The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size...The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size structure in summer 2017 in the YS and ECS were assessed using ZooScan imaging analysis.Zooplankton abundance and biovolume ranged 2.94–1187.14 inds./m^(3)and 3.13–3438.51 mm^(3)/m^(3),respectively.Based on the biovolume data of the categorized size classes of 26 identified taxonomic groups,the zooplankton community was classified into five groups,and each group was coupled with distinctive oceanographic features.Under the influence of the Yellow Sea Cold Water Mass,the Yellow Sea offshore group featured the lowest bottom temperature(10.84±3.42℃)and the most abundant Calanoids(mainly in the 2–3 mm size class).In the Yellow Sea inshore group,Hydrozoans showed the largest biovolume and dominated in the 3–4-mm and>5-mm size classes.The East China Sea offshore group,which was affected by the Kuroshio Branch Current,featured high temperature and salinity,and the lowest bottom dissolved oxygen(2.58±0.5 mg/L).The lowest values of zooplankton abundance and biovolume in the East China Sea offshore group might be attributed to the bottom dissolved oxygen contents.The East China Sea inshore group,which was mainly influenced by the Zhejiang-Fujian Coastal Current and Changjiang Diluted Water,was characterized by high chlorophyll a and the largest biovolume of carnivorous Siphonophores(280.82±303.37 mm^(3)/m^(3)).The Changjiang River estuary offshore group showed the most abundant Cyclopoids,which might be associated with the less turbid water mass in this region.Seawater temperature was considered the most important factor in shaping the size compositions of Calanoids in different groups.展开更多
Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-20...Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO).展开更多
The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observa...The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observations of 9 cruises carried out in 2000 - 2003. The study area covers a broad range of hydrographic and chemical properties. The emphasis is put on a southeast transect from Changjiang Estuary to the Ryukyu Islands (i.e. PN section) in the East China Sea to discuss the impact of terrestdal input on the marginal seas of China. Arsenic species (TDlAs and arsenite) are determined by selective hydride generation - atomic fluorescence spectrometry (HG-AFS). TDIAs concentrations were high in the coastal area of Changjiang Estuary and decreased slightly towards the shelf region. High concentratiOns of TDIAs were also existed in the near bottom layer of shelf edge of the East China Sea which indicated another source of arsenic from the incursion of Kuroshio Waters. The seasonal variations of TDIAs in the study area depend on the hydrographic stages of Changjiang and the incursion intensity of Kuroshio Waters. Arsenite showed opposite distributions with TDIAs, with higher concentrations appeared at the surface layer of shelf region, which was positive correlated with the chlorophyll a. Biological conversion of arsenate into arsenite was hypothesized for the observed distribution pattern and its seasonal variations. The stoichoimetric ratios of As to P were estimated to be about 2×10^3 at PN Section in summer. The concentrations of dissolved arsenic in the Yellow Sea and East China Sea were comparable with other areas in the world.展开更多
To reconstruct the formation and evolution process of the warm current system within the East China Sea (ECS) and the Yellow Sea (YS) since the last deglaciation, the paleoceangraphic records in core DGKS9603, cor...To reconstruct the formation and evolution process of the warm current system within the East China Sea (ECS) and the Yellow Sea (YS) since the last deglaciation, the paleoceangraphic records in core DGKS9603, core CSH1 and core YSDP102, which were retrieved from the mainstream of the Kuroshio Current (KC), the edge of the modern Tsushima Warm Current (TWC) and muddy region under cold waters accreted with the Yellow Sea Warm Current (YSWC) respectively, were synthetically analyzed. The results indicate that the formation and evolution of the modern warm current system in the ECS and the YS has been accompanied by the development of the KC and impulse rising of the sea level since the last deglaciation. The influence of the KC on the Okinawa Trough had enhanced since 16 cal kyr BP, and synchronously the modern TWC began to develop with the rising of sea level and finally formed at about 8.5 cal kyr BP. The KC had experienced two weakening process during the Heinrich event 1 and the Younger Drays event from 16 to 8.5 cal kyr BP. The period of 7-6 cal kyr BP was the strongest stage of the KC and the TWC since the last deglaciation. The YSWC has appeared at about 6.4 cal kyr BE Thus the warm current system of the ECS and the YS has ultimately formed. The weakness of the KC, indicated by the occurrence of Pulleniatina minimum event (PME) during the period from 5.3 to 2.8 cal kyr BE caused the main stream of the TWC to shift eastward to the Pacific Ocean around about 3 cal kyr BE The process resulted in the intruding of continent shelf cold water mass with rich nutrients. Synchronously, the strength of the YSWC was relatively weak and the related cold water body was active at the early-mid stage of its appearance against the PME background, which resulted in the quick formation of muddy deposit system in the southeastern YS. The strength of the warm current system in the ECS and the YS has enhanced evidently, and approached to the modern condition gradually since 3 cal kyr BE展开更多
The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises.There was something special in the ...The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises.There was something special in the observations for the Yellow Sea Warm Current (YSWC) ,the Yellow Sea Cold Water Mass (YSCWM) and the Changjiang Diluted Water (CDW) during that year.The YSWC was confirmed to be a seasonal current and its source was closely associated with the Kuroshio onshore intrusion and the northerly wind.It was also found that the YSCWM in the summer of 2011 occupied a more extensive area in comparison with the climatologically-mean case due to the abnormally powerful wind prevailing in the winter of 2010 and decaying gradually thereafter.Resulting from the reduced Changjiang River discharge,the CDW spreading toward the Cheju Island in the summer of 2011 was weaker than the long-term mean and was confined to flow southward in the other seasons.The other water masses seemed normal without noticeable anomalies in 2011.The Yellow Sea Coastal Current (YSCC) water,driven by the northerly wind,flowed southeastward as a whole except for its northeastward surface layer in summer.The Taiwan Warm Current (TWC) was the strongest in summer and the weakest in winter in its northward movement.The Kuroshio water with an enhanced onshore intrusion in autumn was stable in hydrographic features apart from the seasonal variation of its surface layer.展开更多
Many studies have revealed that anchovy has exhibited large variability in population size on decadal tim-escales. However, such works concerning anchovy population are mainly based on short historical catch records. ...Many studies have revealed that anchovy has exhibited large variability in population size on decadal tim-escales. However, such works concerning anchovy population are mainly based on short historical catch records. In order to understand the causes of variability in fish stocks (natural and/or anthropogenic) and calibrate the error between catches and standing stocks, it is essential to develop long-term time series of fish stocks from the time when human impacts are minimal or negligible. Well preserved fish scales from sediment record are regarded as useful indicators revealing the history of fish population dynamics over the last centuries. Anchovy scales was first analyzed over the Yellow Sea and East China Sea and the largest abundance was found in the central South Yellow Sea where is regarded as the largest overwintering ground for Japanese anchovy (Engraulis japonicas). Thus in the central South Yellow Sea, two cores covering the last 150 years were collected for estimating fish scale flux. The scale deposition rate (SDR) records show that the decadal scale SDRs were obviously coherent between cores with independent chronologies. Thecalibration of downcore SDRs to the standing stocks of anchovy further validated that SDR is a reliable proxy to recon-struct the long-term anchovy population dynamic in the central South Yellow Sea where anoxic conditions prevail in the sediment. When assembled with other productivity proxies, it would be expected that SDR could be associated with changes in oceanic productivity and may make a contribution to determine the forcing factors and elucidate the mechanism of the process in future.展开更多
Distributions and sea-to-air fluxes of five kinds of volatile halocarbons(VHCs) were studied in the southern Yellow Sea(SYS) and the East China Sea(ECS) in November 2007. The results showed that the concentratio...Distributions and sea-to-air fluxes of five kinds of volatile halocarbons(VHCs) were studied in the southern Yellow Sea(SYS) and the East China Sea(ECS) in November 2007. The results showed that the concentrations of 1,1,1-trichloroethane(C2H3Cl3), 1,1-dichloroethene(C2H2Cl2), 1,1,2-trichloroethene(C2HCl3), trichloromethane(CHCl3) and tetrachloromethane(CCl4) in the surface water were 0.31–4.81, 2.75–21.3, 1.21–17.1, 5.02–233 and 0.045–4.47 pmol/L, respectively, with the average values of 1.89, 12.20, 6.93, 60.90 and 0.33 pmol/L. On the whole, the horizontal distributions of C2H3Cl3, C2H2Cl2 and CCl4 were affected mainly by anthropogenic activities, while C2HCl3 and CHCl3 were influenced by biological factors as well as anthropogenic activities. In the study area, the concentrations of VHCs(except C2HCl3) exhibited a decreasing trend from inshore to offshore sites, with the higher values occurring in the coastal waters. The sea-to-air fluxes of C2H3Cl3, C2HCl3, CHCl3 and CCl4 were calculated to be-56.00–(-5.68),-7.31–123.42, 148.00–1 309.31 and-83.32–(-1.53) nmol/(m2·d), respectively, with the average values of-6.77, 17.14, 183.38 and-21.27 nmol/(m2·d). Our data showed that the SYS and ECS in autumn was a sink for C2H3Cl3 and CCl4, while it was a source for C2HCl3 and CHCl3 in the atmosphere.展开更多
The global carbon cycle has played a key role in mitigating global warming and climate change.Long-term natural and anthropogenic processes influence the composition,sources,burial rates,and fluxes of carbon in sedime...The global carbon cycle has played a key role in mitigating global warming and climate change.Long-term natural and anthropogenic processes influence the composition,sources,burial rates,and fluxes of carbon in sediments on the continental shelf of China.In this study,the rates,fluxes,and amounts of carbon storage at the centennial scale were estimated and demonstrated using the case study of three fine-grained sediment cores from the central South Yellow Sea area(SYSA) and Min-Zhe belt(MZB),East China Sea.Based on the high-resolution temporal sequences of total carbon(TC)and total organic carbon(TOC)contents,we reconstructed the annual variations of historical marine carbon storage,and explored the influence of terrestrial and marine sources on carbon burial at the centennial scale.The estimated TC storage over 100 years was 1.18×10~8 t in the SYSA and 1.45×10~9 t in the MZB.The corrected TOC storage fluxes at the centennial scale ranged from 17 to 28 t/(km^2·a)in the SYSA and from 56 to 148 t/(km^2·a)in the MZB.The decrease of terrestrial materials and the increase of marine primary production suggest that the TOC buried in the sediments in the SYSA and MZB was mainly derived from the marine autogenetic source.In the MZB,two depletion events occurred in TC and TOC storage from 1985 to 1987 and 2003 to 2006,which were coeval with the water impoundment in the Gezhouba and Three Gorges dams,respectively.The high-resolution records of the carbon storage rates and fluxes in the SYSA and MZB reflect the synchronous responses to human activities and provide an important reference for assessing the carbon sequestration capacity of the marginal seas of China.展开更多
The coastal ecosystems are highly sensitive to climate change and are usually influenced by variations in phytoplankton communities and water physiochemical factors.In the present study,the phytoplankton community,chl...The coastal ecosystems are highly sensitive to climate change and are usually influenced by variations in phytoplankton communities and water physiochemical factors.In the present study,the phytoplankton community,chlorophyll a(Chl a)and their relationships with environmental variables and dimethylsulfide(DMS)and dimethylsulfoniopropionate(DMSP)were investigated in spring 2017(March 24 to April 16)in the East China Sea(26.0°-33.0°N,120.0°-128.0°E)and southern Yellow Sea(31.0°-36.0°N,120.0°-125.0°E).The spatial distributions of phytoplankton species composition and cell density were investigated by qualitative and quantitative methods and were compared with historical data to study phytoplankton species succession in the survey area.The results showed that there were 275 phytoplankton species belonging to 90 genera and 6 phyla in the survey area,of which 208 species belonged to 62 genera of Bacillariophyta and 56 species belonged to 20 genera of Pyrrophyta.The dominant phytoplankton species were Skeletonema dohrnii,Chaetoceros vanheurckii and Prorocentrum donghaiense.The phytoplankton cell densities ranged from 0.06×10^(4)cells/L to 418.73×10^(4)cells/L,with an average value of 21.46×10^(4)cells/L.In spring,the average ratio of Bacillariophyta/Pyrrophyta was41.13 for the entire study area.The areas with high phytoplankton cell density were mainly distributed in the northern South Yellow Sea and offshore waters of the East China Sea.According to a canonical correspondence analysis among phytoplankton and environmental parameters,the water Chl a concentrations were notably consistent with phytoplankton cell density(P<0.001),and both showed significant negative correlations with salinity and nitrite(P<0.05)and significant positive correlations with dissolved oxygen and pH(P<0.001).There was a significant positive correlation between diatom(both in cell density and in dominant species)and DMS(P<0.05),which indicated that diatoms play a greater role in DMS production in this investigated area.展开更多
3D structure of the crust and upper mantle in the studied area has been analyzed from surface wave tomography. The velocity distribution in the uppermost crust is symmetrical on two sides of the central line of the se...3D structure of the crust and upper mantle in the studied area has been analyzed from surface wave tomography. The velocity distribution in the uppermost crust is symmetrical on two sides of the central line of the sea, and coincides with the structure of crystalline basement. The essential difference in tectonics between the East China Sea and the Yellow Sea mainly lies in that the velocity structures of their lower crust and upper mantle are identical to those of South China and North China respectively. In the upper mantle there exists a high-velocity zone with a nearly EW strike from the Hangzhou Bay, China, to the Tokara Channel, Japan, along about the latitude of 30°N. It is found that between the East China Sea and the Yellow Sea there are systematical differences in geomorphology, geology, seismicity, heat flow, quality factor and gravity and aeromagnetic anomalies, which is related to both left-lateral shear dislocation and right-lateral tear of the Benioff zone from the Hangzhou Bay to the Tokara Channel.It is inferred that the East China Sea was formed by Cenozoic back-arc extension. The boundary between the North China and South China crustal blocks stretches along the southern piedmont of Mts. Daba-Dabie-Hangzhou Bay-Tokara Channel, and the subduction zone at the Okinawa trench is the eastern boundary of the South China crustal block. The movements of the Pacific plate, Indian plate and upper mantle rather than the Philippine plate subduction have played a dominant role for the modern tectonic movements in East Asia.展开更多
The pelagic species is closely related to the marine environmental factors, and establishment of forecasting model of fishing ground with high accuracy is an important content for pelagic fishery. The chub mackerel(S...The pelagic species is closely related to the marine environmental factors, and establishment of forecasting model of fishing ground with high accuracy is an important content for pelagic fishery. The chub mackerel(Scomber japonicus) in the Yellow Sea and East China Sea is an important fishing target for Chinese lighting purse seine fishery. Based on the fishery data from China's mainland large-type lighting purse seine fishery for chub mackerel during the period of 2003 to 2010 and the environmental data including sea surface temperature(SST), gradient of the sea surface temperature(GSST), sea surface height(SSH) and geostrophic velocity(GV), we attempt to establish one new forecasting model of fishing ground based on boosted regression trees. In this study, the fishing areas with fishing effort is considered as one fishing ground, and the areas with no fishing ground are randomly selected from a background field, in which the fishing areas have no records in the logbooks. The performance of the forecasting model of fishing ground is evaluated with the testing data from the actual fishing data in 2011. The results show that the forecasting model of fishing ground has a high prediction performance, and the area under receiver operating curve(AUC) attains 0.897. The predicted fishing grounds are coincided with the actual fishing locations in 2011, and the movement route is also the same as the shift of fishing vessels, which indicates that this forecasting model based on the boosted regression trees can be used to effectively forecast the fishing ground of chub mackerel in the Yellow Sea and East China Sea.展开更多
Based on the recent research results on dry and wet deposition of nutrient elements and sulphate, we estimate the atmospheric flux of nutrient elements and sulphate to the southern Yellow Sea and the East China Sea in...Based on the recent research results on dry and wet deposition of nutrient elements and sulphate, we estimate the atmospheric flux of nutrient elements and sulphate to the southern Yellow Sea and the East China Sea in each season. The results suggest that the concentrations of nutrient elements and sulphate in aerosol and precipitation show an apparent seasonal cycle with the maximum values in winter and the minimum values in summer. Depositions of nitrate and sulphate are dominated by wet deposition, while the deposition for phosphate is mainly dry deposition. Moreover, compared with the riverine inputs, the atmospheric deposition may be the main source of dissolved inorganic nutrients in the southern Yellow Sea and the East China Sea.展开更多
Marginal seas play important roles in regulating the global carbon budget, but there are great uncertainties in estimating carbon sources and sinks in the continental margins. A Pacific basin-wide physical-biogeochemi...Marginal seas play important roles in regulating the global carbon budget, but there are great uncertainties in estimating carbon sources and sinks in the continental margins. A Pacific basin-wide physical-biogeochemical model is used to estimate primary productivity and air-sea CO_2 flux in the South China Sea(SCS), the East China Sea(ECS), and the Yellow Sea(YS). The model is forced with daily air-sea fluxes which are derived from the NCEP2 reanalysis from 1982 to 2005. During the period of time, the modeled monthly-mean air-sea CO_2 fluxes in these three marginal seas altered from an atmospheric carbon sink in winter to a source in summer. On annualmean basis, the SCS acts as a source of carbon to the atmosphere(16 Tg/a, calculated by carbon, released to the atmosphere), and the ECS and the YS are sinks for atmospheric carbon(–6.73 Tg/a and –5.23 Tg/a, respectively,absorbed by the ocean). The model results suggest that the sea surface temperature(SST) controls the spatial and temporal variations of the oceanic pCO_2 in the SCS and ECS, and biological removal of carbon plays a compensating role in modulating the variability of the oceanic pCO_2 and determining its strength in each sea,especially in the ECS and the SCS. However, the biological activity is the dominating factor for controlling the oceanic pCO_2 in the YS. The modeled depth-integrated primary production(IPP) over the euphotic zone shows seasonal variation features with annual-mean values of 293, 297, and 315 mg/(m^2·d) in the SCS, the ECS, and the YS, respectively. The model-integrated annual-mean new production(uptake of nitrate) values, as in carbon units, are 103, 109, and 139 mg/(m^2·d), which yield the f-ratios of 0.35, 0.37, and 0.45 for the SCS, the ECS, and the YS, respectively. Compared to the productivity in the ECS and the YS, the seasonal variation of biological productivity in the SCS is rather weak. The atmospheric pCO_2 increases from 1982 to 2005, which is consistent with the anthropogenic CO_2 input to the atmosphere. The oceanic pCO_2 increases in responses to the atmospheric pCO_2 that drives air-sea CO_2 flux in the model. The modeled increase rate of oceanic pCO_2 is0.91 μatm/a in the YS, 1.04 μatm/a in the ECS, and 1.66 μatm/a in the SCS, respectively.展开更多
Rainwater samples were collected in series in Qianliyan Island (southern Yellow Sea) and Shengsi Archipelago (East China Sea) between May 2000 and May 2002, chemical analysis for pH values, concentrations of heavy met...Rainwater samples were collected in series in Qianliyan Island (southern Yellow Sea) and Shengsi Archipelago (East China Sea) between May 2000 and May 2002, chemical analysis for pH values, concentrations of heavy metals (Cu, Pb, Zn and Cd) and nutrients (NH4+, NO3-, PO43-, SiO32-) were performed. Results indicate that concentrations of most of the heavy metals and nutrients in rainwater show clear seasonal variation, i.e. high level in winter and low level in summer. Regionally, concentrations are higher in the southern Yellow Sea than in the East China Sea, but the annual input of heavy metals into oceans by wet deposition is similar in both stations. However, the input of nutrients by wet deposition in the East China Sea is 2–3 times higher than that in the southern Yellow Sea. In individual, Pb and PO43- are input to the sea mainly by dry deposition; whereas Cu, Zn, Cd and N compounds are input dominantly by wet deposition, the N/P ratios in the rainwater from two stations are much higher than those in seawater, showing a significant impact of atmospheric wet deposition on marine production and biogeochemical circulation of nutrients in these sea regions.展开更多
Metal species and the degree of environmental pollution are related to the hydrogen sulfide(H_(2)S),an important product of early diagenesis that can react with metals to form stable compounds.To investigate the eff e...Metal species and the degree of environmental pollution are related to the hydrogen sulfide(H_(2)S),an important product of early diagenesis that can react with metals to form stable compounds.To investigate the eff ects of H_(2)S to metals and evaluate metal environment eff ect in the sediments of the East China Sea(ECS)and Yellow Sea(YS),geochemical characteristic and spatial distribution of nine heavy metals and H_(2)S profile were studied.Higher H_(2)S content and lower metal content was observed in the sediments 10 cm in depth in the North Yellow Sea and the west coast of South Korea.The pollution load index(I_(pl))indicates that the southern coast of Shandong Peninsula underwent moderate pollution(I_(pl)=1)of heavy metals and no heavy metal pollution appeared in other areas(I_(pl)<1).To some extents,the ecological risk of Cd and As enrichment was moderately severe in all stations.The chance of heavy metal combination to be toxic in ECS and YS during summer was 21%.In addition,correlation between H_(2)S content and metals in both solid and porewater phases was obvious,corroborating important eff ect of H_(2)S on metal distribution.Moreover,H_(2)S could aff ect the spatial distributions of heavy metals in porewater directly and be indicative of potential biological eff ects of combined toxicant groups in the study region.展开更多
We use the U.S. Navy's Master Oceanographic Observation Data Set (MOODS) forthe Yellow Sea/ East China Sea (YES) to investigate the climatological water mass features and theseasonal and non-seasonal variabilities...We use the U.S. Navy's Master Oceanographic Observation Data Set (MOODS) forthe Yellow Sea/ East China Sea (YES) to investigate the climatological water mass features and theseasonal and non-seasonal variabilities of the thermohaline structure, and use the ComprehensiveOcean-Atmosphere Data Set (COADS) from 1945 to 1989 to investigate the linkage between the fluxes(momentum, heat, and moisture) across the air-ocean interface and the formation of the water massfeatures. After examining the major current systems and considering the local bathymetry and watermass properties, we divide YES into five regions: East China Sea (ECS) shelf, Yellow Sea (YS) Basin,Cheju bifurcation (CB) zone, Taiwan Warm Current (TWC) region, Kuroshio Current (KC) region. Thelong term mean surface heat balance corresponds to a heat loss of 30 W m^(-2) in the ESC and CBregions, a heat loss of 65 W m^(-2) in the KC and TWC regions, and a heat gain of 15 W m^(-2) in theYS region. The surface freshwater balance is defined by precipitation minus evaporation. The annualwater loss from the surface for the five subareas ranges from 1.8 to 4 cm month^(-1). The freshwater loss from the surface should be compensated for from the river run-off. The entire watercolumn of the shelf region (ECS, YS, and CB) undergoes an evident seasonal thermal cycle withmaximum values of temperature during summer and maximum mixed layer depths during winter. However,only the surface waters of the TWC and KC regions exhibit a seasonal thermal cycle.. We also foundtwo different relations between surface salinity and the Yangtze River run-off, namely, out-of-phasein the East China Sea shelf and in-phase in the Yellow Sea. This may confirm an earlier study thatthe summer fresh water discharge from the Yangtze River forms a relatively shallow, low salinityplume-like structure extending offshore on average towards the northeast.展开更多
For better understanding the phosphorus (P) cycle and its impacts on one of the most important fishing grounds and pressures on the marine ecosystem in the Yellow Sea (YS) and East China Sea (ECS), it is essenti...For better understanding the phosphorus (P) cycle and its impacts on one of the most important fishing grounds and pressures on the marine ecosystem in the Yellow Sea (YS) and East China Sea (ECS), it is essential to distinguish the contents of different P speciation in sediments and have the knowledge of its distribution and bioavailability. In this study, the modified SEDEX procedure was employed to quantify the different forms of P in sediments. The contents of phosphorus fractions in surface sediments were 0.20–0.89μmol/g for exchangeable-P (Exch-P), 0.37–2.86μmol/g for Fe-bound P (Fe-P), 0.61–3.07μmol/g for authigenic Ca-P (ACa-P), 6.39–13.73μmol/g for detrital-P (DAP) and 0.54–10.06μmol/g for organic P (OP). The distribution of Exch-P, Fe-P and OP seemed to be similar. The concentrations of Exch-P, Fe-P and OP were slightly higher in the Yellow Sea than that in the East China Sea, and low concentrations could be observed in the middle part of the ECS and southwest off Cheju Island. The distribution of ACa-P was different from those of Exch-P, Fe-P and OP. DAP was the major fraction of sedimentary P in the research region. The sum of Exch-P, Fe-P and OP may be thought to be potentially bioavailable P in the research region. The percentage of bioavailable P in TP ranged from 13%to 61%. Bioavailable P burial flux that appeared regional differences was affected by sedimentation rates, porosity and bioavailable P content, and the distribution of bioavailable P burial flux were almost the same as that of TP burial flux.展开更多
Cold diffusion methods are used to separate and quantify the three reduced inorganic sulfur species into acid volatile sulfide (AVS), pyrite-S and element sulfur (ES) in the sediments of the Yellow and East China ...Cold diffusion methods are used to separate and quantify the three reduced inorganic sulfur species into acid volatile sulfide (AVS), pyrite-S and element sulfur (ES) in the sediments of the Yellow and East China Seas. The results show that up to 25.02 pmol/g of AVS, 113.1 pmol/g of pyrite-S and 44.4 pmol/g of ES are observed in the sediments of the Yellow Sea and East China Sea. Pyrite-S is the predominant sulfide mineral in the sediments, while the concentration of AVS is quite low at most stations in the study area. The amounts and reactivity of organic matter are the primary limited factor for the sulfide formation, while an iron limitation and a sulfate limitation are not observed in the sediments of the Yellow Sea and East China Sea. The irregular profiles of the three reduced inorganic sulfur sediment composition and sedimentation rates. species also reflected the comprehensive influence of展开更多
To understand the characteristics of macrobenthic structures and the relationship between environment and benthic assemblages in jellyfish bloom, we studied the macrobenthos and related environmental factors in the co...To understand the characteristics of macrobenthic structures and the relationship between environment and benthic assemblages in jellyfish bloom, we studied the macrobenthos and related environmental factors in the coastal waters of the Yellow Sea and East China Sea. Data were collected during two seasonal cruises in April and August of 2011, and analyzed with multivariate statistical methods. Up to 306 macrobenthic species were registered from the research areas, including 115 species of Polychaeta, 78 of Crustacea, 61 of Mollusca, 30 of Echinodermata, and 22 of other groups. Nine polychaete species occurred at frequencies higher than 25% from the sampling stations: Lumbrineris longifolia, Notomastus latericeus, Nin6e palmata, Ophelina acuminata, Nephtys oligobranchia, Onuphis geophiliformis, Glycera chirori, Terebellides stroemii, and Aricidea fragilis. Both the average biomass and abundance of macrobenthos are higher in August (23.8 g/m^2 and 237.7 ind./m^2) than those in April (11.3 g/m^2 and 128 ind./m^2); the dissimilarity ofmacrobenthic structures among stations is as high as 70%. In terms of the dissimilarity values, we divided the stations into four clusters in spring and eight in summer. The ABC curve shows that the macrofauna communities in high jellyfish abundance were not changed. Canonical correspondence analysis showed that depth, temperature, median grain size, total organic carbon of sediment and total nitrogen in sediment were important factors affecting the macrozoobenthic community in the study area.展开更多
POM was used to study the monthly mean circulation in the Yellow Sea and East China Sea. The calculated results showed almost all major characteristics of the circulation system. The calculated circulation system and ...POM was used to study the monthly mean circulation in the Yellow Sea and East China Sea. The calculated results showed almost all major characteristics of the circulation system. The calculated circulation system and observational data were used to determine the sediment concentration, volume transport, heat flux and suspended matter flux between the Yellow Sea and the East China Sea. The conclusions obtained were that the volume and heat are transported northward through the 32°N section during each season; that in winter and autumn, total suspended matter is transported southward, and is larger in winter than in autumn. The reason is that the Yellow Sea Coastal Current is strong and always contains more suspend matter in winter and autumn. The seasonal suspended matter exchange between the Yellow Sea and the East China Sea are 0.58×10 7 tons in spring, 2.81×10 7 tons in summer, -2.60×10 7 tons in autumn and -3.40×10 7 tons in winter. Net flux of suspended matter from the Yellow Sea to the East China Sea is 2.61×10 7 tons every year.展开更多
基金the International Science Partnership Program of the Chinese Academy of Sciences(No.133137KYSB20200002)the Laoshan Laboratory(No.LSKJ202204005)+3 种基金the State Key Program of National Natural Science of China(No.42130411)the International Science Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)the Aoshan Science and Technology Innovation Program(No.2016ASKJ02-4)the Taishan Scholars Project(to Song SUN)。
文摘The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size structure in summer 2017 in the YS and ECS were assessed using ZooScan imaging analysis.Zooplankton abundance and biovolume ranged 2.94–1187.14 inds./m^(3)and 3.13–3438.51 mm^(3)/m^(3),respectively.Based on the biovolume data of the categorized size classes of 26 identified taxonomic groups,the zooplankton community was classified into five groups,and each group was coupled with distinctive oceanographic features.Under the influence of the Yellow Sea Cold Water Mass,the Yellow Sea offshore group featured the lowest bottom temperature(10.84±3.42℃)and the most abundant Calanoids(mainly in the 2–3 mm size class).In the Yellow Sea inshore group,Hydrozoans showed the largest biovolume and dominated in the 3–4-mm and>5-mm size classes.The East China Sea offshore group,which was affected by the Kuroshio Branch Current,featured high temperature and salinity,and the lowest bottom dissolved oxygen(2.58±0.5 mg/L).The lowest values of zooplankton abundance and biovolume in the East China Sea offshore group might be attributed to the bottom dissolved oxygen contents.The East China Sea inshore group,which was mainly influenced by the Zhejiang-Fujian Coastal Current and Changjiang Diluted Water,was characterized by high chlorophyll a and the largest biovolume of carnivorous Siphonophores(280.82±303.37 mm^(3)/m^(3)).The Changjiang River estuary offshore group showed the most abundant Cyclopoids,which might be associated with the less turbid water mass in this region.Seawater temperature was considered the most important factor in shaping the size compositions of Calanoids in different groups.
基金Supported by the Fundamental Research Funds for the Central Universities(Nos.202341017,202313024)。
文摘Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO).
基金funded by National Science Foundation of China (No. 40606028)National Basic Research Programs of China (No. 2006CB400601and 2001CB409703)
文摘The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observations of 9 cruises carried out in 2000 - 2003. The study area covers a broad range of hydrographic and chemical properties. The emphasis is put on a southeast transect from Changjiang Estuary to the Ryukyu Islands (i.e. PN section) in the East China Sea to discuss the impact of terrestdal input on the marginal seas of China. Arsenic species (TDlAs and arsenite) are determined by selective hydride generation - atomic fluorescence spectrometry (HG-AFS). TDIAs concentrations were high in the coastal area of Changjiang Estuary and decreased slightly towards the shelf region. High concentratiOns of TDIAs were also existed in the near bottom layer of shelf edge of the East China Sea which indicated another source of arsenic from the incursion of Kuroshio Waters. The seasonal variations of TDIAs in the study area depend on the hydrographic stages of Changjiang and the incursion intensity of Kuroshio Waters. Arsenite showed opposite distributions with TDIAs, with higher concentrations appeared at the surface layer of shelf region, which was positive correlated with the chlorophyll a. Biological conversion of arsenate into arsenite was hypothesized for the observed distribution pattern and its seasonal variations. The stoichoimetric ratios of As to P were estimated to be about 2×10^3 at PN Section in summer. The concentrations of dissolved arsenic in the Yellow Sea and East China Sea were comparable with other areas in the world.
基金Supported by the National Natural Science Foundation of China (Nos. 90411014 and 40506015)the National major Fundamental Research and Development Project (No. 2007CB815903)the CAS Pilot Project of the National Knowledge Innovation Program (No. KZCFX3-SW-233)
文摘To reconstruct the formation and evolution process of the warm current system within the East China Sea (ECS) and the Yellow Sea (YS) since the last deglaciation, the paleoceangraphic records in core DGKS9603, core CSH1 and core YSDP102, which were retrieved from the mainstream of the Kuroshio Current (KC), the edge of the modern Tsushima Warm Current (TWC) and muddy region under cold waters accreted with the Yellow Sea Warm Current (YSWC) respectively, were synthetically analyzed. The results indicate that the formation and evolution of the modern warm current system in the ECS and the YS has been accompanied by the development of the KC and impulse rising of the sea level since the last deglaciation. The influence of the KC on the Okinawa Trough had enhanced since 16 cal kyr BP, and synchronously the modern TWC began to develop with the rising of sea level and finally formed at about 8.5 cal kyr BP. The KC had experienced two weakening process during the Heinrich event 1 and the Younger Drays event from 16 to 8.5 cal kyr BP. The period of 7-6 cal kyr BP was the strongest stage of the KC and the TWC since the last deglaciation. The YSWC has appeared at about 6.4 cal kyr BE Thus the warm current system of the ECS and the YS has ultimately formed. The weakness of the KC, indicated by the occurrence of Pulleniatina minimum event (PME) during the period from 5.3 to 2.8 cal kyr BE caused the main stream of the TWC to shift eastward to the Pacific Ocean around about 3 cal kyr BE The process resulted in the intruding of continent shelf cold water mass with rich nutrients. Synchronously, the strength of the YSWC was relatively weak and the related cold water body was active at the early-mid stage of its appearance against the PME background, which resulted in the quick formation of muddy deposit system in the southeastern YS. The strength of the warm current system in the ECS and the YS has enhanced evidently, and approached to the modern condition gradually since 3 cal kyr BE
基金supported by National Basic Research Program of China(973 Program,2010CB428904)
文摘The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises.There was something special in the observations for the Yellow Sea Warm Current (YSWC) ,the Yellow Sea Cold Water Mass (YSCWM) and the Changjiang Diluted Water (CDW) during that year.The YSWC was confirmed to be a seasonal current and its source was closely associated with the Kuroshio onshore intrusion and the northerly wind.It was also found that the YSCWM in the summer of 2011 occupied a more extensive area in comparison with the climatologically-mean case due to the abnormally powerful wind prevailing in the winter of 2010 and decaying gradually thereafter.Resulting from the reduced Changjiang River discharge,the CDW spreading toward the Cheju Island in the summer of 2011 was weaker than the long-term mean and was confined to flow southward in the other seasons.The other water masses seemed normal without noticeable anomalies in 2011.The Yellow Sea Coastal Current (YSCC) water,driven by the northerly wind,flowed southeastward as a whole except for its northeastward surface layer in summer.The Taiwan Warm Current (TWC) was the strongest in summer and the weakest in winter in its northward movement.The Kuroshio water with an enhanced onshore intrusion in autumn was stable in hydrographic features apart from the seasonal variation of its surface layer.
基金The National Basic Research Program of China under contract Nos 2010CB428902 and 2006CB400007the National Natural Science Foundation of China under contract No.40876088
文摘Many studies have revealed that anchovy has exhibited large variability in population size on decadal tim-escales. However, such works concerning anchovy population are mainly based on short historical catch records. In order to understand the causes of variability in fish stocks (natural and/or anthropogenic) and calibrate the error between catches and standing stocks, it is essential to develop long-term time series of fish stocks from the time when human impacts are minimal or negligible. Well preserved fish scales from sediment record are regarded as useful indicators revealing the history of fish population dynamics over the last centuries. Anchovy scales was first analyzed over the Yellow Sea and East China Sea and the largest abundance was found in the central South Yellow Sea where is regarded as the largest overwintering ground for Japanese anchovy (Engraulis japonicas). Thus in the central South Yellow Sea, two cores covering the last 150 years were collected for estimating fish scale flux. The scale deposition rate (SDR) records show that the decadal scale SDRs were obviously coherent between cores with independent chronologies. Thecalibration of downcore SDRs to the standing stocks of anchovy further validated that SDR is a reliable proxy to recon-struct the long-term anchovy population dynamic in the central South Yellow Sea where anoxic conditions prevail in the sediment. When assembled with other productivity proxies, it would be expected that SDR could be associated with changes in oceanic productivity and may make a contribution to determine the forcing factors and elucidate the mechanism of the process in future.
基金The National Natural Science Foundation of China under contract Nos 41320104008 and 40776039the National Natural Science Foundation for Creative Research Groups under contract No.41221004+1 种基金the Changjiang Scholars Program,Ministry of Education of Chinathe"Taishan Scholar"Special Research Fund of Shandong Province,China
文摘Distributions and sea-to-air fluxes of five kinds of volatile halocarbons(VHCs) were studied in the southern Yellow Sea(SYS) and the East China Sea(ECS) in November 2007. The results showed that the concentrations of 1,1,1-trichloroethane(C2H3Cl3), 1,1-dichloroethene(C2H2Cl2), 1,1,2-trichloroethene(C2HCl3), trichloromethane(CHCl3) and tetrachloromethane(CCl4) in the surface water were 0.31–4.81, 2.75–21.3, 1.21–17.1, 5.02–233 and 0.045–4.47 pmol/L, respectively, with the average values of 1.89, 12.20, 6.93, 60.90 and 0.33 pmol/L. On the whole, the horizontal distributions of C2H3Cl3, C2H2Cl2 and CCl4 were affected mainly by anthropogenic activities, while C2HCl3 and CHCl3 were influenced by biological factors as well as anthropogenic activities. In the study area, the concentrations of VHCs(except C2HCl3) exhibited a decreasing trend from inshore to offshore sites, with the higher values occurring in the coastal waters. The sea-to-air fluxes of C2H3Cl3, C2HCl3, CHCl3 and CCl4 were calculated to be-56.00–(-5.68),-7.31–123.42, 148.00–1 309.31 and-83.32–(-1.53) nmol/(m2·d), respectively, with the average values of-6.77, 17.14, 183.38 and-21.27 nmol/(m2·d). Our data showed that the SYS and ECS in autumn was a sink for C2H3Cl3 and CCl4, while it was a source for C2HCl3 and CHCl3 in the atmosphere.
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB956004)the Fundamental Research Funds for the Central Universities(No.16lgjc22)
文摘The global carbon cycle has played a key role in mitigating global warming and climate change.Long-term natural and anthropogenic processes influence the composition,sources,burial rates,and fluxes of carbon in sediments on the continental shelf of China.In this study,the rates,fluxes,and amounts of carbon storage at the centennial scale were estimated and demonstrated using the case study of three fine-grained sediment cores from the central South Yellow Sea area(SYSA) and Min-Zhe belt(MZB),East China Sea.Based on the high-resolution temporal sequences of total carbon(TC)and total organic carbon(TOC)contents,we reconstructed the annual variations of historical marine carbon storage,and explored the influence of terrestrial and marine sources on carbon burial at the centennial scale.The estimated TC storage over 100 years was 1.18×10~8 t in the SYSA and 1.45×10~9 t in the MZB.The corrected TOC storage fluxes at the centennial scale ranged from 17 to 28 t/(km^2·a)in the SYSA and from 56 to 148 t/(km^2·a)in the MZB.The decrease of terrestrial materials and the increase of marine primary production suggest that the TOC buried in the sediments in the SYSA and MZB was mainly derived from the marine autogenetic source.In the MZB,two depletion events occurred in TC and TOC storage from 1985 to 1987 and 2003 to 2006,which were coeval with the water impoundment in the Gezhouba and Three Gorges dams,respectively.The high-resolution records of the carbon storage rates and fluxes in the SYSA and MZB reflect the synchronous responses to human activities and provide an important reference for assessing the carbon sequestration capacity of the marginal seas of China.
基金The National Key Research and Development Program of China under contract Nos 2016YFA0601302 and 2018FY100202。
文摘The coastal ecosystems are highly sensitive to climate change and are usually influenced by variations in phytoplankton communities and water physiochemical factors.In the present study,the phytoplankton community,chlorophyll a(Chl a)and their relationships with environmental variables and dimethylsulfide(DMS)and dimethylsulfoniopropionate(DMSP)were investigated in spring 2017(March 24 to April 16)in the East China Sea(26.0°-33.0°N,120.0°-128.0°E)and southern Yellow Sea(31.0°-36.0°N,120.0°-125.0°E).The spatial distributions of phytoplankton species composition and cell density were investigated by qualitative and quantitative methods and were compared with historical data to study phytoplankton species succession in the survey area.The results showed that there were 275 phytoplankton species belonging to 90 genera and 6 phyla in the survey area,of which 208 species belonged to 62 genera of Bacillariophyta and 56 species belonged to 20 genera of Pyrrophyta.The dominant phytoplankton species were Skeletonema dohrnii,Chaetoceros vanheurckii and Prorocentrum donghaiense.The phytoplankton cell densities ranged from 0.06×10^(4)cells/L to 418.73×10^(4)cells/L,with an average value of 21.46×10^(4)cells/L.In spring,the average ratio of Bacillariophyta/Pyrrophyta was41.13 for the entire study area.The areas with high phytoplankton cell density were mainly distributed in the northern South Yellow Sea and offshore waters of the East China Sea.According to a canonical correspondence analysis among phytoplankton and environmental parameters,the water Chl a concentrations were notably consistent with phytoplankton cell density(P<0.001),and both showed significant negative correlations with salinity and nitrite(P<0.05)and significant positive correlations with dissolved oxygen and pH(P<0.001).There was a significant positive correlation between diatom(both in cell density and in dominant species)and DMS(P<0.05),which indicated that diatoms play a greater role in DMS production in this investigated area.
基金The study (Project No. 85078) was supported by the Joint Foundation of Seismic Science.
文摘3D structure of the crust and upper mantle in the studied area has been analyzed from surface wave tomography. The velocity distribution in the uppermost crust is symmetrical on two sides of the central line of the sea, and coincides with the structure of crystalline basement. The essential difference in tectonics between the East China Sea and the Yellow Sea mainly lies in that the velocity structures of their lower crust and upper mantle are identical to those of South China and North China respectively. In the upper mantle there exists a high-velocity zone with a nearly EW strike from the Hangzhou Bay, China, to the Tokara Channel, Japan, along about the latitude of 30°N. It is found that between the East China Sea and the Yellow Sea there are systematical differences in geomorphology, geology, seismicity, heat flow, quality factor and gravity and aeromagnetic anomalies, which is related to both left-lateral shear dislocation and right-lateral tear of the Benioff zone from the Hangzhou Bay to the Tokara Channel.It is inferred that the East China Sea was formed by Cenozoic back-arc extension. The boundary between the North China and South China crustal blocks stretches along the southern piedmont of Mts. Daba-Dabie-Hangzhou Bay-Tokara Channel, and the subduction zone at the Okinawa trench is the eastern boundary of the South China crustal block. The movements of the Pacific plate, Indian plate and upper mantle rather than the Philippine plate subduction have played a dominant role for the modern tectonic movements in East Asia.
基金The National High Technology Research and Development Program(863 Program)of China under contract No.2012AA092301the Public Science and Technology Research Funds Projects of Ocean under contract No.20155014+1 种基金the National Key Technology Research and Development Program of China under contract No.2013BAD13B01the Innovation Program of Shanghai Municipal Education Commissionof China under contract No.14ZZ147
文摘The pelagic species is closely related to the marine environmental factors, and establishment of forecasting model of fishing ground with high accuracy is an important content for pelagic fishery. The chub mackerel(Scomber japonicus) in the Yellow Sea and East China Sea is an important fishing target for Chinese lighting purse seine fishery. Based on the fishery data from China's mainland large-type lighting purse seine fishery for chub mackerel during the period of 2003 to 2010 and the environmental data including sea surface temperature(SST), gradient of the sea surface temperature(GSST), sea surface height(SSH) and geostrophic velocity(GV), we attempt to establish one new forecasting model of fishing ground based on boosted regression trees. In this study, the fishing areas with fishing effort is considered as one fishing ground, and the areas with no fishing ground are randomly selected from a background field, in which the fishing areas have no records in the logbooks. The performance of the forecasting model of fishing ground is evaluated with the testing data from the actual fishing data in 2011. The results show that the forecasting model of fishing ground has a high prediction performance, and the area under receiver operating curve(AUC) attains 0.897. The predicted fishing grounds are coincided with the actual fishing locations in 2011, and the movement route is also the same as the shift of fishing vessels, which indicates that this forecasting model based on the boosted regression trees can be used to effectively forecast the fishing ground of chub mackerel in the Yellow Sea and East China Sea.
基金This work is supported by the State"973"basic research program under contract(G19990437)the international cooperation program under contract(2001CB711004).
文摘Based on the recent research results on dry and wet deposition of nutrient elements and sulphate, we estimate the atmospheric flux of nutrient elements and sulphate to the southern Yellow Sea and the East China Sea in each season. The results suggest that the concentrations of nutrient elements and sulphate in aerosol and precipitation show an apparent seasonal cycle with the maximum values in winter and the minimum values in summer. Depositions of nitrate and sulphate are dominated by wet deposition, while the deposition for phosphate is mainly dry deposition. Moreover, compared with the riverine inputs, the atmospheric deposition may be the main source of dissolved inorganic nutrients in the southern Yellow Sea and the East China Sea.
基金The National Key Research and Development Program of China under contract No.2016YFC1401605the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA 1102010403+1 种基金the National Natural Science Foundation of China under contract Nos 41222038,41206023 and 41406036the Guangdong Provincial Key Laboratory of Fishery Ecology and Environment under contract No.LFE-2015-3
文摘Marginal seas play important roles in regulating the global carbon budget, but there are great uncertainties in estimating carbon sources and sinks in the continental margins. A Pacific basin-wide physical-biogeochemical model is used to estimate primary productivity and air-sea CO_2 flux in the South China Sea(SCS), the East China Sea(ECS), and the Yellow Sea(YS). The model is forced with daily air-sea fluxes which are derived from the NCEP2 reanalysis from 1982 to 2005. During the period of time, the modeled monthly-mean air-sea CO_2 fluxes in these three marginal seas altered from an atmospheric carbon sink in winter to a source in summer. On annualmean basis, the SCS acts as a source of carbon to the atmosphere(16 Tg/a, calculated by carbon, released to the atmosphere), and the ECS and the YS are sinks for atmospheric carbon(–6.73 Tg/a and –5.23 Tg/a, respectively,absorbed by the ocean). The model results suggest that the sea surface temperature(SST) controls the spatial and temporal variations of the oceanic pCO_2 in the SCS and ECS, and biological removal of carbon plays a compensating role in modulating the variability of the oceanic pCO_2 and determining its strength in each sea,especially in the ECS and the SCS. However, the biological activity is the dominating factor for controlling the oceanic pCO_2 in the YS. The modeled depth-integrated primary production(IPP) over the euphotic zone shows seasonal variation features with annual-mean values of 293, 297, and 315 mg/(m^2·d) in the SCS, the ECS, and the YS, respectively. The model-integrated annual-mean new production(uptake of nitrate) values, as in carbon units, are 103, 109, and 139 mg/(m^2·d), which yield the f-ratios of 0.35, 0.37, and 0.45 for the SCS, the ECS, and the YS, respectively. Compared to the productivity in the ECS and the YS, the seasonal variation of biological productivity in the SCS is rather weak. The atmospheric pCO_2 increases from 1982 to 2005, which is consistent with the anthropogenic CO_2 input to the atmosphere. The oceanic pCO_2 increases in responses to the atmospheric pCO_2 that drives air-sea CO_2 flux in the model. The modeled increase rate of oceanic pCO_2 is0.91 μatm/a in the YS, 1.04 μatm/a in the ECS, and 1.66 μatm/a in the SCS, respectively.
基金Supported by the National "973" Program (No. G1999043705), and the Natural Sciences Foundation of Shandong Province (No. Y2000E02).
文摘Rainwater samples were collected in series in Qianliyan Island (southern Yellow Sea) and Shengsi Archipelago (East China Sea) between May 2000 and May 2002, chemical analysis for pH values, concentrations of heavy metals (Cu, Pb, Zn and Cd) and nutrients (NH4+, NO3-, PO43-, SiO32-) were performed. Results indicate that concentrations of most of the heavy metals and nutrients in rainwater show clear seasonal variation, i.e. high level in winter and low level in summer. Regionally, concentrations are higher in the southern Yellow Sea than in the East China Sea, but the annual input of heavy metals into oceans by wet deposition is similar in both stations. However, the input of nutrients by wet deposition in the East China Sea is 2–3 times higher than that in the southern Yellow Sea. In individual, Pb and PO43- are input to the sea mainly by dry deposition; whereas Cu, Zn, Cd and N compounds are input dominantly by wet deposition, the N/P ratios in the rainwater from two stations are much higher than those in seawater, showing a significant impact of atmospheric wet deposition on marine production and biogeochemical circulation of nutrients in these sea regions.
基金Supported by the National Key Research and Development Program of China(No.2016YFA0601301)the Original Innovation Project of Chinese Academy of Sciences(No.ZDBS-LY-DQC009)+2 种基金the National Natural Science Foundation of China(No.42006047)the Key Research and Development Plan of Shandong Province(No.2017GHY215002)the Yantai City(No.2017ZH096)。
文摘Metal species and the degree of environmental pollution are related to the hydrogen sulfide(H_(2)S),an important product of early diagenesis that can react with metals to form stable compounds.To investigate the eff ects of H_(2)S to metals and evaluate metal environment eff ect in the sediments of the East China Sea(ECS)and Yellow Sea(YS),geochemical characteristic and spatial distribution of nine heavy metals and H_(2)S profile were studied.Higher H_(2)S content and lower metal content was observed in the sediments 10 cm in depth in the North Yellow Sea and the west coast of South Korea.The pollution load index(I_(pl))indicates that the southern coast of Shandong Peninsula underwent moderate pollution(I_(pl)=1)of heavy metals and no heavy metal pollution appeared in other areas(I_(pl)<1).To some extents,the ecological risk of Cd and As enrichment was moderately severe in all stations.The chance of heavy metal combination to be toxic in ECS and YS during summer was 21%.In addition,correlation between H_(2)S content and metals in both solid and porewater phases was obvious,corroborating important eff ect of H_(2)S on metal distribution.Moreover,H_(2)S could aff ect the spatial distributions of heavy metals in porewater directly and be indicative of potential biological eff ects of combined toxicant groups in the study region.
文摘We use the U.S. Navy's Master Oceanographic Observation Data Set (MOODS) forthe Yellow Sea/ East China Sea (YES) to investigate the climatological water mass features and theseasonal and non-seasonal variabilities of the thermohaline structure, and use the ComprehensiveOcean-Atmosphere Data Set (COADS) from 1945 to 1989 to investigate the linkage between the fluxes(momentum, heat, and moisture) across the air-ocean interface and the formation of the water massfeatures. After examining the major current systems and considering the local bathymetry and watermass properties, we divide YES into five regions: East China Sea (ECS) shelf, Yellow Sea (YS) Basin,Cheju bifurcation (CB) zone, Taiwan Warm Current (TWC) region, Kuroshio Current (KC) region. Thelong term mean surface heat balance corresponds to a heat loss of 30 W m^(-2) in the ESC and CBregions, a heat loss of 65 W m^(-2) in the KC and TWC regions, and a heat gain of 15 W m^(-2) in theYS region. The surface freshwater balance is defined by precipitation minus evaporation. The annualwater loss from the surface for the five subareas ranges from 1.8 to 4 cm month^(-1). The freshwater loss from the surface should be compensated for from the river run-off. The entire watercolumn of the shelf region (ECS, YS, and CB) undergoes an evident seasonal thermal cycle withmaximum values of temperature during summer and maximum mixed layer depths during winter. However,only the surface waters of the TWC and KC regions exhibit a seasonal thermal cycle.. We also foundtwo different relations between surface salinity and the Yangtze River run-off, namely, out-of-phasein the East China Sea shelf and in-phase in the Yellow Sea. This may confirm an earlier study thatthe summer fresh water discharge from the Yangtze River forms a relatively shallow, low salinityplume-like structure extending offshore on average towards the northeast.
基金The National Key Basic Research Program from the Ministry of Science and Technology of China under contract Nos 2011CB409802 and 2010CB428900the Program of International Science & Technology Cooperation under contract No.2010DFA24590
文摘For better understanding the phosphorus (P) cycle and its impacts on one of the most important fishing grounds and pressures on the marine ecosystem in the Yellow Sea (YS) and East China Sea (ECS), it is essential to distinguish the contents of different P speciation in sediments and have the knowledge of its distribution and bioavailability. In this study, the modified SEDEX procedure was employed to quantify the different forms of P in sediments. The contents of phosphorus fractions in surface sediments were 0.20–0.89μmol/g for exchangeable-P (Exch-P), 0.37–2.86μmol/g for Fe-bound P (Fe-P), 0.61–3.07μmol/g for authigenic Ca-P (ACa-P), 6.39–13.73μmol/g for detrital-P (DAP) and 0.54–10.06μmol/g for organic P (OP). The distribution of Exch-P, Fe-P and OP seemed to be similar. The concentrations of Exch-P, Fe-P and OP were slightly higher in the Yellow Sea than that in the East China Sea, and low concentrations could be observed in the middle part of the ECS and southwest off Cheju Island. The distribution of ACa-P was different from those of Exch-P, Fe-P and OP. DAP was the major fraction of sedimentary P in the research region. The sum of Exch-P, Fe-P and OP may be thought to be potentially bioavailable P in the research region. The percentage of bioavailable P in TP ranged from 13%to 61%. Bioavailable P burial flux that appeared regional differences was affected by sedimentation rates, porosity and bioavailable P content, and the distribution of bioavailable P burial flux were almost the same as that of TP burial flux.
基金The National Basic Research Program(973 Program)of China under contract Nos 2010CB428901 and 2011CB409802the National Natural Science Foundation of China under contract Nos 40925017 and 41221004
文摘Cold diffusion methods are used to separate and quantify the three reduced inorganic sulfur species into acid volatile sulfide (AVS), pyrite-S and element sulfur (ES) in the sediments of the Yellow and East China Seas. The results show that up to 25.02 pmol/g of AVS, 113.1 pmol/g of pyrite-S and 44.4 pmol/g of ES are observed in the sediments of the Yellow Sea and East China Sea. Pyrite-S is the predominant sulfide mineral in the sediments, while the concentration of AVS is quite low at most stations in the study area. The amounts and reactivity of organic matter are the primary limited factor for the sulfide formation, while an iron limitation and a sulfate limitation are not observed in the sediments of the Yellow Sea and East China Sea. The irregular profiles of the three reduced inorganic sulfur sediment composition and sedimentation rates. species also reflected the comprehensive influence of
基金Supported by the National Basic Research Program of China(973 Program)(No.2011CB403605)the National Natural Science Foundation of China(No.41176133)
文摘To understand the characteristics of macrobenthic structures and the relationship between environment and benthic assemblages in jellyfish bloom, we studied the macrobenthos and related environmental factors in the coastal waters of the Yellow Sea and East China Sea. Data were collected during two seasonal cruises in April and August of 2011, and analyzed with multivariate statistical methods. Up to 306 macrobenthic species were registered from the research areas, including 115 species of Polychaeta, 78 of Crustacea, 61 of Mollusca, 30 of Echinodermata, and 22 of other groups. Nine polychaete species occurred at frequencies higher than 25% from the sampling stations: Lumbrineris longifolia, Notomastus latericeus, Nin6e palmata, Ophelina acuminata, Nephtys oligobranchia, Onuphis geophiliformis, Glycera chirori, Terebellides stroemii, and Aricidea fragilis. Both the average biomass and abundance of macrobenthos are higher in August (23.8 g/m^2 and 237.7 ind./m^2) than those in April (11.3 g/m^2 and 128 ind./m^2); the dissimilarity ofmacrobenthic structures among stations is as high as 70%. In terms of the dissimilarity values, we divided the stations into four clusters in spring and eight in summer. The ABC curve shows that the macrofauna communities in high jellyfish abundance were not changed. Canonical correspondence analysis showed that depth, temperature, median grain size, total organic carbon of sediment and total nitrogen in sediment were important factors affecting the macrozoobenthic community in the study area.
文摘POM was used to study the monthly mean circulation in the Yellow Sea and East China Sea. The calculated results showed almost all major characteristics of the circulation system. The calculated circulation system and observational data were used to determine the sediment concentration, volume transport, heat flux and suspended matter flux between the Yellow Sea and the East China Sea. The conclusions obtained were that the volume and heat are transported northward through the 32°N section during each season; that in winter and autumn, total suspended matter is transported southward, and is larger in winter than in autumn. The reason is that the Yellow Sea Coastal Current is strong and always contains more suspend matter in winter and autumn. The seasonal suspended matter exchange between the Yellow Sea and the East China Sea are 0.58×10 7 tons in spring, 2.81×10 7 tons in summer, -2.60×10 7 tons in autumn and -3.40×10 7 tons in winter. Net flux of suspended matter from the Yellow Sea to the East China Sea is 2.61×10 7 tons every year.