期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Influence of lithospheric thickness distribution on oil and gas basins,China seas and adjacent areas
1
作者 Jing Ma Wanyin Wang +4 位作者 Hermann Zeyen Yimi Zhang Zhongsheng Li Tao He Dingding Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期1-14,共14页
The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and ... The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and gas basins is highly important.This research utilizes recently enhanced geological–geophysical data,including topographic,geoid,rock layer thickness,variable rock layer density,and interface depth data.Employing the principles of lithospheric isostasy and heat conduction,we compute the laterally varying lithospheric thickness in the China seas and adjacent areas.From these results,two pivotal parameters for different types of oil and gas basins were statistically analyzed:the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.A semiquantitative analysis was used to explore the connection between these parameters and the hydrocarbon abundance within the oil and gas basins.This study unveils distinct variations in lithospheric thickness among basins,with oil and gas rich basins exhibiting a thicker lithosphere in the superimposed basins of central China and a thinner lithosphere in the rift basins of eastern China.Notably,the relative fluctuations in lithospheric thickness in basins demonstrate significant disparities:basins rich in oil and gas often exhibit greater thickness fluctuations.Additionally,in the offshore basins of China,a conspicuous negative linear correlation is observed between the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.This study posits that deep-seated thermal upwelling results in lithospheric undulations and extensional thinning in oil and gas basins.Concurrently,sustained deep-seated heat influences sedimentary materials in basins,creating favorable conditions for oil and gas generation.The insights derived from this study contribute to a quantitative understanding of the intricate relationships between deep lithospheric structures and oil and gas basins.These findings provide valuable guidance for future oil and gas exploration in the studied areas. 展开更多
关键词 china seas and adjacent areas lithospheric thickness oil and gas basins
下载PDF
Influence of the Moho surface distribution on the oil and gas basins in China seas and adjacent areas 被引量:4
2
作者 Yimi Zhang Wanyin Wang +5 位作者 Linzhi Li Xingang Luo Dingding Wang Tao He Feifei Zhang Jing Ma 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期167-188,共22页
Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho charact... Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho characteristics influence oil and gas distribution.Therefore,it is important to study the relationship between the variation of the Moho surface depth undulation and hydrocarbon basins for the future prediction of their locations.The Moho depth in the study area can be inverted using the Moho depth control information,the Moho gravity anomaly,and the variable density distribution calculated by the infinite plate.Based on these results,the influences of Moho characteristics on petroleum basins were studied.We found that the Moho surface depth undulation deviation and crustal thickness undulation deviation in the hydrocarbon-rich basins are large,and the horizontal gradient deviation of the Moho surface shows a positive linear relationship with oil and gas resources in the basin.The oil-bearing mechanism of the Moho basin is further discussed herein.The Moho uplift area and the slope zone correspond to the distribution of oil and gas fields.The tensile stress produced by the Moho uplift can form tensile fractures or cause tensile fractures on the surface,further developing into a fault or depression basin that receives deposits.The organic matter can become oil and natural gas under suitable chemical and structural conditions.Under the action of groundwater or other dynamic forces,oil and natural gas are gradually transported to the uplift or the buried hill in the depression zone,and oil and gas fields are formed under the condition of good caprock.The research results can provide new insights into the relationship between deep structures and oil and gas basins as well as assist in the strategic planning of oil and gas exploration activities. 展开更多
关键词 china seas and adjacent areas Moho surface oil and gas basins
下载PDF
Coexistence of natural gas hydrate,free gas and water in the gas hydrate system in the Shenhu Area,South China Sea 被引量:27
3
作者 Xu-wen Qin Jing-an Lu +6 位作者 Hai-long Lu Hai-jun Qiu Jin-qiang Liang Dong-ju Kang Lin-sen Zhan Hong-feng Lu Zeng-gui Kuang 《China Geology》 2020年第2期210-220,共11页
Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide cover... Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide coverage of the three-dimensional seismic survey,a large number of boreholes,and detailed data of the seismic survey,logging,and core analysis.In the beginning of 2020,China has successfully conducted the second offshore production test of gas hydrates in this area.In this paper,studies were made on the structure of the hydrate system for the production test,based on detailed logging data and core analysis of this area.As to the results of nuclear magnetic resonance(NMR)logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition,the hydrate system on which the production well located can be divided into three layers:(1)207.8–253.4 mbsf,45.6 m thick,gas hydrate layer,with gas hydrate saturation of 0–54.5%(31%av.);(2)253.4–278 mbsf,24.6 m thick,mixing layer consisting of gas hydrates,free gas,and water,with gas hydrate saturation of 0–22%(10%av.)and free gas saturation of 0–32%(13%av.);(3)278–297 mbsf,19 m thick,with free gas saturation of less than 7%.Moreover,the pore water freshening identified in the sediment cores,taken from the depth below the theoretically calculated base of methane hydrate stability zone,indicates the occurrence of gas hydrate.All these data reveal that gas hydrates,free gas,and water coexist in the mixing layer from different aspects. 展开更多
关键词 Mixing layer gas hydrate NMR logging Sonic logging Core analysis oil gas exploration engineering Shenhu area South china sea china
下载PDF
Distribution and resource evaluation of natural gas hydrate in South China sea by combing phase equilibrium mechanism and volumetric method 被引量:5
4
作者 Tong Wang Tao Hu +5 位作者 Xiong-Qi Pang Xing-Wen Zhang Xiao-Han Liu Zhi Xu En-Ze Wang Zhuo-Ya Wu 《Petroleum Science》 SCIE CAS CSCD 2022年第1期26-36,共11页
China Geological Survey conducted the second trial production of natural gas hydrate(NGH)in the Shenhu Area in South China Sea(SCS)from 2019 to 2020.Compared with the first trial production in 2017,the second trial sh... China Geological Survey conducted the second trial production of natural gas hydrate(NGH)in the Shenhu Area in South China Sea(SCS)from 2019 to 2020.Compared with the first trial production in 2017,the second trial showed significantly increased daily gas production and total gas production,and removed some technical obstacles for large-scale NGH resource developments in the SCS.However,current NGH resource evaluation in the SCS is still at the stage of prospective gas content assessment,which is unable to guide further NGH exploration and development.This study utilized the hydrate phase balance to delineate the NGH distribution range and effective thickness and volumetric method to evaluate NGH resource.Based on the latest exploration and production data from the Shenhu Area,Monte Carlo simulation was performed to calculate the NGH resource amount with different probabilities.By assuming a 50%cumulative probability,the in-situ NGH resources in the SCS was estimated to be11.7×10^(12)m^(3) and the recoverable NGH resources was 2.8×10^(12)m^(3).These results will provide a more reliable resource basis for China to formulate comprehensive development strategies for oil and gas exploration in the SCS. 展开更多
关键词 South china sea oil and gas resource Natural gas hydrate In-situ resource Recoverable resources
下载PDF
Research progress and challenges of natural gas hydrate resource evaluation in the South China Sea 被引量:4
5
作者 Zhi Xu Tao Hu +7 位作者 Xiong-Qi Pang En-Ze Wang Xiao-Han Liu Zhuo-Ya Wu Di Chen Chang-Rong Li Xing-Wen Zhang Tong Wang 《Petroleum Science》 SCIE CAS CSCD 2022年第1期13-25,共13页
As an efficient clean energy,natural gas hydrate(NGH)has become a hot topic in recent researches.Since1990 s,China has made great achievements and progress in NGH exploration in the South China Sea(SCS),including dete... As an efficient clean energy,natural gas hydrate(NGH)has become a hot topic in recent researches.Since1990 s,China has made great achievements and progress in NGH exploration in the South China Sea(SCS),including determination of the favorable distribution areas and favorable strata thickness,identification of the dual source for accumulation,evaluation of the prospective gas contents,verification of the widespread existence,and confirmation of the technical recoverability of NGH resources.However,there are three major challenges in the NGH studies.First,all the 24 national key and major projects in the SCS focused on trial production engineering and geological engineering in the past 20 years,while 8 of the 10 international NGH research projects focused on resource potential.Second,resource evaluation methods are outdated and some parameter selection are subjective.Third,the existing resource evaluation results are low-level with a great uncertainty,and cannot be used to guide NGH exploration and production or strategic research.To improve the evaluation of NGH resources in the SCS,future researches should focus on four aspects:(1)improve the research on the criterion of the objective existence of NGH and the method of prediction and evaluation;(2)apply new theories and methods from the global NGH research;(3)boost the research on the difference and correlation of the conditions of hydrocarbon migration and accumulation in different basins;(4)innovate the theory and method of NGH resource potential evaluation. 展开更多
关键词 South china sea Natural gas hydrate oil and gas resource evaluation Comprehensive exploration of oil and gas oil and gas development strategy
下载PDF
Distribution and Characteristics of Hazardous Geological Features in the Marine Coastal and Offshore Areas of Zhejiang Province, East China Sea
6
作者 QIU Jiandong LIU Jian +2 位作者 YUE Nana WANG Shuang MAI Duc Dong 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第6期1318-1324,共7页
Newly acquired high-resolution shallow seismic profiles(7069 km in length) in the coastal and offshore areas of Zhejiang Province, East China Sea, China, have revealed eight marine hazardous geological features: shall... Newly acquired high-resolution shallow seismic profiles(7069 km in length) in the coastal and offshore areas of Zhejiang Province, East China Sea, China, have revealed eight marine hazardous geological features: shallow gas, sand ridges, erosion ditches, scarps, irregular bedrock features, underwater shoals, buried paleo-channels, and submarine deltas. Based on the seismic profiles, we have constructed a marine geological map of these hazardous features. Shallow gas accumulations are common and occur mainly in two separate nearshore regions that cover 4613 and 3382 km^2 respectively. There are also scattered shallow gas accumulations in the offshore area, typically accompanied by paleo-channels that occur mainly in the middle of the study area. Sand ridges, erosion ditches, scarps, and irregular bedrock features are found mainly in the northeast of the study area in association with each other. In the southeastern part of the study area, the sand ridges have a linear form and trend NW–SE, representing the western part of the linear sand ridges in the East China Sea. The maximum slope gradient is 1?, which suggests that this area is prone to landslides. These hazardous marine geological features are important to marine and engineering activities in this region. 展开更多
关键词 hazardous MARINE GEOLOGICAL features SHALLOW gas COASTAL and OFFSHORE areas east china sea
下载PDF
Evaluation of natural gas hydrate resources in the South China Sea using a new genetic analogy method 被引量:3
7
作者 Xiao-Han Liu Tao Hu +5 位作者 Xiong-Qi Pang Zhi Xu Tong Wang Xing-Wen Zhang En-Ze Wang Zhuo-Ya Wu 《Petroleum Science》 SCIE CAS CSCD 2022年第1期48-57,共10页
Natural gas hydrate(NGH)has attracted much attention as a new alternative energy globally.However,evaluations of global NGH resources in the past few decades have casted a decreasing trend,where the estimate as of tod... Natural gas hydrate(NGH)has attracted much attention as a new alternative energy globally.However,evaluations of global NGH resources in the past few decades have casted a decreasing trend,where the estimate as of today is less than one ten-thousandth of the estimate forty years ago.The NGH researches in China started relatively late,but achievements have been made in the South China Sea(SCS)in the past two decades.Thirty-five studies had been carried out to evaluate NGH resource,and results showed a flat trend,ranging from 60 to 90 billion tons of oil equivalent,which was 2-3 times of the evaluation results of technical recoverable oil and gas resources in the SCS.The big difference is that the previous 35 group of NGH resource evaluations for the SCS only refers to the prospective gas resource with low grade level and high uncertainty,which cannot be used to guide exploration or researches on development strategies.Based on the analogy with the genetic mechanism of conventional oil and gas resources,this study adopts the newly proposed genetic method and geological analogy method to evaluate the NGH resource.Results show that the conventional oil and gas resources are 346.29×10^(8)t,the volume of NGH and free dynamic field are 25.19×10^(4)km^(3) and(2.05-2.48)×10^(6)km^(3),and the total amount of in-situ NGH resources in the SCS is about(4.47-6.02)×10^(12)m^(3).It is considered that the resource of hydrate should not exceed that of conventional oil and gas,so it is 30 times lower than the previous estimate.This study provides a more reliable geological basis for further NGH exploration and development. 展开更多
关键词 South china sea Natural gas hydrate Natural gas hydrate resources Conventional oil and gas resources Genetic method Analogy method
下载PDF
A 3D basin modeling study of the factors controlling gas hydrate accumulation in the Shenhu Area of the South China Sea 被引量:1
8
作者 Zhi-yuan Xie Jian-gong Wei +2 位作者 Jin-yun Zheng Zhen Sun Kun Zhang 《China Geology》 2022年第2期218-233,共16页
Great advancement has been made on natural gas hydrates exploration and test production in the northern South China Sea.However,there remains a lot of key questions yet to be resolved,particularly about the mechanisms... Great advancement has been made on natural gas hydrates exploration and test production in the northern South China Sea.However,there remains a lot of key questions yet to be resolved,particularly about the mechanisms and the controls of gas hydrates enrichment.Numerical simulaution would play signficant role in addressing these questions.This study focused on the gas hydrate exploration in the Shenhu Area,Northern South China Sea.Based on the newly obtained borehole and multichannel reflection seismic data,the authors conducted an integrated 3D basin modeling study on gas hydrate.The results indicate that the Shenhu Area has favorable conditions for gas hydrate accumulation,such as temperature,pressure,hydrocarbon source,and tectonic setting.Gas hydrates are most concentrated in the Late Miocene strata,particularly in the structual highs between the Baiyun Sag and the Liwan Sag,and area to the south of it.It also proved the existence of overpressure in the main sag of source rocks,which was subject to compaction disequilibrium and hydrocarbon generation.It also shown that the regional fault activity is not conducive to gas hydrate accumulation due to excess gas seepage.The authors conjecture that fault activity may slightly weaken overpressure for the positive effect of hydrocarbon expulsion and areas lacking regional fault activity have better potential. 展开更多
关键词 3D basin modeling gas hydrates Fault reactivation OVERPRESSURE gas seepage Heat flow NGHs exploration trial engineering oil and gas exploration engineering Shenhu area South china sea
下载PDF
Stability analysis of seabed strata and casing structure during the natural gas hydrates exploitation by depressurization in horizontal wells in South China Sea 被引量:1
9
作者 Peng-fei Xie Lin Yang +7 位作者 Qian-yong Liang Xu-hui Zhang Liang-hua Zhang Bin Zhang Xiao-bing Lu Hui-ce He Xue-min Wu Yi-fei Dong 《China Geology》 2022年第2期300-309,共10页
Natural gas hydrates(NGHs)are a new type of clean energy with great development potential.However,it is urgent to achieve safe and economical NGHs development and utilization.This study established a physical model of... Natural gas hydrates(NGHs)are a new type of clean energy with great development potential.However,it is urgent to achieve safe and economical NGHs development and utilization.This study established a physical model of the study area using the FLAC^(3D) software based on the key parameters of the NGHs production test area in the South China Sea,including the depressurization method,and mechanical parameters of strata,NGHs occurrence characteristics,and the technological characteristics of horizontal wells.Moreover,this study explored the law of influences of the NGHs dissociation range on the stability of the overburden strata and the casing structure of a horizontal well.The results are as follows.With the dissociation of NGHs,the overburden strata of the NGHs dissociation zone subsided and formed funnelshaped zones and then gradually stabilized.However,the upper interface of the NGHs dissociation zone showed significant redistribution and discontinuity of stress.Specifically,distinct stress concentration and corresponding large deformation occurred in the build-up section of the horizontal well,which was thus prone to suffering shear failure.Moreover,apparent end effects occurred at the end of the horizontal well section and might cause the deformation and failure of the casing structure.Therefore,it is necessary to take measures in the build-up section and at the end of the horizontal section of the horizontal well to prevent damage and ensure the wellbore safety in the long-term NGHs exploitation. 展开更多
关键词 Natural gas hydrates(NGHs) Exploitation by depressurization Horizontal well Stratum subsidence Shear failure NGHs exploration trial engineering oil and gas exploration engineering Shenhu area South china sea
下载PDF
Application of frequency division inversion in the prediction of heterogeneous natural gas hydrates reservoirs in the Shenhu Area,South China Sea
10
作者 Shu-yu Wu Jun Liu +5 位作者 Hua-ning Xu Chang-ling Liu Fu-long Ning Hong-xian Chu Hao-ran Wu Kai Wang 《China Geology》 2022年第2期251-266,共16页
Drilling results suggest that the thickness of natural gas hydrates(NGHs)in the Shenhu Area,South China Sea(SCS)are spatially heterogenous,making it difficult to accurately assess the NGHs resources in this area.In th... Drilling results suggest that the thickness of natural gas hydrates(NGHs)in the Shenhu Area,South China Sea(SCS)are spatially heterogenous,making it difficult to accurately assess the NGHs resources in this area.In the case that free gas exists beneath hydrate deposits,the frequency of the hydrate deposits will be noticeably attenuated,with the attenuation degree mainly affected by pore development and free gas content.Therefore,the frequency can be used as an important attribute to identify hydrate reservoirs.Based on the time-frequency characteristics of deposits,this study predicted the spatial distribution of hydrates in this area using the frequency division inversion method as follows.Firstly,the support vector machine(SVM)method was employed to study the amplitude versus frequency(AVF)response based on seismic and well logging data.Afterward,the AVF response was introduced as independent information to establish the nonlinear relationship between logging data and seismic waveform.Then,the full frequency band information of the seismic data was fully utilized to obtain the results of frequency division inversion.The inversion results can effectively broaden the frequency band,reflect the NGHs distribution,and reveal the NGHs reservoirs of two types,namely the fluid migration pathway type and the in situ self-generation self-storage diffusion type.Moreover,the inversion results well coincide with the drilling results.Therefore,it is feasible to use the frequency division inversion to predict the spatial distribution of heterogeneous NGHs reservoirs,which facilitates the optimization of favorable drilling targets and is crucial to the resource potential assessment of NGHs. 展开更多
关键词 gas hydrates HETEROGENEITY Frequency division inversion Self-generation and self-storage diffusion type NGHs exploration trial engineering oil and gas exploration engineering Shenhu area South china sea
下载PDF
Identification of functionally active aerobic methanotrophs and their methane oxidation potential in sediments from the Shenhu Area,South China Sea
11
作者 Jing Li Chang-ling Liu +4 位作者 Neng-you Wu Xiao-qing Xu Gao-wei Hu Yan-long Li Qing-guo Meng 《China Geology》 2022年第2期285-292,共8页
Large amounts of gas hydrate are distributed in the northern slope of the South China Sea,which is a potential threat of methane leakage.Aerobic methane oxidation by methanotrophs,significant methane biotransformation... Large amounts of gas hydrate are distributed in the northern slope of the South China Sea,which is a potential threat of methane leakage.Aerobic methane oxidation by methanotrophs,significant methane biotransformation that occurs in sediment surface and water column,can effectively reduce atmospheric emission of hydrate-decomposed methane.To identify active aerobic methanotrophs and their methane oxidation potential in sediments from the Shenhu Area in the South China Sea,multi-day enrichment incubations were conducted in this study.The results show that the methane oxidation rates in the studied sediments were 2.03‒2.36μmol/gdw/d,which were higher than those obtained by sediment incubations from other areas in marine ecosystems.Thus the authors suspect that the methane oxidation potential of methanotrophs was relatively higher in sediments from the Shenhu Area.After the incubations family Methylococcaea(type I methanotrophs)mainly consisted of genus Methylobacter and Methylococcaea_Other were predominant with an increased proportion of 70.3%,whereas Methylocaldum decreased simultaneously in the incubated sediments.Collectively,this study may help to gain a better understanding of the methane biotransformation in the Shenhu Area. 展开更多
关键词 Active methanotrophs Aerobic methane oxidation Marine sediments Natural gas hydrates NGHs exploration trial engineering oil and gas exploration engineering Shenhu area South china sea
下载PDF
Cenozoic Sea-land Transition and its Petroleum Geological Significance in the Northern South China Sea 被引量:4
12
作者 ZHAO Zhigang ZHANG Hao +2 位作者 CUI Yuchi TANG Wu QIAO Peijun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第1期41-54,共14页
The process of Cenozoic sea-land changes in the northern South China Sea(SCS)controlled the sedimentary filling pattern and played an important role in the petroleum geological characteristics of the northern marginal... The process of Cenozoic sea-land changes in the northern South China Sea(SCS)controlled the sedimentary filling pattern and played an important role in the petroleum geological characteristics of the northern marginal sedimentary basins.Under the control of the opening process of the SCS,the northern SCS Cenozoic transgression generally showed the characteristics of early in the east and late in the west,and early in the south and late in the north.The initial transgression occurred in the Eocene in the Taixinan Basin(TXNB)of the eastern SCS,while the transgression occurred until the Pliocene in the Yinggehai Basin(YGHB)of the western SCS.International Ocean Discovery Program(IODP)expeditions(Expeditions 367/368)revealed that the initial transgression of the SCS basin occurred at approximately 34 Ma,which was the initial opening time of the SCS.The period of drastic changes in the sedimentary environment caused by large-scale transgression corresponded to the opening time of the southwestern subbasin(approximately 23 Ma),which also represented the peak of the spreading of the SCS.The sea-land transition process controls the distribution of alternating continent-marine facies,marine facies source rocks and reservoirs in the basins.The marine facies source rocks of the basins in the northern SCS have a trend of gradually becoming younger from east to west,which is consistent with the regional process of gradual transgression from east to west.Regional sea-level changes were comprehensively influenced by SCS opening and global sea-level changes.These processes led to the early development in the east and south and late development in the west and north for the carbonate platform in the SCS.Carbonate platforms form another type of"selfgenerating and self-accumulating"oil-gas reservoir in the northern SCS.The sea-land transition controlled the depositional filling patterns of different basins and laid the foundation of marine deposits for oil and gas resources.The source-reservoircap assemblage in the northern SCS was controlled horizontally by provenance supply and sedimentary environmental changes caused by sea-land transition and vertically by the tectonic evolution of the SCS and regional sea-level changes. 展开更多
关键词 marine stratum sea-level changes sea-land transition oil and gas resources northern South china sea
下载PDF
Distributed optical fiber acoustic sensor for in situ monitoring of marine natural gas hydrates production for the first time in the Shenhu Area,China 被引量:2
13
作者 Xiang-ge He Xue-min Wu +6 位作者 Lei Wang Qian-yong Liang Li-juan Gu Fei Liu Hai-long Lu Yi Zhang Min Zhang 《China Geology》 2022年第2期322-329,共8页
The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole p... The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole production activities in the process of oil and gas development.The authors applied the DAS system in a gas production well in the South China Sea for in situ monitoring of the whole wellbore for the first time and obtained the distributed acoustic signals along the whole wellbore.These signals can clearly distinguish the vertical section,curve section,and horizontal production section.The collected acoustic signal with the frequency of approximately 50 Hz caused by the electric submersible pump exhibit a signal-to-noise ratio higher than 27 dB.By analyzing the acoustic signals in the production section,it can be located the layers with high gas production rates.Once an accurate physical model is built in the future,the gas production profile will be obtained.In addition,the DAS system can track the trajectory of downhole tools in the wellbore to guide the operation.Through the velocity analysis of the typical signals,the type of fluids in the wellbore can be distinguished.The successful application of the system provides a promising whole wellbore acoustic monitoring tool for the production of marine gas hydrate,with a good application prospect. 展开更多
关键词 gas hydrate production monitoring Optical fiber sensor Distributed acoustic sensor In situ monitoring Fluid type NGHs exploration trial engineering oil and gas exploration engineering Shenhu area South china sea
下载PDF
Deep structural research of the South China Sea: Progresses and directions 被引量:4
14
作者 Xu-wen Qin Bin Zhao +5 位作者 Fu-yuan Li Bao-jin Zhang Hou-jin Wang Ru-wei Zhang Jia-xiong He Xi Chen 《China Geology》 2019年第4期530-540,共11页
The South China Sea(SCS)is the hotspot of geological scientific research and nature resource exploration and development due to the potential for enormous hydrocarbon resource development and a complex formation and e... The South China Sea(SCS)is the hotspot of geological scientific research and nature resource exploration and development due to the potential for enormous hydrocarbon resource development and a complex formation and evolution process.The SCS has experienced complex geological processes including continental lithospheric breakup,seafloor spreading and oceanic crust subduction,which leads debates for decades.However,there are still no clear answers regarding to the following aspects:the crustal and Moho structure,the structure of the continent-ocean transition zone,the formation and evolution process and geodynamic mechanism,and deep processes and their coupling relationships with the petroliferous basins in the SCS.Under the guidance of the“Deep-Earth”science and technology innovation strategy of the Ministry of Natural Resources,deep structural and comprehensive geological research are carried out in the SCS.Geophysical investigations such as long array-large volume deep reflection seismic,gravity,magnetism and ocean bottom seismometer are carried out.The authors proposed that joint gravitymagnetic-seismic inversion should be used to obtain deep crustal information in the SCS and construct high resolution deep structural sections in different regions of the SCS.This paper systematically interpreted the formation and evolution of the SCS and explored the coupling relationship between deep structure and evolution of Mesozoic-Cenozoic basins in the SCS.It is of great significance for promoting the geosystem scientific research and resource exploration of the SCS. 展开更多
关键词 DEEP structure evolution DEEP seismic exploration Joint inversion of gravity magnetic and seismicdata oil gas and HYDRATE resource SURVEY ENGINEERING OCEANIC geological SURVEY ENGINEERING South china sea china
下载PDF
Velocity-porosity relationships in hydrate-bearing sediments measured from pressure cores,Shenhu Area,South China Sea
15
作者 Lin Lin Jun Cao +4 位作者 Jin Qian Jiu-jing Shang Wei Zhang Jin-gan Lu Jin-qiang Liang 《China Geology》 2022年第2期267-275,共9页
Evaluating velocity-porosity relationships of hydrate-bearing marine sediments is essential for characterizing natural gas hydrates below seafloor as either a potential energy resource or geohazards risks.Four sites h... Evaluating velocity-porosity relationships of hydrate-bearing marine sediments is essential for characterizing natural gas hydrates below seafloor as either a potential energy resource or geohazards risks.Four sites had cored using pressure and non-pressure methods during the gas hydrates drilling project(GMGS4)expedition at Shenhu Area,north slope of the South China Sea.Sediments were cored above,below,and through the gas-hydrate-bearing zone guided with logging-while-drilling analysis results.Gamma density and P-wave velocity were measured in each pressure core before subsampling.Methane hydrates volumes in total 62 samples were calculated from the moles of excess methane collected during depressurization experiments.The concentration of methane hydrates ranged from 0.3%to 32.3%.The concentrations of pore fluid(25.44%to 68.82%)and sediments(23.63%to 54.28%)were calculated from the gamma density.The regression models of P-wave velocity were derived and compared with a global empirical equation derived from shallow,unconsolidated sediments data.The results were close to the global trend when the fluid concentration is larger than the critical porosity.It is concluded that the dominant factor of P-wave velocity in hydrate-bearing marine sediments is the presence of the hydrate.Methane hydrates can reduce the fluid concentration by discharging the pore fluid and occupying the original pore space of sediments after its formation. 展开更多
关键词 Natural gas hydrates(NGHs) Methane hydrate P-wave velocity POROSITY Saturation Pressure-core NGHs exploration trial engineering oil and gas exploration engineering Shenhu area South china sea
下载PDF
Experimental study on characteristics of pore water conversion during methane hydrates formation in unsaturated sand 被引量:4
16
作者 Yun-kai Ji Chang-ling Liu +4 位作者 Zhun Zhang Qing-guo Meng Le-le Liu Yong-chao Zhang Neng-you Wu 《China Geology》 2022年第2期276-284,共9页
Understanding the pore water conversion characteristics during hydrate formation in porous media is important to study the accumulation mechanism of marine gas hydrate.In this study,low-field NMR was used to study the... Understanding the pore water conversion characteristics during hydrate formation in porous media is important to study the accumulation mechanism of marine gas hydrate.In this study,low-field NMR was used to study the pore water conversion characteristics during methane hydrate formation in unsaturated sand samples.Results show that the signal intensity of T_(2) distribution isn’t affected by sediment type and pore pressure,but is affected by temperature.The increase in the pressure of hydrogen-containing gas can cause the increase in the signal intensity of T_(2) distribution.The heterogeneity of pore structure is aggravated due to the hydrate formation in porous media.The water conversion rate fluctuates during the hydrate formation.The sand size affects the water conversion ratio and rate by affecting the specific surface of sand in unsaturated porous media.For the fine sand sample,the large specific surface causes a large gas-water contact area resulting in a higher water conversion rate,but causes a large water-sand contact area resulting in a low water conversion ratio(C_(w)=96.2%).The clay can reduce the water conversion rate and ratio,especially montmorillonite(C_(w)=95.8%).The crystal layer of montmorillonite affects the pore water conversion characteristics by hindering the conversion of interlayer water. 展开更多
关键词 Porous media Unsaturated sand Methane hydrates Low-field NMR Pore water conversion Hydrate formation NGHs exploration trial engineering oil and gas exploration engineering Shenhu area South china sea
下载PDF
Experimental investigation of hydrate formation in water-dominated pipeline and its influential factors 被引量:1
17
作者 Li Huang Jia-le Kang +6 位作者 Xiao-dong Shen Jian-ye Sun Qing-guo Meng Qiang Chen Gao-wei Hu Chang-ling Liu Neng-you Wu 《China Geology》 2022年第2期310-321,共12页
Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are in... Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are investigated in a fluid circulation system with a total length of 39 m.A 9-m section pipe is transparent consisted of two complete rectangular loops.By means of pressurization with gas-saturated water,the system can gradually reach the equilibrium conditions.The result shows that the hydrates are delayed to appear as floccules or thin films covering the methane bubbles.When the circulation velocity is below 750 rpm,hydrate is finally deposited as a“hydrate bed”at upmost of inner wall,narrowing the flow channel of the pipeline.Nevertheless,no plugging is observed during all the experimental runs.The five stages of hydrate deposition are proposed based on the experimental results.It is also revealed that a higher driving pressure is needed at a lower flow rate.The driving force of hydrate formation from gas and water obtained by melting hydrate is higher than that from fresh water with no previous hydrate history.The authors hope that this work will be beneficial for the flow assurance of the following oceanic field hydrate recovery trials. 展开更多
关键词 PIPELINE Water production CIRCULATION gas hydrate Formation morphology gas concentration Flowrate NGHs exploration trial engineering oil and gas exploration engineering Shenhu area South china sea
下载PDF
东海盆地西湖凹陷平湖地区油气源对比及油气运移特征分析
18
作者 王军 曹磊 +1 位作者 许怀智 钟荣全 《西安石油大学学报(自然科学版)》 北大核心 2024年第1期1-11,共11页
为了明确东海盆地西湖凹陷平湖地区油气源及油气运移特征,基于对原油和烃源岩生物标志化合物、原油碳同位素、天然气组分、天然气碳同位素,原油物性、含氮化合物等参数的分析,明确了平湖地区的油气来源,揭示了原油和天然气的运移特征。... 为了明确东海盆地西湖凹陷平湖地区油气源及油气运移特征,基于对原油和烃源岩生物标志化合物、原油碳同位素、天然气组分、天然气碳同位素,原油物性、含氮化合物等参数的分析,明确了平湖地区的油气来源,揭示了原油和天然气的运移特征。结果表明:西湖凹陷平湖地区A断块花港组原油C_(27)、C_(28)、C_(29)甾烷以V型(C_(27)≈C_(29)>C_(28))分布或者L型(C_(27)>C_(29)>C_(28))分布为主;A断块烃源岩C_(27)、C_(28)、C_(29)甾烷以反L型(C_(27)>C_(28)<C_(29))分布为主,D块(H11井)平湖组中段烃源岩以L型分布为主,与原油的生标较为相似。油源对比结果和含氮化合物相关参数显示,平湖地区花港组原油具有垂向+短距离侧向运移的特征(断砂搭接);气源对比结果、天然气δ^(13)C_(1)和干燥系数显示,平湖地区A断块和B断块平湖组天然气主要来自自身和D断块烃源岩。 展开更多
关键词 生物标志物 含氮化合物 油气运移 平湖地区 西湖凹陷 东海盆地
下载PDF
中国海域油气资源潜力分析与黄东海海域油气资源调查进展 被引量:32
19
作者 陈建文 梁杰 +9 位作者 张银国 杨长清 袁勇 许明 王建强 雷宝华 李刚 杨艳秋 杨传胜 孙晶 《海洋地质与第四纪地质》 CAS CSCD 北大核心 2019年第6期1-29,共29页
2019年是青岛海洋地质研究所重建40周年。40年来,研究所根据公益性油气资源调查的基本定位,按照"立足黄东海、面向中国海、辐射全球海"的空间业务布局,紧密围绕国家和社会重大需求、瞄准国际海洋科技前沿,以摸清中国海域油气... 2019年是青岛海洋地质研究所重建40周年。40年来,研究所根据公益性油气资源调查的基本定位,按照"立足黄东海、面向中国海、辐射全球海"的空间业务布局,紧密围绕国家和社会重大需求、瞄准国际海洋科技前沿,以摸清中国海域油气资源家底、掌握资源分布状况、实现新区新层系油气突破、服务国家能源战略和海洋强国战略为己任,持续开展了中国海域油气资源区域评价与黄东海盆地油气资源调查,大体分为海域及邻区沉积盆地对比研究、中国海域区域评价战略研究和黄东海海域新区新层系油气资源调查3个阶段。先后主持编制了中国海域沉积盆地分布图和油气资源勘探开发(动态)形势图,开展了海域及邻区含油气盆地对比、中国海域油气勘探开发形势动态分析和油气资源区域评价战略研究、黄东海海域油气资源调查研究与评价,取得了一批原创性的成果。主要体现在:①海域油气资源早期评价技术和沉积盆地深部地震探测技术取得突破性进展;②中国海域油气资源丰富,下一步的调查与勘探方向包括:新层系、近海天然气、富生烃凹陷潜山油气藏、南海深水油气、南海生物礁和非常规天然气;③明确了南黄海盆地的基底性质、海相盆地地层层序和构造区划、侏罗纪前陆盆地特征、海相盆地的油气地质条件和有利区带;④明确了东海中生代盆地的地层层序、盆地结构和两期盆地性质、"大东海"中生代地层分布特征、中生界油气地质条件和有利区带;⑤发现了南黄海古生界古油藏。上述成果和认识为海洋油气资源调查与勘探的下一步工作奠定了坚实的基础。 展开更多
关键词 中国海域 油气资源潜力 油气勘查战略领域 南黄海中-古生界 东海中生界
下载PDF
东海油气资源区海底稳定性评价研究 被引量:14
20
作者 杜军 李培英 +1 位作者 刘乐军 李萍 《海洋科学进展》 CAS CSCD 北大核心 2004年第4期480-485,共6页
海洋灾害地质因素是影响海洋开发活动安全的重要因素。通过提取东海油气资源区的地球物理和工程地质资料中的灾害地质因素和对东海油气资源区灾害地质环境的充分研究,以灾害地质因素为评价因子,应用GIS技术,采用加权统计模型对研究区的... 海洋灾害地质因素是影响海洋开发活动安全的重要因素。通过提取东海油气资源区的地球物理和工程地质资料中的灾害地质因素和对东海油气资源区灾害地质环境的充分研究,以灾害地质因素为评价因子,应用GIS技术,采用加权统计模型对研究区的海底稳定性进行分区定量评价。利用评价结果,确定了东海油气资源区基于地貌类型区划的海底稳定性级别。 展开更多
关键词 灾害地质 东海油气资源区 海底稳定性 评价
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部