Objective: To study the combined antitumor effect and possible mechanisms of ursolic acid with 5-fluorouracil (5-FU) on human esophageal carcinoma cell Eca-109 in vitro. Methods: Eca-109 cells were treated with ur...Objective: To study the combined antitumor effect and possible mechanisms of ursolic acid with 5-fluorouracil (5-FU) on human esophageal carcinoma cell Eca-109 in vitro. Methods: Eca-109 cells were treated with ursolic acid (10-50 μmol/L) and/or 5-fluorouracil (48.0-768.8 μmol/L) for 48 h in vitro. And then cell proliferation was determined by MTT assay. Cell cycle and apoptosis rate were analyzed by flow cytometry (FCM). The morphological changes of apoptosis were observed by fluorescent microscopy. At last the expression of P27kipl, bcl-2 and bax were detected by western blot. Results: Results: In comparison with single agent treatment, the combination of ursolic acid and 5-fluorouracil produced greater efficacy in growth inhibition, cell cycle arrest at G0/G1 phase, and apoptosis induction (P〈0.05). Western blot analysis showed that the combination use of ursolic acid and 5-fluorouracil suppressed the expression of bcl-2 and increased the expressions of bax and P27kip1. Conclusion: Ursolic acid combined with 5-fluorouracil showed adjuvant antiproliferative effects on human esophageal carcinoma cell Eca-109 in vitro, which mainly due to the induction of cell cycle arrest as well as apoptosis.展开更多
BACKGROUND The poor prognosis and rising incidence of esophageal cancer highlight the need for improved therapeutics that are essential prior to treatment.LCL161 is an SMAC(second mitochondrial activator of caspases)m...BACKGROUND The poor prognosis and rising incidence of esophageal cancer highlight the need for improved therapeutics that are essential prior to treatment.LCL161 is an SMAC(second mitochondrial activator of caspases)mimic and inhibitor of apoptosis protein(IAP)antagonist which exhibits anti-tumor effects and improves the chemical sensitivity of many cancers.AIM To ascertain the effects and mechanisms of the SMAC analog LCL161 on esophageal cancer cells.METHODS MTT assay and TUNEL assay were used to detect cell proliferation and apoptosis,respectively.Western blot analysis was used to study the molecular mechanisms of LCL161-induced death of ECA109 cells.RESULTS LCL161 decreased ECA109 cell proliferation in dose-and time-dependent manner and induced apoptosis of ECA109 cells in a dose-dependent manner.Also,LCL161 induced a significant decrease in the expression of the XIAP and significant increase in the expression of Caspase-3.In addition,Bax increased significantly with increasing concentrations of LCL161,and the relative expression of Bax was significantly different between groups.CONCLUSION These findings support the hypothesis that LCL161 can inhibit proliferation and induce apoptosis in esophageal cancer cells by regulating the expression of IAP family members,suggesting that it has potential to be an effective treatment for esophageal squamous cell carcinoma.展开更多
AIM: To study the role of P38 kinase in esophageal cancer cell apoptosis induced by genotoxin, cisplatin and the unfolded protein response (UPR) inducer, dithiothreitol (DTT). METHODS: Esophageal carcinoma cell ...AIM: To study the role of P38 kinase in esophageal cancer cell apoptosis induced by genotoxin, cisplatin and the unfolded protein response (UPR) inducer, dithiothreitol (DTT). METHODS: Esophageal carcinoma cell line Eca109 was cultured in RPMI 1640 medium to 70% confluency and treated with either cisplatin, DTT, or cisplatin plus DTT in the presence or absence of P38 inhibitor, SB203580. The untreated cells served as the control. The esophageal carcinoma cell apoptosis was detected by agarose gel DNA ladder analysis and quantified by flow cytometry. The P38 phosphorylation was detected by immunohistochemistry using antibodies specific to phosphorylated P38 protein. RESULTS: (1) Both cisplatin and DTF induced apoptosis in the esophageal cancer cell line Eca109 as shown by DNA ladder formation; (2) As detected by antibodies specific for the phosphorylated P38 protein (p-P38), both cisplatin and DTT treatments activated the stress-activated enzyme, MAP kinase P38. The number of positive cells was about 50% for the treatment groups, comparing to that of 10% for untreated group. DTF treatment, but not cisplatin treatment, induces nuclear localization of p-P38; (3) As measured by flow cytometry, inhibition of P38 activity by SB203580 blocks DTT- and cisplatin-induced apoptosis. The rates for DTT, cisplatin, and DTT plus cisplatin-induced apoptosis were 16.8%, 17.1%, and 21.4%, respectively. Addition of the SB compound during the incubation reduced the apoptotic rate to about 7.6% for all the treatment groups, suggesting that P38 activation is essential for cisplatin- and DTT-induced apoptosis in Eca109 cells. CONCLUSION: (1) Both DTT and cisplatin were able to induce apoptosis in esophageal cancer cell line Eca109; (2) P38 MAP kinase is essential for DTT- and cisplatininduced apoptosis in Eca109 cells; (3) P38 activation may be the common signaling component relaying the multiple upstream signaling events to the downstream cell death program.展开更多
The expression and properties of alkaline phosphatase (ALP) in Eca109 cells, a cell line derived fromhuman esophageal cancer were studied with specific inhibition assay and polyacrylamide gel electrophoresis.The resul...The expression and properties of alkaline phosphatase (ALP) in Eca109 cells, a cell line derived fromhuman esophageal cancer were studied with specific inhibition assay and polyacrylamide gel electrophoresis.The results showed that ALP of Eca109 cells was heat stable and was strongly inhibited by L-pheuylalanine, but slightly inhibited by urea. Preduisolone could causedramatic increase in activity of ALP, but no change in ALP isozyme and concomitant increase in lactic dehydrogenase activity were found after prednisolone treatment. The results suggested that placental alkaline phosphatase as an oncodevelopmental gene product could be expressed ectopically by Eca109 cells and prednisolone could specifically induce increase in its activity.展开更多
基金supported by the grants from the Natural science Foundation Project of Chongqing Sci & Tech Committee (CSCT, 2006BB5297)
文摘Objective: To study the combined antitumor effect and possible mechanisms of ursolic acid with 5-fluorouracil (5-FU) on human esophageal carcinoma cell Eca-109 in vitro. Methods: Eca-109 cells were treated with ursolic acid (10-50 μmol/L) and/or 5-fluorouracil (48.0-768.8 μmol/L) for 48 h in vitro. And then cell proliferation was determined by MTT assay. Cell cycle and apoptosis rate were analyzed by flow cytometry (FCM). The morphological changes of apoptosis were observed by fluorescent microscopy. At last the expression of P27kipl, bcl-2 and bax were detected by western blot. Results: Results: In comparison with single agent treatment, the combination of ursolic acid and 5-fluorouracil produced greater efficacy in growth inhibition, cell cycle arrest at G0/G1 phase, and apoptosis induction (P〈0.05). Western blot analysis showed that the combination use of ursolic acid and 5-fluorouracil suppressed the expression of bcl-2 and increased the expressions of bax and P27kip1. Conclusion: Ursolic acid combined with 5-fluorouracil showed adjuvant antiproliferative effects on human esophageal carcinoma cell Eca-109 in vitro, which mainly due to the induction of cell cycle arrest as well as apoptosis.
文摘BACKGROUND The poor prognosis and rising incidence of esophageal cancer highlight the need for improved therapeutics that are essential prior to treatment.LCL161 is an SMAC(second mitochondrial activator of caspases)mimic and inhibitor of apoptosis protein(IAP)antagonist which exhibits anti-tumor effects and improves the chemical sensitivity of many cancers.AIM To ascertain the effects and mechanisms of the SMAC analog LCL161 on esophageal cancer cells.METHODS MTT assay and TUNEL assay were used to detect cell proliferation and apoptosis,respectively.Western blot analysis was used to study the molecular mechanisms of LCL161-induced death of ECA109 cells.RESULTS LCL161 decreased ECA109 cell proliferation in dose-and time-dependent manner and induced apoptosis of ECA109 cells in a dose-dependent manner.Also,LCL161 induced a significant decrease in the expression of the XIAP and significant increase in the expression of Caspase-3.In addition,Bax increased significantly with increasing concentrations of LCL161,and the relative expression of Bax was significantly different between groups.CONCLUSION These findings support the hypothesis that LCL161 can inhibit proliferation and induce apoptosis in esophageal cancer cells by regulating the expression of IAP family members,suggesting that it has potential to be an effective treatment for esophageal squamous cell carcinoma.
基金Supported by the Henan Medical Science and Technology Innovation Proiect. No. 200084
文摘AIM: To study the role of P38 kinase in esophageal cancer cell apoptosis induced by genotoxin, cisplatin and the unfolded protein response (UPR) inducer, dithiothreitol (DTT). METHODS: Esophageal carcinoma cell line Eca109 was cultured in RPMI 1640 medium to 70% confluency and treated with either cisplatin, DTT, or cisplatin plus DTT in the presence or absence of P38 inhibitor, SB203580. The untreated cells served as the control. The esophageal carcinoma cell apoptosis was detected by agarose gel DNA ladder analysis and quantified by flow cytometry. The P38 phosphorylation was detected by immunohistochemistry using antibodies specific to phosphorylated P38 protein. RESULTS: (1) Both cisplatin and DTF induced apoptosis in the esophageal cancer cell line Eca109 as shown by DNA ladder formation; (2) As detected by antibodies specific for the phosphorylated P38 protein (p-P38), both cisplatin and DTT treatments activated the stress-activated enzyme, MAP kinase P38. The number of positive cells was about 50% for the treatment groups, comparing to that of 10% for untreated group. DTF treatment, but not cisplatin treatment, induces nuclear localization of p-P38; (3) As measured by flow cytometry, inhibition of P38 activity by SB203580 blocks DTT- and cisplatin-induced apoptosis. The rates for DTT, cisplatin, and DTT plus cisplatin-induced apoptosis were 16.8%, 17.1%, and 21.4%, respectively. Addition of the SB compound during the incubation reduced the apoptotic rate to about 7.6% for all the treatment groups, suggesting that P38 activation is essential for cisplatin- and DTT-induced apoptosis in Eca109 cells. CONCLUSION: (1) Both DTT and cisplatin were able to induce apoptosis in esophageal cancer cell line Eca109; (2) P38 MAP kinase is essential for DTT- and cisplatininduced apoptosis in Eca109 cells; (3) P38 activation may be the common signaling component relaying the multiple upstream signaling events to the downstream cell death program.
文摘The expression and properties of alkaline phosphatase (ALP) in Eca109 cells, a cell line derived fromhuman esophageal cancer were studied with specific inhibition assay and polyacrylamide gel electrophoresis.The results showed that ALP of Eca109 cells was heat stable and was strongly inhibited by L-pheuylalanine, but slightly inhibited by urea. Preduisolone could causedramatic increase in activity of ALP, but no change in ALP isozyme and concomitant increase in lactic dehydrogenase activity were found after prednisolone treatment. The results suggested that placental alkaline phosphatase as an oncodevelopmental gene product could be expressed ectopically by Eca109 cells and prednisolone could specifically induce increase in its activity.