Seismic fragility analysis(SFA)is known as an effective probabilistic-based approach used to evaluate seismic fragility.There are various sources of uncertainties associated with this approach.A nuclear power plant(NP...Seismic fragility analysis(SFA)is known as an effective probabilistic-based approach used to evaluate seismic fragility.There are various sources of uncertainties associated with this approach.A nuclear power plant(NPP)system is an extremely important infrastructure and contains many structural uncertainties due to construction issues or structural deterioration during service.Simulation of structural uncertainties effects is a costly and time-consuming endeavor.A novel approach to SFA for the NPP considering structural uncertainties based on the damage state is proposed and examined.The results suggest that considering the structural uncertainties is essential in assessing the fragility of the NPP structure,and the impact of structural uncertainties tends to increase with the state of damage.Subsequently,machine learning(ML)is found to be superior in high-precision damage state identification of the NPP for reducing the time of nonlinear time-history analysis(NLTHA)and could be applied in the damage state-based SFA.Also,the impact of various sources of uncertainties is investigated through sensitivity analysis.The Sobol and Shapley additive explanations(SHAP)method can be complementary to each other and able to solve the problem of quantifying seismic and structural uncertainties simultaneously and the interaction effect of each parameter.展开更多
Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee th...Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee the efficiency of analysis,multi-source uncertainties including the structure itself and seismic excitation need to be considered.A method for seismic fragility analysis that reflects structural and seismic parameter uncertainty was developed in this study.The proposed method used a random sampling method based on Latin hypercube sampling(LHS)to account for the structure parameter uncertainty and the group structure characteristics of electrical equipment.Then,logistic Lasso regression(LLR)was used to find the seismic fragility surface based on double ground motion intensity measures(IM).The seismic fragility based on the finite element model of an±1000 kV main transformer(UHVMT)was analyzed using the proposed method.The results show that the seismic fragility function obtained by this method can be used to construct the relationship between the uncertainty parameters and the failure probability.The seismic fragility surface did not only provide the probabilities of seismic damage states under different IMs,but also had better stability than the fragility curve.Furthermore,the sensitivity analysis of the structural parameters revealed that the elastic module of the bushing and the height of the high-voltage bushing may have a greater influence.展开更多
Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study t...Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.展开更多
Background: Reduced bone density is a major risk factor for fragility fracture. Previous studies reported, that 69% to 100% of patients with fragility fractures had low bone mineral density (BMD). Objective: The objec...Background: Reduced bone density is a major risk factor for fragility fracture. Previous studies reported, that 69% to 100% of patients with fragility fractures had low bone mineral density (BMD). Objective: The objective of the study is to estimate the prevalence of osteoporosis and osteopenia among patients with fragility fractures. Results: The result of the study revealed that the mean age of patients included in the study was 65.11 ± 10.17 and the majority (77.3%) were females. The most common sites of fractures were the femur, radius and vertebra (30.7%, 17.0% and 14.8% respectively). Moreover, more than 95% of patients with fragility fracture who underwent BMD testing had low bone mineral density. In female with fragility fracture the prevalence of osteoporosis was higher in comparison to male (58.8% and 45.0% respectively). Conclusion: Our data showed that low BMD measurement is prevalent in patient with fragility fracture. It also highlighted the importance of implementation of Fracture liaison service, to reduce the gap between fragility fracture and osteoporosis treatment.展开更多
The fragile eco-environment is a special type of ecosystem,its response to the change of environmental condi -tions is very susceptive.So it is rather prone to be disturbed under unfav orable conditions.Human activity...The fragile eco-environment is a special type of ecosystem,its response to the change of environmental condi -tions is very susceptive.So it is rather prone to be disturbed under unfav orable conditions.Human activity h as greatly changed the geo-chemical process in the ecosystem,thus caused a series o f positive and negative effects.In t he ecosys-tem,especially in the fragile eco-e nvironment,different systems and r egimes are interconnected and interdetermined.For the suntainable development of ecosystem and the protection and rational utilization of resources,it is of great impor-tance to study these internal relati onships and seek rational regulatio n and control measure.This paper tak es the fragile eco-environment in the west of the Songnen Plain as an example.Based on th e study of the topograph,physiognom y,soil,vegetation and their geographic distribution in the landscape,th e paper explains the structure of the ecologic land-scape and quantifies the ecologic ge o-chemical processes under differe nt landscape conditions.In additio n,the paper al-so tries making coupling analyses of the ecologic succession and the landscape geochemical environment.And in the pa-per,some research results are given.展开更多
This study introduces an advanced community-level resilience analysis methodology integrating 3D fragility sur-faces for combined successive earthquake-tsunami hazard and analysis.The methodology facilitates comprehen...This study introduces an advanced community-level resilience analysis methodology integrating 3D fragility sur-faces for combined successive earthquake-tsunami hazard and analysis.The methodology facilitates comprehen-sive evaluations of spatial damage,economic loss,and risk under multi-hazard conditions.This study compares earthquake-only analysis results to the successive earthquake-tsunami analysis at the community level to reveal-and quantify-significant disparities in damage and loss estimations between the analyses,emphasizing the need to consider both hazards in community planning even at lower seismic intensities.Critical assessment of the FEMA combinational rule demonstrates its limitations in accurately predicting losses and damage patterns at higher hazard intensities,highlighting the necessity for refined models that accurately account for hazard inter-actions.This research advances multi-hazard community-level resilience analysis by offering a robust framework for earthquake and tsunami assessment,underscoring the need for integration of detailed multi-hazard analy-ses into resilience planning.Finally,it suggests future directions for enhancing framework applicability across diverse community settings and structural types,aiming to improve community resilience.展开更多
Natural condition in Western China is relatively poor and regional economy level is low. The ecological environment has been seriously damaged by population growth and over-exploitation of natural resources. It is ver...Natural condition in Western China is relatively poor and regional economy level is low. The ecological environment has been seriously damaged by population growth and over-exploitation of natural resources. It is very important for coordinating the regional development and safeguarding ecological security to discuss the eco-environment evolution trend and its sustainable development strategies in Western China. Based on analyzing documents and relative research,the changes of main ecological and environmental problems in the western region,such as degradation of forest and grassland ecosystems,shrinkage of wetland,desertification,water and soil erosion,etc. were synthetically discussed. Then,according to the development trend,some countermeasures for eco-environment protection and rehabilitation and sustainable development were proposed.展开更多
Based on the historical records,the flood disasters in Xu-Huai River Basin caused by southward flow of Yellow River were studied,while its effects on Xu-Huai regional economic,transportation and eco-environment were a...Based on the historical records,the flood disasters in Xu-Huai River Basin caused by southward flow of Yellow River were studied,while its effects on Xu-Huai regional economic,transportation and eco-environment were also highlighted,and finally historical natural disasters were presented in this study.展开更多
With the rapid economic development in the surrounding coastal zone, more and more wastewater has been discharged into the Bohai Bay. And with the scale of coastal exploitation being expanded year by year, the eco-env...With the rapid economic development in the surrounding coastal zone, more and more wastewater has been discharged into the Bohai Bay. And with the scale of coastal exploitation being expanded year by year, the eco-environment of the Bohai Bay has been confronted with great pressure. In this paper, the main problems in the eco-environment of the Bohai Bay were summarized firstly. Red tides occurred more frequently and more seriously; salinity rose in inshore area, the fishery resources degenerated; all the above indicate that the eco-environment of the Bohai Bay is under a severe situation Next, to make a concrete study of the existing status of the Bohai Bay, the eco-environment index system was set up. Then the principal components analytic method and grey relation method were adopted to carry on a comprehensive analysis on the status. The results show that serious pollution of inorganic nitrogen and active phosphate, and poor species diversity are the main presentations of the bad quality of the inshore aquatic eco-environment of the Bohai Bay, which is mainly induced by the massive discharge of pollutant from land and the overexploitation in the surrounding coastal zone. At last, the variations of hydrodynamic characteristics and the pollutant transport caused by coastal exploitations such as reclamation and seawater desalination are analyzed. The results show that reclamation in coastal water not only decreases the tidal prism and weakens the tidal current action, but also influences the pollution distribution in the coastal water. The seawater desalination project would cause tremendous influence to the aquatic eco-environment of the Bohai Bay as the pollutant's pulse impact. Much more attention would be paid to the reasonable use of the coastal zone resources and the control of pollution from land-based sources.展开更多
Zr-Al-Ni-Cu bulk metallic glasses (BMGs) were developed and their fragility parameters (m) were calculated by Arrhenius and Vogel-Fulcher-Tammann (VFT) equations. The results show that the m values of the Zr-Al-...Zr-Al-Ni-Cu bulk metallic glasses (BMGs) were developed and their fragility parameters (m) were calculated by Arrhenius and Vogel-Fulcher-Tammann (VFT) equations. The results show that the m values of the Zr-Al-Ni-Cu BMGs derived by Arrhenius equation are in agreement with the corresponding m values derived by VFT equation. These Zr-Al-Ni-Cu BMGs characterize in low m values. The low m values for these BMGs would be due to their network microstructures. In addition, the m values of Zr-Al-Cu-Ni BMGs could be obtained by regulating Zr content. The composition of Zr-Al-Cu-Ni BMGs with the lowest m value would be near 54%Zr (mole fraction) because the m value about 13 of Zr 54 Al 13 Cu 18 Ni 15 BMG is the lowest among these Zr-Al-Ni-Cu BMGs developed.展开更多
Through analyzing the form, materials, building techniques of vernacular dwellings in Jinzhai County, Anhui Province, this study tries to explore the influence of agricultural eco-environment on the form of folk house...Through analyzing the form, materials, building techniques of vernacular dwellings in Jinzhai County, Anhui Province, this study tries to explore the influence of agricultural eco-environment on the form of folk houses, points out that vernacular dwellings are fully combined with local traditional agricultural environment from site selection, spatial form, architectural style, building materials and detail designs, which unifies the economic and environmental benefits of vernacular dwellings.展开更多
Osteoporosis is a silent disease without any evidence of disease until a fracture occurs. Approximately 200 million people in the world are affected by osteoporosis and 8.9 million fractures occur each year worldwide....Osteoporosis is a silent disease without any evidence of disease until a fracture occurs. Approximately 200 million people in the world are affected by osteoporosis and 8.9 million fractures occur each year worldwide. Fractures of the hip are a major public health burden, by means of both social cost and health condition of the elderly because these fractures are one of the main causes of morbidity, impairment, decreased quality of life and mortality in women and men. The aim of this review is to analyze the most important factors related to the enormous impact of osteoporotic fractures on population. Among the most common risk factors, low body mass index; history of fragility fracture, environmental risk, early menopause, smoking, lack of vitamin D, endocrine disorders(for example insulin-dependent diabetes mellitus), use of glucocorticoids, excessive alcohol intake, immobility and others represented the main clinical risk factors associated with augmented risk of fragility fracture. The increasing trend of osteoporosis is accompanied by an underutilization of the available preventive strategies and only a small number of patients at high fracture risk are recognized and successively referred for therapy. This report provides analytic evidences to assess the best practices in osteoporosis management and indications for the adoption of a correct healthcare strategy to significantly reduce the osteoporosis burden. Early diagnosis is the key to resize the impact of osteoporosis on healthcare system. In this context, attention must be focused on the identification of high fracture risk among osteoporotic patients. It is necessary to increase national awareness campaigns across countries in order to reduce the osteoporotic fractures incidence.展开更多
Eco-environment lays foundation for human existence and development, and social and economy evolvement. Therefore, it is a fundamental principle to pro- tact and construct eco-environment and achieve sustainable devel...Eco-environment lays foundation for human existence and development, and social and economy evolvement. Therefore, it is a fundamental principle to pro- tact and construct eco-environment and achieve sustainable development. With ur- ban development, and destruction on natural environment, however, the issue of water and soil losses has become a serious problem, affecting people's life and production. The research, therefore, explored the role of water and soil conservation in ecological civilization construction, including bomprehensive treatment of water storage and sand reduction, improving agricultural structure and advancing rural econ- omy, relieving the conflict between supply and demand of water resources, improv- ing eco-environment in mountainous regions and accelerating eco-construction.展开更多
Fragility analysis for highway bridges has become increasingly important in the risk assessment of highway transportation networks exposed to seismic hazards. This study introduces a methodology to calculate fragility...Fragility analysis for highway bridges has become increasingly important in the risk assessment of highway transportation networks exposed to seismic hazards. This study introduces a methodology to calculate fragility that considers multi-dimensional performance limit state parameters and makes a first attempt to develop fragility curves for a multi-span continuous (MSC) concrete girder bridge considering two performance limit state parameters: column ductility and transverse deformation in the abutments. The main purpose of this paper is to show that the performance limit states, which are compared with the seismic response parameters in the calculation of fragility, should be properly modeled as randomly interdependent variables instead of deterministic quantities. The sensitivity of fragility curves is also investigated when the dependency between the limit states is different. The results indicate that the proposed method can be used to describe the vulnerable behavior of bridges which are sensitive to multiple response parameters and that the fragility information generated by this method will be more reliable and likely to be implemented into transportation network loss estimation.展开更多
This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Bas...This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Based on material deterioration mechanisms and incremental dynamic analysis, the time-evolving seismic demands of components were obtained in the form of marginal probability distributions. The time-varying dependences among bridge components were then captured with the best fitting copula function, which was selected from the commonly used copula classes by the empirical distribution based analysis method. The system time-variant fragility curves at different damage states were developed and the effects of time-varying dependences among components on the bridge system fragility were investigated. The results indicate the time-varying dependence among components significantly affects the time-variant fragility of the bridge system. The copula technique captures the nonlinear dependence among component seismic demands accurately and easily by separating the marginal distributions and the dependence among them.展开更多
The Northridge earthquake inflicted various levels of damage upon a large number of Caltrans' bridges not retrofitted by column jacketing.In this respect,this study represents results of fragility curve developmen...The Northridge earthquake inflicted various levels of damage upon a large number of Caltrans' bridges not retrofitted by column jacketing.In this respect,this study represents results of fragility curve development for two (2) sample bridges typical in southern California,strengthened for seismic retrofit by means of steel jacketing of bridge columns.Monte Carlo simulation is performed to study nonlinear dynamic responses of the bridges before and after column retrofit.Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA.The sixty (60) ground acceleration time histories for the Los Angeles area developed for the Federal Emergency Management Agency (FEMA) SAC (SEAOC-ATC CUREe) steel project are used for the dynamic analysis of the bridges. The improvement in the fragility with steel jacketing is quantified by comparing fragility curves of the bridge before and after column retrofit.In this first attempt to formulate the problem of fragility enhancement,the quantification is made by comparing the median values of the fragility curves before and after the retrofit.Under the hypothesis that this quantification also applies to empirical fragility curves developed on the basis of Northridge earthquake damage,the enhanced version of the empirical curves is developed for the ensuing analysis to determine the enhancement of transportation network performance due to the retrofit.展开更多
In Yunnan, 8 major aspects of biodiversity and fragility in landforms, ecosystems, distribution populations, alien invasion, segregation, pollution and maladministration with various menace factors causing biodiversit...In Yunnan, 8 major aspects of biodiversity and fragility in landforms, ecosystems, distribution populations, alien invasion, segregation, pollution and maladministration with various menace factors causing biodiversity loss have been described. It is revealed that the facts that the biodiversity and fragility coexists in this paper. Accordingly, 6 major countermeasures for effective conservation and rational utilization of the provincial biodiversity were suggested on the basis of the scientific development concepts, principles of nature protection, conservation biology, resource management and ethnobotany and present status in Yunnan with rich intangible resources such as climatic, ethnical and cultural diversity, etc.展开更多
This paper evaluates the seismic vulnerability of different classes of typical bridges in California when subjected to seismic shaking or liquefaction-induced lateral spreading. The detailed structural configurations ...This paper evaluates the seismic vulnerability of different classes of typical bridges in California when subjected to seismic shaking or liquefaction-induced lateral spreading. The detailed structural configurations in terms of superstructure type, connection, continuity at support and foundation type, etc. render different damage resistant capability. Six classes of bridges are established based on their anticipated failure mechanisms under earthquake shaking. The numerical models that are capable of simulating the complex soil-structure interaction effects, nonlinear behavior of columns and connections are developed for each bridge class. The dynamic responses are obtained using nonlinear time history analyses for a suite of 250 earthquake motions with increasing intensity. An equivalent static analysis procedure is also implemented to evaluate the vulnerability of the bridges when subjected to liquefaction-induced lateral spreading. Fragility functions for each bridge class are derived and compared for both seismic shaking (based on nonlinear dynamic analyses) and lateral spreading (based on equivalent static analyses) for different performance states. The study finds that the fragility functions due to either ground shaking or lateral spreading show significant correlation with the structural characterizations, but differences emerge for ground shaking and lateral spreading conditions. Structural properties that will mostly affect the bridges' damage resistant capacity are also identified.展开更多
The lack of knowledge concerning modelling existing buildings leads to significant variability in fragility curves for single or grouped existing buildings. This study aims to investigate the uncertainties of fragilit...The lack of knowledge concerning modelling existing buildings leads to significant variability in fragility curves for single or grouped existing buildings. This study aims to investigate the uncertainties of fragility curves, with special consideration of the single-building sigma. Experimental data and simplified models are applied to the BRD tower in Bucharest, Romania, a RC building with permanent instrumentation. A three-step methodology is applied: (1) adjustment of a linear MDOF model for experimental modal analysis using a Timoshenko beam model and based on Anderson's criteria, (2) computation of the structure's response to a large set of accelerograms simulated by SIMQKE software, considering twelve ground motion parameters as intensity measurements (IM), and (3) construction of the fragility curves by comparing numerical interstory drift with the threshold criteria provided by the Hazus methodology for the slight damage state. By introducing experimental data into the model, uncertainty is reduced to 0.02 considering Sd ) as seismic intensity IM and uncertainty related to the model is assessed at 0.03. These values must be compared with the total uncertainty value of around 0.7 provided by the Hazus methodology.展开更多
基金National Natural Science Foundation of China under Grant Nos.52208191 and 51908397Shanxi Province Science Foundation for Youths under Grant No.201901D211025China Postdoctoral Science Foundation under Grant No.2020M670695。
文摘Seismic fragility analysis(SFA)is known as an effective probabilistic-based approach used to evaluate seismic fragility.There are various sources of uncertainties associated with this approach.A nuclear power plant(NPP)system is an extremely important infrastructure and contains many structural uncertainties due to construction issues or structural deterioration during service.Simulation of structural uncertainties effects is a costly and time-consuming endeavor.A novel approach to SFA for the NPP considering structural uncertainties based on the damage state is proposed and examined.The results suggest that considering the structural uncertainties is essential in assessing the fragility of the NPP structure,and the impact of structural uncertainties tends to increase with the state of damage.Subsequently,machine learning(ML)is found to be superior in high-precision damage state identification of the NPP for reducing the time of nonlinear time-history analysis(NLTHA)and could be applied in the damage state-based SFA.Also,the impact of various sources of uncertainties is investigated through sensitivity analysis.The Sobol and Shapley additive explanations(SHAP)method can be complementary to each other and able to solve the problem of quantifying seismic and structural uncertainties simultaneously and the interaction effect of each parameter.
基金National Key R&D Program of China under Grant Nos.2018YFC1504504 and 2018YFC0809404。
文摘Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee the efficiency of analysis,multi-source uncertainties including the structure itself and seismic excitation need to be considered.A method for seismic fragility analysis that reflects structural and seismic parameter uncertainty was developed in this study.The proposed method used a random sampling method based on Latin hypercube sampling(LHS)to account for the structure parameter uncertainty and the group structure characteristics of electrical equipment.Then,logistic Lasso regression(LLR)was used to find the seismic fragility surface based on double ground motion intensity measures(IM).The seismic fragility based on the finite element model of an±1000 kV main transformer(UHVMT)was analyzed using the proposed method.The results show that the seismic fragility function obtained by this method can be used to construct the relationship between the uncertainty parameters and the failure probability.The seismic fragility surface did not only provide the probabilities of seismic damage states under different IMs,but also had better stability than the fragility curve.Furthermore,the sensitivity analysis of the structural parameters revealed that the elastic module of the bushing and the height of the high-voltage bushing may have a greater influence.
基金National Key R&D Program of China under Grant No.2022YFC3003603。
文摘Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.
文摘Background: Reduced bone density is a major risk factor for fragility fracture. Previous studies reported, that 69% to 100% of patients with fragility fractures had low bone mineral density (BMD). Objective: The objective of the study is to estimate the prevalence of osteoporosis and osteopenia among patients with fragility fractures. Results: The result of the study revealed that the mean age of patients included in the study was 65.11 ± 10.17 and the majority (77.3%) were females. The most common sites of fractures were the femur, radius and vertebra (30.7%, 17.0% and 14.8% respectively). Moreover, more than 95% of patients with fragility fracture who underwent BMD testing had low bone mineral density. In female with fragility fracture the prevalence of osteoporosis was higher in comparison to male (58.8% and 45.0% respectively). Conclusion: Our data showed that low BMD measurement is prevalent in patient with fragility fracture. It also highlighted the importance of implementation of Fracture liaison service, to reduce the gap between fragility fracture and osteoporosis treatment.
文摘The fragile eco-environment is a special type of ecosystem,its response to the change of environmental condi -tions is very susceptive.So it is rather prone to be disturbed under unfav orable conditions.Human activity h as greatly changed the geo-chemical process in the ecosystem,thus caused a series o f positive and negative effects.In t he ecosys-tem,especially in the fragile eco-e nvironment,different systems and r egimes are interconnected and interdetermined.For the suntainable development of ecosystem and the protection and rational utilization of resources,it is of great impor-tance to study these internal relati onships and seek rational regulatio n and control measure.This paper tak es the fragile eco-environment in the west of the Songnen Plain as an example.Based on th e study of the topograph,physiognom y,soil,vegetation and their geographic distribution in the landscape,th e paper explains the structure of the ecologic land-scape and quantifies the ecologic ge o-chemical processes under differe nt landscape conditions.In additio n,the paper al-so tries making coupling analyses of the ecologic succession and the landscape geochemical environment.And in the pa-per,some research results are given.
基金funded through a cooperative agreement between the U.S.National Institute of Standards and Technology and Colorado State University(NIST Financial Assistance Award Numbers:70NANB15H044 and 70NANB20H008).
文摘This study introduces an advanced community-level resilience analysis methodology integrating 3D fragility sur-faces for combined successive earthquake-tsunami hazard and analysis.The methodology facilitates comprehen-sive evaluations of spatial damage,economic loss,and risk under multi-hazard conditions.This study compares earthquake-only analysis results to the successive earthquake-tsunami analysis at the community level to reveal-and quantify-significant disparities in damage and loss estimations between the analyses,emphasizing the need to consider both hazards in community planning even at lower seismic intensities.Critical assessment of the FEMA combinational rule demonstrates its limitations in accurately predicting losses and damage patterns at higher hazard intensities,highlighting the necessity for refined models that accurately account for hazard inter-actions.This research advances multi-hazard community-level resilience analysis by offering a robust framework for earthquake and tsunami assessment,underscoring the need for integration of detailed multi-hazard analy-ses into resilience planning.Finally,it suggests future directions for enhancing framework applicability across diverse community settings and structural types,aiming to improve community resilience.
基金Supported by National Key Technology R&D Program during the 11th Five-year Plan (2006BAC01A01)~~
文摘Natural condition in Western China is relatively poor and regional economy level is low. The ecological environment has been seriously damaged by population growth and over-exploitation of natural resources. It is very important for coordinating the regional development and safeguarding ecological security to discuss the eco-environment evolution trend and its sustainable development strategies in Western China. Based on analyzing documents and relative research,the changes of main ecological and environmental problems in the western region,such as degradation of forest and grassland ecosystems,shrinkage of wetland,desertification,water and soil erosion,etc. were synthetically discussed. Then,according to the development trend,some countermeasures for eco-environment protection and rehabilitation and sustainable development were proposed.
基金Supported by Social Science Fund in Jiangsu Province " Study on evolution of Yellow River s flooding into the Huihe River and natural systems in Northern Jiangsu" (09LSA001)~~
文摘Based on the historical records,the flood disasters in Xu-Huai River Basin caused by southward flow of Yellow River were studied,while its effects on Xu-Huai regional economic,transportation and eco-environment were also highlighted,and finally historical natural disasters were presented in this study.
基金supported by the National Natural Science Foundation of China(Grant No:50479049)the Support Plan of Science and Technology of Tianjin(Grant No.07ZCGYSH01700)+1 种基金the Natural Science Foundation of Tianjin(Grant No.07JCZDJC10700)Global Environmental Foundation(Grant No.TF053183)
文摘With the rapid economic development in the surrounding coastal zone, more and more wastewater has been discharged into the Bohai Bay. And with the scale of coastal exploitation being expanded year by year, the eco-environment of the Bohai Bay has been confronted with great pressure. In this paper, the main problems in the eco-environment of the Bohai Bay were summarized firstly. Red tides occurred more frequently and more seriously; salinity rose in inshore area, the fishery resources degenerated; all the above indicate that the eco-environment of the Bohai Bay is under a severe situation Next, to make a concrete study of the existing status of the Bohai Bay, the eco-environment index system was set up. Then the principal components analytic method and grey relation method were adopted to carry on a comprehensive analysis on the status. The results show that serious pollution of inorganic nitrogen and active phosphate, and poor species diversity are the main presentations of the bad quality of the inshore aquatic eco-environment of the Bohai Bay, which is mainly induced by the massive discharge of pollutant from land and the overexploitation in the surrounding coastal zone. At last, the variations of hydrodynamic characteristics and the pollutant transport caused by coastal exploitations such as reclamation and seawater desalination are analyzed. The results show that reclamation in coastal water not only decreases the tidal prism and weakens the tidal current action, but also influences the pollution distribution in the coastal water. The seawater desalination project would cause tremendous influence to the aquatic eco-environment of the Bohai Bay as the pollutant's pulse impact. Much more attention would be paid to the reasonable use of the coastal zone resources and the control of pollution from land-based sources.
基金Project(50874045)supported by the National Natural Science Foundation of ChinaProjects(200902472,20080431021)supported by the China Postdoctoral Science FoundationProject(10A044)supported by the Research Foundation of Education Bureau of Hunan Province of China
文摘Zr-Al-Ni-Cu bulk metallic glasses (BMGs) were developed and their fragility parameters (m) were calculated by Arrhenius and Vogel-Fulcher-Tammann (VFT) equations. The results show that the m values of the Zr-Al-Ni-Cu BMGs derived by Arrhenius equation are in agreement with the corresponding m values derived by VFT equation. These Zr-Al-Ni-Cu BMGs characterize in low m values. The low m values for these BMGs would be due to their network microstructures. In addition, the m values of Zr-Al-Cu-Ni BMGs could be obtained by regulating Zr content. The composition of Zr-Al-Cu-Ni BMGs with the lowest m value would be near 54%Zr (mole fraction) because the m value about 13 of Zr 54 Al 13 Cu 18 Ni 15 BMG is the lowest among these Zr-Al-Ni-Cu BMGs developed.
基金Sponsored by Anhui Provincial Social Science Foundation (2009AHZS0185)Scientific Research Plan of the Ministry of Housing and Urban-Rural Development (2010-R2-21) ~~
文摘Through analyzing the form, materials, building techniques of vernacular dwellings in Jinzhai County, Anhui Province, this study tries to explore the influence of agricultural eco-environment on the form of folk houses, points out that vernacular dwellings are fully combined with local traditional agricultural environment from site selection, spatial form, architectural style, building materials and detail designs, which unifies the economic and environmental benefits of vernacular dwellings.
基金FESR P.O.Apulia Region 2007-2013-Action 1.2.4,No.3Q5AX31
文摘Osteoporosis is a silent disease without any evidence of disease until a fracture occurs. Approximately 200 million people in the world are affected by osteoporosis and 8.9 million fractures occur each year worldwide. Fractures of the hip are a major public health burden, by means of both social cost and health condition of the elderly because these fractures are one of the main causes of morbidity, impairment, decreased quality of life and mortality in women and men. The aim of this review is to analyze the most important factors related to the enormous impact of osteoporotic fractures on population. Among the most common risk factors, low body mass index; history of fragility fracture, environmental risk, early menopause, smoking, lack of vitamin D, endocrine disorders(for example insulin-dependent diabetes mellitus), use of glucocorticoids, excessive alcohol intake, immobility and others represented the main clinical risk factors associated with augmented risk of fragility fracture. The increasing trend of osteoporosis is accompanied by an underutilization of the available preventive strategies and only a small number of patients at high fracture risk are recognized and successively referred for therapy. This report provides analytic evidences to assess the best practices in osteoporosis management and indications for the adoption of a correct healthcare strategy to significantly reduce the osteoporosis burden. Early diagnosis is the key to resize the impact of osteoporosis on healthcare system. In this context, attention must be focused on the identification of high fracture risk among osteoporotic patients. It is necessary to increase national awareness campaigns across countries in order to reduce the osteoporotic fractures incidence.
基金Supported by the Planning Subject of‘The Twelfth Five-Year-Plan’in National Science and Technology for The Rural Development in China(2011BAD31B01)~~
文摘Eco-environment lays foundation for human existence and development, and social and economy evolvement. Therefore, it is a fundamental principle to pro- tact and construct eco-environment and achieve sustainable development. With ur- ban development, and destruction on natural environment, however, the issue of water and soil losses has become a serious problem, affecting people's life and production. The research, therefore, explored the role of water and soil conservation in ecological civilization construction, including bomprehensive treatment of water storage and sand reduction, improving agricultural structure and advancing rural econ- omy, relieving the conflict between supply and demand of water resources, improv- ing eco-environment in mountainous regions and accelerating eco-construction.
基金National Natural Science Foundation of China Under Award Number 50878184National High Technology Research and Development Program (863 Program) of China Under Grant No. 2006AA04Z437Graduate Starting Seed Fund of Northwestern Polytechnical University Under the Grant No. Z2012059
文摘Fragility analysis for highway bridges has become increasingly important in the risk assessment of highway transportation networks exposed to seismic hazards. This study introduces a methodology to calculate fragility that considers multi-dimensional performance limit state parameters and makes a first attempt to develop fragility curves for a multi-span continuous (MSC) concrete girder bridge considering two performance limit state parameters: column ductility and transverse deformation in the abutments. The main purpose of this paper is to show that the performance limit states, which are compared with the seismic response parameters in the calculation of fragility, should be properly modeled as randomly interdependent variables instead of deterministic quantities. The sensitivity of fragility curves is also investigated when the dependency between the limit states is different. The results indicate that the proposed method can be used to describe the vulnerable behavior of bridges which are sensitive to multiple response parameters and that the fragility information generated by this method will be more reliable and likely to be implemented into transportation network loss estimation.
基金Natural Science Foundation of China under Grant No.51808376
文摘This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Based on material deterioration mechanisms and incremental dynamic analysis, the time-evolving seismic demands of components were obtained in the form of marginal probability distributions. The time-varying dependences among bridge components were then captured with the best fitting copula function, which was selected from the commonly used copula classes by the empirical distribution based analysis method. The system time-variant fragility curves at different damage states were developed and the effects of time-varying dependences among components on the bridge system fragility were investigated. The results indicate the time-varying dependence among components significantly affects the time-variant fragility of the bridge system. The copula technique captures the nonlinear dependence among component seismic demands accurately and easily by separating the marginal distributions and the dependence among them.
基金MCEER/FHWA under Contract No.DTFH 61-98-C-00094Caltrans under Contract No.59A0304
文摘The Northridge earthquake inflicted various levels of damage upon a large number of Caltrans' bridges not retrofitted by column jacketing.In this respect,this study represents results of fragility curve development for two (2) sample bridges typical in southern California,strengthened for seismic retrofit by means of steel jacketing of bridge columns.Monte Carlo simulation is performed to study nonlinear dynamic responses of the bridges before and after column retrofit.Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA.The sixty (60) ground acceleration time histories for the Los Angeles area developed for the Federal Emergency Management Agency (FEMA) SAC (SEAOC-ATC CUREe) steel project are used for the dynamic analysis of the bridges. The improvement in the fragility with steel jacketing is quantified by comparing fragility curves of the bridge before and after column retrofit.In this first attempt to formulate the problem of fragility enhancement,the quantification is made by comparing the median values of the fragility curves before and after the retrofit.Under the hypothesis that this quantification also applies to empirical fragility curves developed on the basis of Northridge earthquake damage,the enhanced version of the empirical curves is developed for the ensuing analysis to determine the enhancement of transportation network performance due to the retrofit.
基金This work was supported by a grant from the National Natural Science Foundation of China (No.30560127/C020608)
文摘In Yunnan, 8 major aspects of biodiversity and fragility in landforms, ecosystems, distribution populations, alien invasion, segregation, pollution and maladministration with various menace factors causing biodiversity loss have been described. It is revealed that the facts that the biodiversity and fragility coexists in this paper. Accordingly, 6 major countermeasures for effective conservation and rational utilization of the provincial biodiversity were suggested on the basis of the scientific development concepts, principles of nature protection, conservation biology, resource management and ethnobotany and present status in Yunnan with rich intangible resources such as climatic, ethnical and cultural diversity, etc.
基金Supported by:Pacific Earthquake Engineering Research Center Lifelines Program Under Project Task No.9C
文摘This paper evaluates the seismic vulnerability of different classes of typical bridges in California when subjected to seismic shaking or liquefaction-induced lateral spreading. The detailed structural configurations in terms of superstructure type, connection, continuity at support and foundation type, etc. render different damage resistant capability. Six classes of bridges are established based on their anticipated failure mechanisms under earthquake shaking. The numerical models that are capable of simulating the complex soil-structure interaction effects, nonlinear behavior of columns and connections are developed for each bridge class. The dynamic responses are obtained using nonlinear time history analyses for a suite of 250 earthquake motions with increasing intensity. An equivalent static analysis procedure is also implemented to evaluate the vulnerability of the bridges when subjected to liquefaction-induced lateral spreading. Fragility functions for each bridge class are derived and compared for both seismic shaking (based on nonlinear dynamic analyses) and lateral spreading (based on equivalent static analyses) for different performance states. The study finds that the fragility functions due to either ground shaking or lateral spreading show significant correlation with the structural characterizations, but differences emerge for ground shaking and lateral spreading conditions. Structural properties that will mostly affect the bridges' damage resistant capacity are also identified.
基金the ANR National Research Agency as Part of Its RiskNat Program(URBASIS project)under Grant No.ANR-09-RISK-009the Rh ne-Alpes Regional Council(Programme Vulnerabilitédes Ouvrages aux Risques)and the Joseph Fourier Université(Grenoble 1)
文摘The lack of knowledge concerning modelling existing buildings leads to significant variability in fragility curves for single or grouped existing buildings. This study aims to investigate the uncertainties of fragility curves, with special consideration of the single-building sigma. Experimental data and simplified models are applied to the BRD tower in Bucharest, Romania, a RC building with permanent instrumentation. A three-step methodology is applied: (1) adjustment of a linear MDOF model for experimental modal analysis using a Timoshenko beam model and based on Anderson's criteria, (2) computation of the structure's response to a large set of accelerograms simulated by SIMQKE software, considering twelve ground motion parameters as intensity measurements (IM), and (3) construction of the fragility curves by comparing numerical interstory drift with the threshold criteria provided by the Hazus methodology for the slight damage state. By introducing experimental data into the model, uncertainty is reduced to 0.02 considering Sd ) as seismic intensity IM and uncertainty related to the model is assessed at 0.03. These values must be compared with the total uncertainty value of around 0.7 provided by the Hazus methodology.