We attempt to recover the paleocnvironments recorded in the accretion of a typical newtype hydrogenetic ferromanganese crust from the deep water areas of the East Philippine Sea. From detailed geochemical and U-series...We attempt to recover the paleocnvironments recorded in the accretion of a typical newtype hydrogenetic ferromanganese crust from the deep water areas of the East Philippine Sea. From detailed geochemical and U-series chronological studies, analysis of major and minor elements performed by X-ray fluorescence spectrometry (XRF) and inductively coupled plasma-mass spectrometer (ICPMS), three major accretion periods and corresponding paleocnvironments can be ascertained. The first period is a faster accretion period in the terminal Late Miocene to the Early Pliocene with looser structure and higher volcanic detritus content, corresponding to the active Antarctic bottom waters and depressed temperature from the intermediate Middle Miocene to the Early Pliocene. The second period is a pulse of pelagic clay deposition at the Early to Middle Pliocene, reflecting the shrinkage of the Antarctic bottom waters and the global temperature elevation of this period. The third period is a slower accretion period from the Middle Pliocene, which indicates the more violent activity of Antarctic bottom waters once again and more depressed temperature than the first period, facilitating the accretion of a more compact and pure ferromanganese zone. The paleoceanographic histories of these studied areas had not been made clear in previous research.展开更多
From systemic research of microstructure, geochemistry, uranium-series and 10Be isotope dating on a new-type deepwater ferromanganese crust from the East Philippine Sea, the paleoenvironment evolu-tion of the target a...From systemic research of microstructure, geochemistry, uranium-series and 10Be isotope dating on a new-type deepwater ferromanganese crust from the East Philippine Sea, the paleoenvironment evolu-tion of the target area since the terminal Late Miocene was recovered. The vertical section changes of microstructure and chemical composition are consistent in the studied crust, which indicate three major accretion periods and corresponding paleoenvironment evolution of the crust. The bottom crust zone was formed in the terminal Late Miocene (5.6 Ma) with loose microstructure, high detritus content and high growth rate. Reductions of mineral element content, accretion rate and positive Ce-anomaly degree at 4.6 Ma indicate temporal warming, which went against the crust accretion and finally formed an accretion gap in the terminal Middle Pliocene (2.8―2.7 Ma). The more active Antarctic bottom sea-waters in the Late Pliocene (2.7 Ma) facilitated the fast transfer to the top pure crust zone. Hereafter, with the further apart of volcanic source and the keeping increase of eolian material (1.0 Ma), although surrounding conditions were still favorable, mineral element content still shows an obvious reducing trend. It thereby offers new carrier and data for the unclear paleoceanographic research of the target area since the terminal Late Miocene.展开更多
基金This paperis supported bythe Pilot Project of the Knowledge InnovationProgramof Chinese Academy of Sciences (No . KZCX3-SW-223) theNational Natural Science Foundation of China ( Nos . 40506016 and40576032) .
文摘We attempt to recover the paleocnvironments recorded in the accretion of a typical newtype hydrogenetic ferromanganese crust from the deep water areas of the East Philippine Sea. From detailed geochemical and U-series chronological studies, analysis of major and minor elements performed by X-ray fluorescence spectrometry (XRF) and inductively coupled plasma-mass spectrometer (ICPMS), three major accretion periods and corresponding paleocnvironments can be ascertained. The first period is a faster accretion period in the terminal Late Miocene to the Early Pliocene with looser structure and higher volcanic detritus content, corresponding to the active Antarctic bottom waters and depressed temperature from the intermediate Middle Miocene to the Early Pliocene. The second period is a pulse of pelagic clay deposition at the Early to Middle Pliocene, reflecting the shrinkage of the Antarctic bottom waters and the global temperature elevation of this period. The third period is a slower accretion period from the Middle Pliocene, which indicates the more violent activity of Antarctic bottom waters once again and more depressed temperature than the first period, facilitating the accretion of a more compact and pure ferromanganese zone. The paleoceanographic histories of these studied areas had not been made clear in previous research.
基金the Key Program of the National Natural Science Foundation of China (Grant No. 90411014)the National Natural Science Foundation of China (Grant Nos. 40576032 and 40506016).
文摘From systemic research of microstructure, geochemistry, uranium-series and 10Be isotope dating on a new-type deepwater ferromanganese crust from the East Philippine Sea, the paleoenvironment evolu-tion of the target area since the terminal Late Miocene was recovered. The vertical section changes of microstructure and chemical composition are consistent in the studied crust, which indicate three major accretion periods and corresponding paleoenvironment evolution of the crust. The bottom crust zone was formed in the terminal Late Miocene (5.6 Ma) with loose microstructure, high detritus content and high growth rate. Reductions of mineral element content, accretion rate and positive Ce-anomaly degree at 4.6 Ma indicate temporal warming, which went against the crust accretion and finally formed an accretion gap in the terminal Middle Pliocene (2.8―2.7 Ma). The more active Antarctic bottom sea-waters in the Late Pliocene (2.7 Ma) facilitated the fast transfer to the top pure crust zone. Hereafter, with the further apart of volcanic source and the keeping increase of eolian material (1.0 Ma), although surrounding conditions were still favorable, mineral element content still shows an obvious reducing trend. It thereby offers new carrier and data for the unclear paleoceanographic research of the target area since the terminal Late Miocene.