scale HABs. HABs in the ECS reached a peak in terms of total number and area in 2003 to 2005 and occupied a high percentage (around 70% in area and 60% in occurrence) in the four Chinese coastal waters. The number of large-scale HABs (> 1000 km2) in the Yangtze Estuary and the adjacent ECS declined after 2005 while that of HABs (> 100 km2) declined after 2008. Large-scale HABs occurrences concentrated in summer (May to July), and the averaged duration increased continually from the shortest time (1.3 days) in 2001 to the longest (10.9 days) in 2010 for each HAB. 17 causative species were found with Prorocentrum dentutam as the most frequent dominant species, followed by Skeletonema costatum, Karenia mikimotoi, and Chaetoceros curvisetus. Water discoloration observed in MODIS satellite true color images was well consistent with the corresponding HABs reported by State Oceanic Administration of China (SOA). Multiple factors involving eutrophication, physical dynamics, topography and deposition conditions contributed to the formation of frequent HABs in the ECS. Three strategies including establishing a synthesized system, improving the previous database and investigating multiple contributors were proposed for future HABs monitoring and management.
基金Supported by the National Basic Research Program of China (973 Program) (Nos. 2005CB422300,2007CB411804,2010CB428904)the National Natural Science Foundation of China (Nos. 40976001,40940025,41006002)+2 种基金Tianjin Municipal Science and Technology Commission Project (No. 09JCYBJC07400)the "111 Project" (No.B07036)the Program for New Century Excellent Talents in University (No. NECT-07-0781)
文摘For understanding more about the water exchange between the Kuroshio and the East China Sea,We studied the variability of the Kuroshio in the East China Sea(ECS) in the period of 1991 to 2008 using a three-dimensional circulation model,and calculated Kuroshio onshore volume transport in the ECS at the minimum of 0.48 Sv(1 Sv ;106 m3/s) in summer and the maximum of 1.69 Sv in winter.Based on the data of WOA05 and NCEP,The modeled result indicates that the Kuroshio transport east of Taiwan Island decreased since 2000.Lateral movements tended to be stronger at two ends of the Kuroshio in the ECS than that of the middle segment.In addition,we applied a spectral mixture model(SMM) to determine the exchange zone between the Kuroshio and the shelf water of the ECS.The result reveals a significantly negative correlation(coefficient of-0.78) between the area of exchange zone and the Kuroshio onshore transport at 200 m isobath in the ECS.This conclusion brings a new view for the water exchange between the Kuroshio and the East China Sea.Additional to annual and semi-annual signals,intra-seasonal signal of probably the Pacific origin may trigger the events of Kuroshio intrusion and exchange in the ECS.
基金Supported by the National Natural Science Foundation of China(No.32072981)。
文摘In the East China Sea(ECS),chub mackerel Scomber japonicus constitutes an important coastal-pelagic fishery resource that is mainly exploited by Chinese,Japanese,and Korean light-purse seine fisheries.Because the early life history of chub mackerel plays a significant role in its recruitment,we developed an individual-based model to study the distribution,growth,and survival rate of chub mackerel larvae and juveniles in the ECS to improve our understanding of the chub mackerel population structure and recruitment.Our results show that as body length rapidly increases,the swimming capacity of chub mackerel larvae and juveniles improves quickly,and their spatial distribution depends more on their habitat conditions than the ocean currents.Correspondingly,the juveniles from the central and southern ECS spawning ground are scarcely recruited into the Japan/East Sea(JES)or the western Pacific Ocean,but a significant proportion of juveniles from the northern ECS spawning ground still enter the JES and there are exchanges between the stocks in the ECS and JES.Thus,it seems more reasonable to assess and manage the chub mackerels in the ECS and JES as a stock.The water temperature and ocean primary production in the ECS are two important factors influencing the chub mackerel habitat conditions and their spatial and temporal distribution are significantly different as the spawning time changes.Therefore,the spawning time and location play an important role in the growth and survival rate of the larvae and juveniles.Generally,when chub mackerel spawns at the southern ECS spawning ground in March,the larva and juvenile growth and survival rate is relatively high;as spawning time moves forward,higher growth and survival rates would be expected for the chub mackerel spawned coastward or northward.For specific spawning sites,early or delayed spawning will reduce the survival rate.
基金The National Natural Science Foundation of China under contract Nos 42076066,92055203 and U20A20100。
文摘Both Pinghu and Huagang formations are important hydrocarbon reservoirs of the Xihu Depression in the East China Sea Shelf Basin.Clarifying the source suppliers and restoring source-to-sink transport routes are of great significance to the future petroleum and gas undertakings.Previous researchers were largely confined by either limitation of geological records,highly dependence on a singular method or low-precision dating techniques.Our study integrated heavy mineral assemblages,geochemical analyses and detrital zircon U-Pb dating to reconstruct multiple source-to-sink pathways,and to provide a better understanding on the provenance evolution for the upper Pinghu–lower Huagang depositions of the Xihu Depression.At least three major provenances have been confirmed and systematically investigated for their separate compositional features.The Hupijiao Uplift(or even farther northern area)was dominated by a major Paleoproterozoic population peaked at ca.1830 Ma along with minor Mesozoic clusters.The Haijiao Uplift to the west and the Yushan Low Uplift to the southwest,on the other hand,generate opposite U-Pb age spectra with apparently larger peaks of Indosinian and Yanshanian-aged zircons.To be noted,both Indosinian and Paleoproterozoic peaks are almost identical in proportion for the Haijiao Uplift.The overall sedimentary pattern of late Eocene-early Oligocene was featured by both spatial and temporal distinction.The Hupijiao Uplift was likely to cast limited impact during the late Eocene,whereas the broad southern Xihu Depression was transported by a large abundance of materials from the nearby Haijiao and Yushan Low Uplifts.The northern source substantially extended its influence to the farther south during the early Oligocene by delivering plentiful sediments of higher-degree metamorphic parent rocks.Combined with the proximal western and southwestern suppliers,the overall Xihu Depression was under control from both distant and local provenances.
基金Supported by the China National Science and Technology Major Project(2016ZX05027-004)CNOOC(China)Science and Technology Projects(CNOOC-KJ 135,ZDXM 39 SH03).
文摘The fluvial-deltaic reservoirs of the Oligocene Huagang Formation in the Xihu sag of the East China Sea shelf basin reflect rapid lateral change in sedimentary facies and poor morphology of conventional slice attributes,which bring difficulties to the reservoir prediction for subsequent exploration and development of lithologic reservoirs.The traditional seismic sedimentology technology is optimized by applying the characteristic technologies such as frequency-boosting interpretation,inversion-conventional–90°phase shift joint construction of seismic lithologic bodies,nonlinear slices,paleogeomorphology restoration,and multi-attribute fusion,to obtain typical slice attributes,which are conducive to geological form description and sedimentary interpretation.The Huagang Formation developed three types of sedimentary bodies:braided river,meandering river and shallow water delta,and the vertical sedimentary evolution was controlled by the mid-term base-level cycle and paleogeomorphology.In the early–middle stage of the mid-term base-level ascending cycle,braided channel deposits were dominant,and vertical superimposed sand bodies were developed.In the late stage of the ascending half-cycle and the early stage of the descending half-cycle,meandering river deposits were dominant,and isolated sand bodies were developed.In the middle–late stage of the descending half-cycle,shallow-water delta deposits were dominant,and migratory medium–thick sand bodies were developed.Restricted paleogeomorphology controlled the sand body distribution,while non-restricted paleogeomorphology had little effect on the sand body distribution.Based on reservoir characterization,the fault sealing type and reservoir updip pinch-out type structural lithological traps are proposed as the main directions for future exploration and development in the Xihu sag.
基金the National Natural Science Foundation of China(No.41976053)and the Shandong Province Funds for Excellent Young Scholars(No.ZR2021YQ26)。
文摘The East China Sea(ECS),which is located in the transitional zone between land and ocean,is the main site for the burial of sedimentary organic carbon.Despite good constraints of the modern source to the sinking process of organic carbon,its fate in response to changes in climate and sea level since the last deglaciation remains poorly understood.We aim to fill this gap by presenting a high-resolution sedimentary record of core EC2005 to derive a better understanding of the evolution of the depositional environment and its control on the organic deposition since 17.3 kyr.Our results suggest that sedimentary organic carbon was deposited in a terrestrial environment before the seawater reached the study area around 13.1 kyr.This significant transition from a terrestrial environment to a marine environment is reflected by the decrease in TOC/TN and TOC/TS ratios,which is attributed to deglacial sea level rise.The sea level continued to rise until it reached its highstand at approximately 7.3 kyr when the mud depocenter was developed.Our results further indicate that the deposition of the sedimentary organic carbon could respond quickly to abrupt cold events,including the Heinrich stadial 1 and the Younger Dryas during the last deglaciation,as well as‘Bond events'during the Holocene.We propose that the rapid response of the organic deposition to those cold events in the northern hemisphere is linked to the East Asian winter monsoon.These new findings demonstrate that organic carbon deposition and burial on the inner shelf could effectively document sea level and climatic changes.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY21D060005)the Shandong Provincial Natural Science Foundation(No.ZR2022MD082)+2 种基金the Joint Project of Zhoushan Municipality and Zhejiang University(No.2019C810060)the Open Fund Project of Key Laboratory of Marine Environmental Information Technologythe Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA19060201).
文摘The East China Sea(ECS)boasts a vast continental shelf,where strong tidal motions play an important role in the substance transport and energy budget.In this study,the tide-induced mixing in the bottom boundary layer in the western ECS is analyzed based on records measured by moored acoustic Doppler current profilers from June to October 2014.Results show that the M_(2) tide is strong and shows a barotropic feature,whereas the O_(1) tide is much weaker.Based on the M_(2) tidal currents,the eddy viscosity in the bottom Ekman boundary layer is estimated with three schemes.The estimated eddy viscosity values vary within 10^(-4)–10^(-2)m^(2) s^(−1),reaching a maximum at approximately 5 m height from the bottom and decreasing exponentially with the height at all three stations.Moreover,the shear production of turbulent kinetic energy is calculated to quantify the mixing induced by different tidal constituents.The results show that the shear production of the M_(2) tide is much stronger than that of the O_(1) tide and shows a bottom intensified feature.
基金The National Natural Science Foundation of China under contract Nos 42076066 and 92055203。
文摘The East China Sea Shelf Basin generated a series of back-arc basins with thick successions of marine-and terrestrial-facies sediments during Cenozoic.It is enriched with abundant oil and gas resources and is of great significance to the petroleum exploration undertakings.Therein,the Lishui Sag formed fan delta,fluvial delta and littoral-to-neritic facies sediments during Paleocene–Eocene,and the research on its sedimentary environment and sediment source was controversial.This study analyzed the paleontological combination characteristics,and conducted a source-to-sink comparative analysis to restore the sedimentary environment and provenance evolution of the Lishui Sag during Paleocene–Eocene based on the integration of detrital zircon U-Pb age spectra patterns with paleontological assemblages.The results indicated that Lishui Sag was dominated by littoral and neritic-facies environment during time corroborated by large abundance of foraminifera,calcareous nannofossils and dinoflagellates.Chronological analysis of detrital zircon U-Pb revealed that there were significant differences in sediment sources between the east and west area of the Lishui Sag.The western area was featured by deeper water depths in the Paleocene–Eocene,and the sediment was characterized by a single Yanshanian peak of zircon U-Pb age spectra,and mainly influenced from Yanshanian magmatic rocks of South China Coast and the surrounding paleo-uplifts.However,its eastern area partly showed Indosinian populations.In particular,the upper Eocene Wenzhou sediments were featured by increasingly plentiful Precambrian zircons in addition to the large Indosinian-Yanshanian peaks,indicating a possible impact from the Yushan Low Uplift to the east.Therefore,it is likely that the eastern Lishui Sag generated large river systems as well as deltas during time.Due to the Yuquan Movement,the Lishui Sag experienced uplifting and exhumation in the late stage of the late Eocene and was not deposited with sediments until Miocene.Featured by transitional-facies depositions of Paleocene–Eocene,the Lishui Sag thus beared significant potential for source rock and oil-gas reservoir accumulation.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDA19060204,XDA23050502)the State Key Program of National Natural Science of China(No.42130411)+4 种基金the Key Deployment Project of Centre for Ocean Mega-Research of ScienceChinese Academy of Sciences(CAS)(No.COMS2019J03)the International Science Partnership Program of the Chinese Academy of Sciences(Nos.121311KYSB20190029,133137KYSB20200002)the Laoshan Laboratory(No.LSKJ202204005)the Aoshan Science and Technology Innovation Program(No.2016ASKJ02-4)。
文摘The giant jellyfish Nemopilema nomurai is the largest and most dangerous jellyfish species in East Asian waters,and the N.nomurai bloom causes serious problem in coastal industries,fisheries,and tourism.In the previous surveys,we found N.nomurai could not be observed in the south of 30°N.In this paper,we analyzed the mechanism of this phenomenon.After exploring the possible impacts of different environmental factors,we found that physical processes are essential to the distribution pattern of N.nomurai rather than biological or chemical factors in the East China Sea.The combination of the location of the initial breeding places of N.nomurai and the current system determine the distribution pattern.This study could provide important insights to the potential control of the giant jellyfish in the Chinese coastal waters.
基金The National Natural Science Foundation of China under contract No. 42001078the College Student Innovation and Training Project of Guangdong Ocean University under contract No. S20211056601+3 种基金the Guangdong Natural Science Foundation of China under contract No. 2021A1515011157the Innovative Team Project of Guangdong Universities under contract No.2019KCXTF021the First-class Discipline Plan of Guangdong Province under contract Nos 080503032101 and 231420003the Marine Science Research Team Project of Guangdong Ocean University under contract No. 002026002004。
文摘Past hydroclimatic conditions in southern China are poorly constrained owing to the lack of high-resolution marine-sediment records. In this study, we present high-resolution geochemical and grain-size records of marine sediments from the coastal shelf of the northern South China Sea to investigate regional hydrological variations.Results suggest a warm and humid climate during the interval 9 200–7 600 cal a BP, followed by a cold and dry climate from 7 600 cal a BP to 6 500 cal a BP, and progressive humidification during the period 6 500–6 200 cal a BP.A prominent hydrological anomaly occurred during 7 600–6 500 cal a BP. This abrupt event corresponds closely to tropical Pacific and interhemispheric temperature gradients, suggesting that moisture variations in southern China may have been driven by interhemispheric and zonal Pacific temperature gradients via modulation of the intensity and location of the West Pacific subtropical high.
基金The“Seven Year Action Plan”East China Sea Special Project of CNOOC under contract No.CNOOC-KJ 135 ZDXM39 SH02。
文摘The hydrocarbon gases in the L1 gas field of the Lishui-Jiaojiang Sag have been commonly interpreted to be an accumulation of pure sapropelic-type thermogenic gas.In this study,chemical components,stable isotopic compositions,and light hydrocarbons were utilized to shed light on the origins of the hydrocarbon fluids in the L1gas pool.The hydrocarbon fluids in the L1 gas pool are proposed to be a mixture of three unique components:mid-maturity oil from the middle Paleocene coastal marine Lingfeng source rock,oil-associated(late oil window)gas generated from the lower Paleocene lacustrine Yueguifeng source rock,and primary microbial gas from the paralic deposits of the upper Paleocene Mingyuefeng source rock.Here,for the first time,the hydrocarbon gases in the L1 gas pool are diagnosed as mixed oil-associated sapropelic-type gas and microbial gas via four pieces of principal evidence:(1)The abnormal carbon isotopic distributions of all methane homologues from C_(1)(CH_(4)or methane)to C_(5)(C_(5)H_(12)or pentane)shown in the Chung plot;(2)the diagnostic~(13)C-depleted C_(1)compared with the thermogenic sapropelic-type gas model,whileδ^(13)C_(2)(C_(2)H_(6)or ethane)andδ^(13)C_(3)(C_(3)H_(8)or propane)both fit perfectly;(3)the excellent agreement of the calculated carbon isotopic compositions of the pure thermogenic gas with the results of the thermal simulated gas from the type-II1 kerogen-rich Yueguifeng source rock;and(4)the oil-associated gas inferred from various binary genetic diagrams with an abnormally elevated gas oil ratio.Overall,the natural gases of the L1 gas pool were quantified in this study to comprise approximately 13%microbial gas,nearly 48%oil-associated sapropelic-type gas,and 39%of nonhydrocarbon gas.The microbial gas is interpreted to have been codeposited and entrained in the humic-kerogen-rich Mingyuefeng Formation under favorable lowtemperature conditions during the late Paleocene-middle Eocene.The microbial gas subsequently leaked into the structurally and stratigraphically complex L1 trap with oil-associated sapropelic-type gas from the Yueguifeng source rock during the late Eocene-Oligocene uplifting event.A small amount of humic-kerogen-generated oil in the L1 gas pool is most likely to be derived from the underlying Lingfeng source rock.The detailed geological and geochemical considerations of source rocks are discussed to explain the accumulation history of hydrocarbon fluids in the L1 gas pool.This paper,therefore,represents an effort to increase the awareness of the pitfalls of various genetic diagrams,and an integrated geochemical and geological approach is required for hydrocarbonsource correlation.
文摘This paper’s simple ecological model to simulate the ecosystem variation and the vertical carbon flux in the central part of the East China Sea in spring, inter-reated the phytoplankton, zooplankton,autotrophic and heterotrophic bacterioplankton, nitrate, and dissolved organic carbon (DOC) in a run lasting 90 days. Except for DOC, because of poor observation precision,the major seasonal features of the vertical distribution for these components can be simulated by this model. The results show that spring bloom is just a short period of 1-2 weeks and that deposit carbon flux at the bottom interface is about 200 mg /m2 ·d in the first 20 days and then reaches its maximum of 1500mg/m2·d about 2 months later after the spring bloom.
基金This study was funded by the National Key Basic Research Program“973”Project from the Ministry of Science and Technology of China under contract No.G19990437.
文摘Based on the data of four seasonal oceanographic censuses in the East China Sea (23°30'-33°00'N, 118°30'-128°00'E) in 1997-2000, the species composition and the diversity of Euphausiacea were discussed as well as their relations with environmental variables. Results showed that there were totally 23 different species of Euphausiacea, in which 16 occurred in spring and autumn respectively; 15 were present in summer and only 10 were observed in winter. According to the calculated alternation fraction (R), the species composition showed a clear seasonal alternation with the changes of seasons. Moreover, the environmental variables had different impacts on the distribution of Euphausiacea in different seasons. The distribution in summer was not significantly related to water temperature and salinity. However, the surface salinity was a major determinant of the distribution in spring. In autumn, both surface and bottom temperatures were influencing factors. The distribution in winter depended on salinity at the surface and 10 m depth as well as the temperature at 10 m depth. Regarding to the seasonal variation of species composition, the variations in spring, summer and autumn were not so significant as those in winter. Except in summer, the species number changed with synchronous water temperature and salinity, as a result of the presence of warm currents in the East China Sea and the habitability of the dominant species. Since Euphausiacea tend to agglomerate, the distribution of different species was uneven, which was the major reason for the low diversity of Euphausiacea in the East China Sea.
文摘A new planktonic dinoflagellate, Prorocentrum donghaiense Lu sp. nov., is described in the present paper. The water sample was collected from the Changjiang Estuary, the East China Sea. The species identification is based on shape, size, surface micro morphology, ornamentation of thecal plates and the architecture of the periflagellar area and the intercalary bands as seen by light and scanning electron microscope. Prorocentrum donghaiense Lu sp. nov. is compared with other prorocentrum species with respect to morphological characteristics and bloom behavior. It is not known whether Prorocentrum donghaiense Lu sp. nov produces phycotoxins like some other Prorocentrum species. Four other red tide species in the family Prorocentraceae (Dinophyceae), namely P. balticum , P. minimum, P. micans, P. triestinum , were examined and identified by light and scanning electron microscope. They have been recorded as bloom forming species. Some aggregates of Prorocentrum are observed at the end of blooms. An event of strong discoloration caused by P. donghaiense could be detected by satellite sensor in the East China Sea in the late spring of 1995.