For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological...For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.展开更多
Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological en...Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological environment and tourism development.Based on the“dual-carbon”targets,the Single index quantification,Multiple index synthesis,and Poly-criteria integration evaluation model were used in this study to measure the coordinated development index of the ecological environment,public service,and tourism economy along the Silk Road Economic Belt and to analyze its spatial and temporal evolution.Further,it explores the dynamic evolution and development trend of the three systems using the Kernel Density and Grey Markov Prediction Model.The results show that the coordinated development index along this region needs to be improved during the study period.Furthermore,the coordinated development index of the Southwest region is relatively higher than that of the Northwest region.From the development trend of the three systems,all of them develop in a stable manner;however,the tourism economy system is easily affected by external disturbances.The coordinated development index of the three systems changes dynamically and tends to be in a good state of coordination.There is a certain spatial and temporal heterogeneity.The gravity center of the coordinated development index has been in the Southwest region.During the forecast period,the coordinated development index along this region will improve significantly,while insufficient and unbalanced development will continue.展开更多
Taking the pilgrimage,tourism and cultural island of Meizhou Island as an example,the evaluation index system of the coupling and coordinated development of“Mazu culture,socio-economy,eco-environment”(MSE)compound s...Taking the pilgrimage,tourism and cultural island of Meizhou Island as an example,the evaluation index system of the coupling and coordinated development of“Mazu culture,socio-economy,eco-environment”(MSE)compound system was constructed.The index weights were determined by AHP-entropy method,and the coupling degree,coordinated degree,comprehensive evaluation index and grey correlation degree of MSE system of Mazu Island from 2012 to 2022 were measure.The results showed that:(1)the comprehensive evaluation indexes of the three subsystems was on the rise in general,but the evaluation index of the ecological subsystems increased relatively slowly.(2)The coupling degree was only in the running-in stage in 2012,and the other years were in the coordinated coupling stage.(3)The coupling coordination degree increased from 0.35 in 2012 to 0.82 in 2022,the coupling coordination level was changed from mild imbalance to good coordination.(4)Through the comparison of grey correlation degree,the 24 indexes in the evaluation index system had great influence on the coupling coordination degree of MSE system.The coupling coordination degree was closely related to the development of socio-economy and the spread of Mazu culture.With the rapid development of tourism brought about by the spread of Mazu culture,the pressure on the ecological environment will be increasing.Compared with the rapid growth of tourism and economy,it is equally important to strengthen environmental protection and pay attention to the quality of ecological environment development.展开更多
The monitoring,prediction and assessment of status about climate changes and ecological environment at home and abroad were discussed in this study,and the scientific significance and countermeasures for Qinghai-Tibet...The monitoring,prediction and assessment of status about climate changes and ecological environment at home and abroad were discussed in this study,and the scientific significance and countermeasures for Qinghai-Tibet Plateau to cope with these problems were also put forward.展开更多
[Objective] This paper aims to confirm that Yunnan is one origin center of rice and human in the world.[Method] The complicated and unique ecological environment in Yunnan makes Yunnan Province the largest center of g...[Objective] This paper aims to confirm that Yunnan is one origin center of rice and human in the world.[Method] The complicated and unique ecological environment in Yunnan makes Yunnan Province the largest center of genetic diversity and cultural diversity of rice and human being as well as the cradle of human childhood.[Result] The genetic diversity and cultural diversity of rice and human being is closely related to the ecosystem diversity.Rice civilization in Yunnan can be divided into four types,including the diversity center region of rice civilization in southwestern Yunnan,diffusion region of rice civilization of Hani-Zhuang in southern Yunnan,rice civilization region of water-drought rotation in central Yunnan and poverty region of rice civilization in northern Yunnan.Southwestern Yunnan is not only the center of genetic ecological diversity and rice cultural diversity,but also the center of origin and diversity of crop genetic diversity.It is not only a transitional region among East Asia continent,South Asian sub-continent and Indo-China Peninsula,but also a core integration area of Chinese culture,Indian culture and Mid-south Peninsula culture which all merge with the local culture.[Conclusion] Yunnan is one common sphere where the origin of human evolution is closely related to the origin of rice evolution.展开更多
[Objective] The effect of climate change on wetland ecological environment in Heihe River basin was researched.[Method] Based on meteorological data from six meteorological stations in Heihe River basin from 1959 to 2...[Objective] The effect of climate change on wetland ecological environment in Heihe River basin was researched.[Method] Based on meteorological data from six meteorological stations in Heihe River basin from 1959 to 2009,the effect of climate change on wetland ecological environment in Heihe River basin in recent 51 years was studied by means of statistical method.[Result] Temperature and precipitation in Heihe River basin showed obvious increasing trend in recent 51 years,especially in recent 20 years;climate change made Heihe River basin more and more dry,specially in mountain area;wetland ecological environment closely related to climate responded to climate change,such as groundwater level rise,wetland area decrease,agriculture planting structure change,meteorological disaster increase,destroyed biodiversity and so on.[Conclusion] Our study had important significance for the protection and development of wetland resources.展开更多
On the basis of briefly introduction of the status of eco-environmental protection work in Qinling,remote sensing,geographic information systems,global positioning system (short for '3S' technology) in the con...On the basis of briefly introduction of the status of eco-environmental protection work in Qinling,remote sensing,geographic information systems,global positioning system (short for '3S' technology) in the construction of eco-environmental protection information in Qinling,especially in the application of eco-environmental investigation,eco-environmental monitoring,environmental quality evaluation,were described in this study.Meanwhile,the existing problems and countermeasures for the application '3S' technology in the eco-environmental protection were also summarized.展开更多
The design and applications of a land information system built upon ARC/INFO and ArcView are presented. The proposed system not only maintains all the advantages of the more conventional implementations but also enhan...The design and applications of a land information system built upon ARC/INFO and ArcView are presented. The proposed system not only maintains all the advantages of the more conventional implementations but also enhances them in the following ways: 1) the application program interfaces (API) are used to transmit data and messages among different parts of the system; 2) the integrated system can support studies on land evaluations and ecological analyses by efficient management of attribute and spatial data and 3) correspondingly, spatial records and attributive records are linked by the same identifiers (ID). A case study application in Zigui County of the Three Gorges Area in China demonstrates that the system could employ land-use maps and land property data to predicate and analyze the land utilization changes in the past, present and future. The ecological environment analysis can be carried out with the data of land, economics and terrain map used, showing that the system can be widely applied, especially to survey land and environment resources in the countryside area.展开更多
Long-term monitoring of the ecological environment changes is helpful for the protection of the ecological environment.Based on the ecological environment of the Sahel region in Africa,we established a remote sensing ...Long-term monitoring of the ecological environment changes is helpful for the protection of the ecological environment.Based on the ecological environment of the Sahel region in Africa,we established a remote sensing ecological index(RSEI)model for this region by combining dryness,moisture,greenness,and desertification indicators.Using the Moderate-resolution Imaging Spectroradiometer(MODIS)data in Google Earth Engine(GEE)platform,this study analyzed the ecological environment quality of the Sahel region during the period of 2001-2020.We used liner regression and fluctuation analysis methods to study the trend and fluctuation of RSEI,and utilized the stepwise regression approach to analyze the contribution of each indicator to the RSEI.Further,the correlation analysis was used to analyze the correlation between RSEI and precipitation,and Hurst index was applied to evaluate the change trend of RSEI in the future.The results show that RSEI of the Sahel region exhibited spatial heterogeneity.Specifically,it exhibited a decrease in gradient from south to north of the Sahel region.Moreover,RSEI in parts of the Sahel region presented non-zonal features.Different land-cover types demonstrated different RSEI values and changing trends.We found that RSEI and precipitation were positively correlated,suggesting that precipitation is the controlling factor of RSEI.The areas where RSEI values presented an increasing trend were slightly less than the areas where RSEI values presented a decreasing trend.In the Sahel region,the areas with the ecological environment characterized by continuous deterioration and continuous improvement accounted for 44.02%and 28.29%of the total study area,respectively,and the areas in which the ecological environment was changing from improvement to deterioration and from deterioration to improvement accounted for 12.42%and 15.26%of the whole area,respectively.In the face of the current ecological environment and future change trends of RSEI in the Sahel region,the research results provide a reference for the construction of the"Green Great Wall"(GGW)ecological environment project in Africa.展开更多
During the rapid industrialization and urbanization of China,urban agglomeration in river basin areas raises the problems of over-use of water resources and pollution of the water environment.Related research in China...During the rapid industrialization and urbanization of China,urban agglomeration in river basin areas raises the problems of over-use of water resources and pollution of the water environment.Related research in China has mainly focused on the conflicts among economic growth,urban expansion and water resource shortages within admin-istrative boundaries.However,water environments are much more dependent on their physical boundaries than their administrative boundaries.Consistent with the nature of water environment,this study aims at analyzing coordination relationships between urban development and water environment changes within physical river basin boundaries.We chose the Shayinghe River Basin,China,as our case study area which is facing serious challenges related to water en-vironment protection.Then we classified 35 county-level administrative units into upstream,midstream and down-stream regions based on their physical characteristics;analyzed the coordination degree of urban agglomeration using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method;and constructed cooperative models using the Linear Programming (LP function) to simulate four scenarios of the coordination relationship be-tween urban population increase and water environment protection based on existing water resources and water pollu-tion data.The results show that the present coordinative situation in Shayinghe River Basin is not sustainable.In gen-eral,more than 50% administrative units are in the bad coordinative situation.In particular,the downstream region is under worse condition than the upstream and midstream regions.Cooperative models in scenario analyses indicate that the population scale set in existing urban master plannings is not coordinated with the water environment protection.To reach the goal of regional sustainable development,the total population needs to be controlled such that it will re-main at 4.5×10 7 or below by 2020 given the capacity of water environment.展开更多
In order to reduce the environmental and ecological problems induced by water resources development and utilization, this paper proposes a concept of environmental and ecological water requirement. It is defined as th...In order to reduce the environmental and ecological problems induced by water resources development and utilization, this paper proposes a concept of environmental and ecological water requirement. It is defined as the minimum water amount to be consumed by the natural water bodies to conserve its environmental and ecological functions. Based on the definition, the methods on calculating the amount of environmental and ecological water requirement are determined. In the case study on Haihe-Luanhe river system, the water requirement is divided into three parts, i.e., the basic in-stream flow, water requirement for sediment transfer and water consumption by evaporation of the lakes or everglades. The results of the calculation show that the environmental and ecological water requirement in the river system is about 124×108 m3, including 57×108 m3 for basic in-stream flow, 63×108 m3 for sediment transfer and 4×108 m3 for net evaporation loss of lakes. The total amount of environmental and ecological water requirement accounts for 54% of the amount of runoff (228×108 m3). However, it should be realized that the amount of environmental and ecological water requirement must be more than that we have calculated. According to this result, we consider that the rational utilization rate of the runoff in the river systems must not be more than 40%. Since the current utilization rate of the river system, which is over 80%, has been far beyond the limitation, the problems of environment and ecology are quite serious. It is imperative to control and adjust water development and utilization to eliminate the existing problems and to avoid the potential ecological or environmental crisis.展开更多
To enclose the interactive relation between the underground mining with suitable protection for surface ecological environments and surface prevention of ecological environments adapting to mining disturbing was resea...To enclose the interactive relation between the underground mining with suitable protection for surface ecological environments and surface prevention of ecological environments adapting to mining disturbing was researched and developed core of this technique. There are three aspects of controlling ecological environments, to dispose and renew before exploitation, to protect surface ecological environments in the exploitative process and to repair and build up after exploitation. Based on the moving law of overburden strata in shallow seam, the surface subsidence law and the growth law of vegetation in subsidence mine area, the integrated controlling technique has been developed synthetically by methods of theoretic analysis, laboratory simulation, numerical calculation, commercial test etc.. It includes the key techniques of aquifer-protective mining, filtering and purging of mine water through goaf, preventing and extinguishing fire in shallow seam no-rock roadway layout and waste disposal in underground, frame-building ecological functional sphere before exploitation, frame-building the ecological cycle using system after mining and so on.展开更多
Qaidam basin is an important part of National Key Development Area–Lanzhou-Xining Area,is a key region of resource development in Western Development,is a National Circular Economy Pilot Zone.The focus of
Global warming is having a profound impact on global ecological systems,and has inevitably induced changes in the cryosphere,one of the five layers of the earth.Major changes include the shrinking and reduction in the...Global warming is having a profound impact on global ecological systems,and has inevitably induced changes in the cryosphere,one of the five layers of the earth.Major changes include the shrinking and reduction in the area and volume of both the mountain glaciers and the ice caps covering the North and South poles,and the melting of permafrost and thickening of the active frost layer.Swift changes in the cryosphere have inevitably induced ecological and environmental changes in its zone.While some of these changes are beneficial to mankind,such as an increase in water circulation,short term increases in water volumes and the enlargement of the cultivatable area,others are extremely hazardous,like the flooding of lowlands caused by an increased sea level elevation,debris flow caused by glaciers,glacier lake bursts,undermined building safety caused by permafrost melting,the deterioration of alpine cold meadows,and the surface aridization and desertification of land.Tibet,having a major part of the cryosphere in China,is home to the most widely spread glaciers and permafrost,which play a vital role in regulating water resources,climate,environment and the ecological safety in China and Asia.However,due to global warming,the glaciers and permafrost in Tibet have recently changed dramatically,exhibiting shrinkage and melting,which threatens long-term water resources,and the ecological and environmental safety of China.Based on existing research,this paper discusses the relationship between global warming and the melting and shrinkage of the cryosphere.The results show that the cryosphere's melting and shrinkage in Tibet are the direct result of global warming.The melting of glaciers has led to a series of disasters,such as changes in river runoff,the heightened frequency of debris flows induced by glaciers and the outbursts of glacier lakes.The melting of the permafrost also resulted in a series of ecological and environmental problems in Tibet,such as the degradation and population succession of the alpine grassland and meadows,the aridization of the land surface,and the occurrence of freeze-thaw erosion.展开更多
Based on trawl surveys in the Bering Sea and Chukchi Sea during the 2010 Chinese National Arctic Research Expedition, fish biodiversity characteristics, such as fish composition, dominant species, biodiversity, and fa...Based on trawl surveys in the Bering Sea and Chukchi Sea during the 2010 Chinese National Arctic Research Expedition, fish biodiversity characteristics, such as fish composition, dominant species, biodiversity, and faunal characteristics were conducted. We also discussed the responses of fishes to the quick changes in Arctic climate. The results showed that a total of 41 species in 14 families were recorded in these waters. The dominant species were Hippoglossoides robustus, Boreogadus saida, Myoxocephalus scorpius, Lumpenus fabricii, and Artediellus scaber. There were 35 coldwater species, accounting for 85.37%, and six cold temperate species, occupying 14.63%. The habitat types of fish could be grouped as follows: 35 species of demersal fishes, five benthopelagic fishes, and one pelagic fish. The Shannon-Wiener diversity index (H') (range between 0 and 2.18, 1.21 on average) was not high, and descended from south to north. Climate change has caused some fishes to shift along their latitudinal and longitudinal distribution around the Arctic and Subarctic areas, and this could lead to the decline of Arctic fishery resources.展开更多
The Luanhe River Delta is located in the center of the Circum-Bohai Sea Economic Zone.It enjoys rapid economic and social development while suffering relatively water scarcity.The overexploitation of groundwater in th...The Luanhe River Delta is located in the center of the Circum-Bohai Sea Economic Zone.It enjoys rapid economic and social development while suffering relatively water scarcity.The overexploitation of groundwater in the Luanhe River Delta in recent years has caused the continuous drop of groundwater level and serious environmental and geological problems.This study systematically analyzes the evolution characteristics of the population,economy,and groundwater exploitation in the Luanhe River Delta and summarizes the change patterns of the groundwater flow regime in different aquifers in the Luanhe River Delta according to previous water resource assessment data as well as the latest groundwater survey results.Through comparison of major source/sink terms and groundwater resources,the study reveals the impacts of human activities on the groundwater resources and ecological environment in the study area over the past 30 years from 1990 to 2020.The results are as follows.The average annual drop rate of shallow groundwater and the deep groundwater in the centers of depression cones is 0.4 m and 1.64 m,respectively in the Luanhe River Delta in the past 30 years.The depression cones of shallow and deep groundwater in the study area cover an area of 545.32 km^(2)and 548.79 km^(2),respectively,accounting for more than 10%of the total area of the Luanhe River Delta.Overexploitation of groundwater has further aggravated land subsidence.As a result,two large-scale subsidence centers have formed,with a maximum subsidence rate of up to 120 mm/a.The drop of groundwater level has induced some ecological problems in the Luanhe River Delta area,such as the zero flow and water quality deterioration of rivers and continuous shrinkage of natural wetlands and water.Meanwhile,the proportion of natural wetland area to the total wetland area has been decreased from 99%to 8%and the water area from 1776 km^(2)to 263 km^(2).These results will provide data for groundwater overexploitation control,land subsidence prevention,and ecological restoration in plains and provide services for water resources management and national land space planning.展开更多
Based on the panel data of 17 prefecture-level cities in Shandong Province from 2007 to 2016,this paper studies the decoupling relationship between economic growth and ecological environment pressure in different pref...Based on the panel data of 17 prefecture-level cities in Shandong Province from 2007 to 2016,this paper studies the decoupling relationship between economic growth and ecological environment pressure in different prefecture-level cities in Shandong Province,and analyses the influencing factors by using decoupling model and LMDI decomposition model.It concludes that the economic growth of the main cities in Shandong Province is relatively decoupled from the pressure of ecological environment;the population and economic factors are the main factors leading to the increase of carbon emissions,and the energy efficiency is constantly improving in China,which contributes to carbon emissions reduction in those areas.On the side,it demonstrates the basis and realistic possibility of the transformation of new and old kinetic energy.展开更多
Based on the ETM remote sensing images of Guangzhou City in 2014, the spatial distribution results o f three environmental factors including vegetation coverage(NDVI), soil index(vegetation index of bare soil) and sl ...Based on the ETM remote sensing images of Guangzhou City in 2014, the spatial distribution results o f three environmental factors including vegetation coverage(NDVI), soil index(vegetation index of bare soil) and sl ope were obtained. By using comprehensive index method, the normalized environmental factors were weighted and superimposed, and the fi nal evaluation results of ecological environment in Guangzhou City were obtained. The results showed that overall situation of natural ecological environment in Guangzhou was not optimistic, that is, the area of land with bad, moderate, good and superior environment accounted for 59.70%, 35.79%, 4.50% and around 0.01% of total area of land in Guangzhou City respectively. Ecological environment was generally poor in the central urban districts in the south of Guangzhou City, while it was relatively better in the north and northeast. Attaching importance to the constr uction of greenbelts and greenways is an effective way to improve regional environmental quality and natural ecological e nvironment level.展开更多
Based on the mapping of groundwater resources and environmental geology in China and its surrounding regions, Groundwater Ecological Environment Map of Asia is drawn to broadly reflect the ecological situation of Asia...Based on the mapping of groundwater resources and environmental geology in China and its surrounding regions, Groundwater Ecological Environment Map of Asia is drawn to broadly reflect the ecological situation of Asian groundwater, categorize its ecological environment into three basic types and elaborate the research categories. This paper analyzes and summarizes the major characteristics and distribution regularities of the groundwater ecological environment of Asia to reveal the key related problem so as to provide a necessary reference for the construction and planning of One Belt and One Road.展开更多
The estuary and coastal zone are the key areas for socio-economic development,and they are also the important channels for pollutants transported to the sea.The construction of the Jiaozhou Bay Bridge changed the hydr...The estuary and coastal zone are the key areas for socio-economic development,and they are also the important channels for pollutants transported to the sea.The construction of the Jiaozhou Bay Bridge changed the hydrodynamic condition of the bay,which made the self-purification capacity of the bay weakened and the pollution in the estuary and adjacent coastal zone become more serious.In this study,55 surface sediment samples were collected from the three seriously polluted estuaries and the adjacent coastal zone of Jiaozhou Bay to comprehensively study how the benthic foraminifera response to heavy metal pollution and human engineering,and to assess the ecological risks of the bay.A total of 80 species,belonging to 42 genera,were identified in this study.The results showed that Cu,Pb,Cr,Hg,Zn,and As had low to median ecological risks in the study area which would definitely affect the ecological system.The construction of the Jiaozhou Bay Bridge has resulted in pollutants accumulated at the river mouth of Loushan River,which has adverse effects on the survival and growth of benthic foraminifera.The lowest population density and diversity as well as the highest FAI(Foraminiferal Abnormality Index)and FMI(Foraminiferal Monitoring Index)occurred at Loushan River Estuary which indicated that the ecological environment of the northeastern part of Jiaozhou Bay(Loushan River Estuary)had been seriously damaged.Licun River and Haipo River estuaries and the adjacent coastal zone were slightly polluted and had low ecological risk.As a consequence,it suggested that the supervision of industrial and domestic waste discharge and the protection of the ecological environment in northeast Jiaozhou Bay should be paid more attention.展开更多
基金supported by the Guangxi Natural Science Foundation(2020GXNSFAA297266)Doctoral Research Foundation of Guilin University of Technology(GUTQDJJ2007059)Guangxi Hidden Metallic Mineral Exploration Key Laboratory。
文摘For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.
基金supported by the Hebei Province Cultural and Artistic Science Planning and Tourism Research Project[Grant No.HB22-ZD002].
文摘Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological environment and tourism development.Based on the“dual-carbon”targets,the Single index quantification,Multiple index synthesis,and Poly-criteria integration evaluation model were used in this study to measure the coordinated development index of the ecological environment,public service,and tourism economy along the Silk Road Economic Belt and to analyze its spatial and temporal evolution.Further,it explores the dynamic evolution and development trend of the three systems using the Kernel Density and Grey Markov Prediction Model.The results show that the coordinated development index along this region needs to be improved during the study period.Furthermore,the coordinated development index of the Southwest region is relatively higher than that of the Northwest region.From the development trend of the three systems,all of them develop in a stable manner;however,the tourism economy system is easily affected by external disturbances.The coordinated development index of the three systems changes dynamically and tends to be in a good state of coordination.There is a certain spatial and temporal heterogeneity.The gravity center of the coordinated development index has been in the Southwest region.During the forecast period,the coordinated development index along this region will improve significantly,while insufficient and unbalanced development will continue.
基金This paper is supported by the National Natural Science Foundation of China(Grant No.31400318)the Fujian Provincial Department of Science and Technology Guided Projects(Grant No.2020Y0089)the STS Project of Fujian Science and Technology Department(Grant Nos.2021T3014,2022T3023).
文摘Taking the pilgrimage,tourism and cultural island of Meizhou Island as an example,the evaluation index system of the coupling and coordinated development of“Mazu culture,socio-economy,eco-environment”(MSE)compound system was constructed.The index weights were determined by AHP-entropy method,and the coupling degree,coordinated degree,comprehensive evaluation index and grey correlation degree of MSE system of Mazu Island from 2012 to 2022 were measure.The results showed that:(1)the comprehensive evaluation indexes of the three subsystems was on the rise in general,but the evaluation index of the ecological subsystems increased relatively slowly.(2)The coupling degree was only in the running-in stage in 2012,and the other years were in the coordinated coupling stage.(3)The coupling coordination degree increased from 0.35 in 2012 to 0.82 in 2022,the coupling coordination level was changed from mild imbalance to good coordination.(4)Through the comparison of grey correlation degree,the 24 indexes in the evaluation index system had great influence on the coupling coordination degree of MSE system.The coupling coordination degree was closely related to the development of socio-economy and the spread of Mazu culture.With the rapid development of tourism brought about by the spread of Mazu culture,the pressure on the ecological environment will be increasing.Compared with the rapid growth of tourism and economy,it is equally important to strengthen environmental protection and pay attention to the quality of ecological environment development.
文摘The monitoring,prediction and assessment of status about climate changes and ecological environment at home and abroad were discussed in this study,and the scientific significance and countermeasures for Qinghai-Tibet Plateau to cope with these problems were also put forward.
基金Supported by National Natural Science Foundation of China(31060186)Exploitue of Emphases New Production from Yunnan Provincial Scientific and Technology Department(2010BB001)Project for Innovative Pilot Enterprises from Science and Technology Bureau of Kunming City(Kunkejizi10N060204)~~
文摘[Objective] This paper aims to confirm that Yunnan is one origin center of rice and human in the world.[Method] The complicated and unique ecological environment in Yunnan makes Yunnan Province the largest center of genetic diversity and cultural diversity of rice and human being as well as the cradle of human childhood.[Result] The genetic diversity and cultural diversity of rice and human being is closely related to the ecosystem diversity.Rice civilization in Yunnan can be divided into four types,including the diversity center region of rice civilization in southwestern Yunnan,diffusion region of rice civilization of Hani-Zhuang in southern Yunnan,rice civilization region of water-drought rotation in central Yunnan and poverty region of rice civilization in northern Yunnan.Southwestern Yunnan is not only the center of genetic ecological diversity and rice cultural diversity,but also the center of origin and diversity of crop genetic diversity.It is not only a transitional region among East Asia continent,South Asian sub-continent and Indo-China Peninsula,but also a core integration area of Chinese culture,Indian culture and Mid-south Peninsula culture which all merge with the local culture.[Conclusion] Yunnan is one common sphere where the origin of human evolution is closely related to the origin of rice evolution.
文摘[Objective] The effect of climate change on wetland ecological environment in Heihe River basin was researched.[Method] Based on meteorological data from six meteorological stations in Heihe River basin from 1959 to 2009,the effect of climate change on wetland ecological environment in Heihe River basin in recent 51 years was studied by means of statistical method.[Result] Temperature and precipitation in Heihe River basin showed obvious increasing trend in recent 51 years,especially in recent 20 years;climate change made Heihe River basin more and more dry,specially in mountain area;wetland ecological environment closely related to climate responded to climate change,such as groundwater level rise,wetland area decrease,agriculture planting structure change,meteorological disaster increase,destroyed biodiversity and so on.[Conclusion] Our study had important significance for the protection and development of wetland resources.
基金Supported by National Soft Science Program (2006GXS2B29)
文摘On the basis of briefly introduction of the status of eco-environmental protection work in Qinling,remote sensing,geographic information systems,global positioning system (short for '3S' technology) in the construction of eco-environmental protection information in Qinling,especially in the application of eco-environmental investigation,eco-environmental monitoring,environmental quality evaluation,were described in this study.Meanwhile,the existing problems and countermeasures for the application '3S' technology in the eco-environmental protection were also summarized.
基金Project supported by the National Natural Science Foundation of China (No. 49801010) the Chinese Academy of Sciences (No. KZ951-A1-202-02-01).
文摘The design and applications of a land information system built upon ARC/INFO and ArcView are presented. The proposed system not only maintains all the advantages of the more conventional implementations but also enhances them in the following ways: 1) the application program interfaces (API) are used to transmit data and messages among different parts of the system; 2) the integrated system can support studies on land evaluations and ecological analyses by efficient management of attribute and spatial data and 3) correspondingly, spatial records and attributive records are linked by the same identifiers (ID). A case study application in Zigui County of the Three Gorges Area in China demonstrates that the system could employ land-use maps and land property data to predicate and analyze the land utilization changes in the past, present and future. The ecological environment analysis can be carried out with the data of land, economics and terrain map used, showing that the system can be widely applied, especially to survey land and environment resources in the countryside area.
基金This research was financially supported by the West Light Foundation of the Chinese Academy of Science(2017-XBQNXZ-B-018)the National Natural Science Foundation of China(41861144020)the National Key Research and Development Program of China-Joint Research on Technology to Combat Desertification for African Countries of the“Great Green Wall”(2018YFE0106000).
文摘Long-term monitoring of the ecological environment changes is helpful for the protection of the ecological environment.Based on the ecological environment of the Sahel region in Africa,we established a remote sensing ecological index(RSEI)model for this region by combining dryness,moisture,greenness,and desertification indicators.Using the Moderate-resolution Imaging Spectroradiometer(MODIS)data in Google Earth Engine(GEE)platform,this study analyzed the ecological environment quality of the Sahel region during the period of 2001-2020.We used liner regression and fluctuation analysis methods to study the trend and fluctuation of RSEI,and utilized the stepwise regression approach to analyze the contribution of each indicator to the RSEI.Further,the correlation analysis was used to analyze the correlation between RSEI and precipitation,and Hurst index was applied to evaluate the change trend of RSEI in the future.The results show that RSEI of the Sahel region exhibited spatial heterogeneity.Specifically,it exhibited a decrease in gradient from south to north of the Sahel region.Moreover,RSEI in parts of the Sahel region presented non-zonal features.Different land-cover types demonstrated different RSEI values and changing trends.We found that RSEI and precipitation were positively correlated,suggesting that precipitation is the controlling factor of RSEI.The areas where RSEI values presented an increasing trend were slightly less than the areas where RSEI values presented a decreasing trend.In the Sahel region,the areas with the ecological environment characterized by continuous deterioration and continuous improvement accounted for 44.02%and 28.29%of the total study area,respectively,and the areas in which the ecological environment was changing from improvement to deterioration and from deterioration to improvement accounted for 12.42%and 15.26%of the whole area,respectively.In the face of the current ecological environment and future change trends of RSEI in the Sahel region,the research results provide a reference for the construction of the"Green Great Wall"(GGW)ecological environment project in Africa.
基金Under the auspices of National Science and Technology Major Project (No.2009ZX07210)National Natural Science Foundation of China (No.40871261)
文摘During the rapid industrialization and urbanization of China,urban agglomeration in river basin areas raises the problems of over-use of water resources and pollution of the water environment.Related research in China has mainly focused on the conflicts among economic growth,urban expansion and water resource shortages within admin-istrative boundaries.However,water environments are much more dependent on their physical boundaries than their administrative boundaries.Consistent with the nature of water environment,this study aims at analyzing coordination relationships between urban development and water environment changes within physical river basin boundaries.We chose the Shayinghe River Basin,China,as our case study area which is facing serious challenges related to water en-vironment protection.Then we classified 35 county-level administrative units into upstream,midstream and down-stream regions based on their physical characteristics;analyzed the coordination degree of urban agglomeration using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method;and constructed cooperative models using the Linear Programming (LP function) to simulate four scenarios of the coordination relationship be-tween urban population increase and water environment protection based on existing water resources and water pollu-tion data.The results show that the present coordinative situation in Shayinghe River Basin is not sustainable.In gen-eral,more than 50% administrative units are in the bad coordinative situation.In particular,the downstream region is under worse condition than the upstream and midstream regions.Cooperative models in scenario analyses indicate that the population scale set in existing urban master plannings is not coordinated with the water environment protection.To reach the goal of regional sustainable development,the total population needs to be controlled such that it will re-main at 4.5×10 7 or below by 2020 given the capacity of water environment.
基金Key Project of Chinese Academy of Sciences, KZ951-A1-203 Knowledge Innovation Project of Institute of Geographic Sciences and N
文摘In order to reduce the environmental and ecological problems induced by water resources development and utilization, this paper proposes a concept of environmental and ecological water requirement. It is defined as the minimum water amount to be consumed by the natural water bodies to conserve its environmental and ecological functions. Based on the definition, the methods on calculating the amount of environmental and ecological water requirement are determined. In the case study on Haihe-Luanhe river system, the water requirement is divided into three parts, i.e., the basic in-stream flow, water requirement for sediment transfer and water consumption by evaporation of the lakes or everglades. The results of the calculation show that the environmental and ecological water requirement in the river system is about 124×108 m3, including 57×108 m3 for basic in-stream flow, 63×108 m3 for sediment transfer and 4×108 m3 for net evaporation loss of lakes. The total amount of environmental and ecological water requirement accounts for 54% of the amount of runoff (228×108 m3). However, it should be realized that the amount of environmental and ecological water requirement must be more than that we have calculated. According to this result, we consider that the rational utilization rate of the runoff in the river systems must not be more than 40%. Since the current utilization rate of the river system, which is over 80%, has been far beyond the limitation, the problems of environment and ecology are quite serious. It is imperative to control and adjust water development and utilization to eliminate the existing problems and to avoid the potential ecological or environmental crisis.
文摘To enclose the interactive relation between the underground mining with suitable protection for surface ecological environments and surface prevention of ecological environments adapting to mining disturbing was researched and developed core of this technique. There are three aspects of controlling ecological environments, to dispose and renew before exploitation, to protect surface ecological environments in the exploitative process and to repair and build up after exploitation. Based on the moving law of overburden strata in shallow seam, the surface subsidence law and the growth law of vegetation in subsidence mine area, the integrated controlling technique has been developed synthetically by methods of theoretic analysis, laboratory simulation, numerical calculation, commercial test etc.. It includes the key techniques of aquifer-protective mining, filtering and purging of mine water through goaf, preventing and extinguishing fire in shallow seam no-rock roadway layout and waste disposal in underground, frame-building ecological functional sphere before exploitation, frame-building the ecological cycle using system after mining and so on.
基金sponsored by China Academy of Engineering Major Consulting Project (No: 2012-ZD-14)
文摘Qaidam basin is an important part of National Key Development Area–Lanzhou-Xining Area,is a key region of resource development in Western Development,is a National Circular Economy Pilot Zone.The focus of
基金funded by the National Natural Science Foundation of China (40901140)
文摘Global warming is having a profound impact on global ecological systems,and has inevitably induced changes in the cryosphere,one of the five layers of the earth.Major changes include the shrinking and reduction in the area and volume of both the mountain glaciers and the ice caps covering the North and South poles,and the melting of permafrost and thickening of the active frost layer.Swift changes in the cryosphere have inevitably induced ecological and environmental changes in its zone.While some of these changes are beneficial to mankind,such as an increase in water circulation,short term increases in water volumes and the enlargement of the cultivatable area,others are extremely hazardous,like the flooding of lowlands caused by an increased sea level elevation,debris flow caused by glaciers,glacier lake bursts,undermined building safety caused by permafrost melting,the deterioration of alpine cold meadows,and the surface aridization and desertification of land.Tibet,having a major part of the cryosphere in China,is home to the most widely spread glaciers and permafrost,which play a vital role in regulating water resources,climate,environment and the ecological safety in China and Asia.However,due to global warming,the glaciers and permafrost in Tibet have recently changed dramatically,exhibiting shrinkage and melting,which threatens long-term water resources,and the ecological and environmental safety of China.Based on existing research,this paper discusses the relationship between global warming and the melting and shrinkage of the cryosphere.The results show that the cryosphere's melting and shrinkage in Tibet are the direct result of global warming.The melting of glaciers has led to a series of disasters,such as changes in river runoff,the heightened frequency of debris flows induced by glaciers and the outbursts of glacier lakes.The melting of the permafrost also resulted in a series of ecological and environmental problems in Tibet,such as the degradation and population succession of the alpine grassland and meadows,the aridization of the land surface,and the occurrence of freeze-thaw erosion.
基金The Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract Nos CHINARE2012-2015-04-03 and CHINARE2012-2015-03-05the Polar Science Strategic Research Foundation of China under contract No.20120105the Public Science and Technology Research Funds Projects of Ocean under contract No.201105022-2
文摘Based on trawl surveys in the Bering Sea and Chukchi Sea during the 2010 Chinese National Arctic Research Expedition, fish biodiversity characteristics, such as fish composition, dominant species, biodiversity, and faunal characteristics were conducted. We also discussed the responses of fishes to the quick changes in Arctic climate. The results showed that a total of 41 species in 14 families were recorded in these waters. The dominant species were Hippoglossoides robustus, Boreogadus saida, Myoxocephalus scorpius, Lumpenus fabricii, and Artediellus scaber. There were 35 coldwater species, accounting for 85.37%, and six cold temperate species, occupying 14.63%. The habitat types of fish could be grouped as follows: 35 species of demersal fishes, five benthopelagic fishes, and one pelagic fish. The Shannon-Wiener diversity index (H') (range between 0 and 2.18, 1.21 on average) was not high, and descended from south to north. Climate change has caused some fishes to shift along their latitudinal and longitudinal distribution around the Arctic and Subarctic areas, and this could lead to the decline of Arctic fishery resources.
基金This research is jointly funded by the“Project of Hydrogeological survey of Luanhe River Basin”of China Geological Survey(No.DD20190338)General Project of National Natural Science Foundation of China(No.41972196)+1 种基金Youth Fund of the National Natural Science Foundation of China(No.41907149)China Postdoctoral Foundation(No.2018M631732).
文摘The Luanhe River Delta is located in the center of the Circum-Bohai Sea Economic Zone.It enjoys rapid economic and social development while suffering relatively water scarcity.The overexploitation of groundwater in the Luanhe River Delta in recent years has caused the continuous drop of groundwater level and serious environmental and geological problems.This study systematically analyzes the evolution characteristics of the population,economy,and groundwater exploitation in the Luanhe River Delta and summarizes the change patterns of the groundwater flow regime in different aquifers in the Luanhe River Delta according to previous water resource assessment data as well as the latest groundwater survey results.Through comparison of major source/sink terms and groundwater resources,the study reveals the impacts of human activities on the groundwater resources and ecological environment in the study area over the past 30 years from 1990 to 2020.The results are as follows.The average annual drop rate of shallow groundwater and the deep groundwater in the centers of depression cones is 0.4 m and 1.64 m,respectively in the Luanhe River Delta in the past 30 years.The depression cones of shallow and deep groundwater in the study area cover an area of 545.32 km^(2)and 548.79 km^(2),respectively,accounting for more than 10%of the total area of the Luanhe River Delta.Overexploitation of groundwater has further aggravated land subsidence.As a result,two large-scale subsidence centers have formed,with a maximum subsidence rate of up to 120 mm/a.The drop of groundwater level has induced some ecological problems in the Luanhe River Delta area,such as the zero flow and water quality deterioration of rivers and continuous shrinkage of natural wetlands and water.Meanwhile,the proportion of natural wetland area to the total wetland area has been decreased from 99%to 8%and the water area from 1776 km^(2)to 263 km^(2).These results will provide data for groundwater overexploitation control,land subsidence prevention,and ecological restoration in plains and provide services for water resources management and national land space planning.
基金supported by Shandong Soft Science Project[Grant number.2017RZB01039]Shandong Social Science Planning Research Project[Grant number.18CSJJ27].
文摘Based on the panel data of 17 prefecture-level cities in Shandong Province from 2007 to 2016,this paper studies the decoupling relationship between economic growth and ecological environment pressure in different prefecture-level cities in Shandong Province,and analyses the influencing factors by using decoupling model and LMDI decomposition model.It concludes that the economic growth of the main cities in Shandong Province is relatively decoupled from the pressure of ecological environment;the population and economic factors are the main factors leading to the increase of carbon emissions,and the energy efficiency is constantly improving in China,which contributes to carbon emissions reduction in those areas.On the side,it demonstrates the basis and realistic possibility of the transformation of new and old kinetic energy.
基金Sponsored by National Natural Science Foundation of China(41271060)
文摘Based on the ETM remote sensing images of Guangzhou City in 2014, the spatial distribution results o f three environmental factors including vegetation coverage(NDVI), soil index(vegetation index of bare soil) and sl ope were obtained. By using comprehensive index method, the normalized environmental factors were weighted and superimposed, and the fi nal evaluation results of ecological environment in Guangzhou City were obtained. The results showed that overall situation of natural ecological environment in Guangzhou was not optimistic, that is, the area of land with bad, moderate, good and superior environment accounted for 59.70%, 35.79%, 4.50% and around 0.01% of total area of land in Guangzhou City respectively. Ecological environment was generally poor in the central urban districts in the south of Guangzhou City, while it was relatively better in the north and northeast. Attaching importance to the constr uction of greenbelts and greenways is an effective way to improve regional environmental quality and natural ecological e nvironment level.
基金supported by Geological Map of Groundwater Resources and Environments of China and Surrounding Areas(12120113014200)Series Maps of Karst environment geology of China and South East Asia(12120114006401,12120114006301)
文摘Based on the mapping of groundwater resources and environmental geology in China and its surrounding regions, Groundwater Ecological Environment Map of Asia is drawn to broadly reflect the ecological situation of Asian groundwater, categorize its ecological environment into three basic types and elaborate the research categories. This paper analyzes and summarizes the major characteristics and distribution regularities of the groundwater ecological environment of Asia to reveal the key related problem so as to provide a necessary reference for the construction and planning of One Belt and One Road.
基金funded by the National Natural Science Foundation of China(41376079,41276060)the projects of the China Geological Survey and the Marine Geology Survey(DD20160137,DD20190205 and GZH200900501)+1 种基金the Foundation of the Shandong Provincial Key Laboratory of Marine Ecology and Environment&Disaster Prevention(201304)the Student Research Developing Program(SRDP)of Ocean University of China。
文摘The estuary and coastal zone are the key areas for socio-economic development,and they are also the important channels for pollutants transported to the sea.The construction of the Jiaozhou Bay Bridge changed the hydrodynamic condition of the bay,which made the self-purification capacity of the bay weakened and the pollution in the estuary and adjacent coastal zone become more serious.In this study,55 surface sediment samples were collected from the three seriously polluted estuaries and the adjacent coastal zone of Jiaozhou Bay to comprehensively study how the benthic foraminifera response to heavy metal pollution and human engineering,and to assess the ecological risks of the bay.A total of 80 species,belonging to 42 genera,were identified in this study.The results showed that Cu,Pb,Cr,Hg,Zn,and As had low to median ecological risks in the study area which would definitely affect the ecological system.The construction of the Jiaozhou Bay Bridge has resulted in pollutants accumulated at the river mouth of Loushan River,which has adverse effects on the survival and growth of benthic foraminifera.The lowest population density and diversity as well as the highest FAI(Foraminiferal Abnormality Index)and FMI(Foraminiferal Monitoring Index)occurred at Loushan River Estuary which indicated that the ecological environment of the northeastern part of Jiaozhou Bay(Loushan River Estuary)had been seriously damaged.Licun River and Haipo River estuaries and the adjacent coastal zone were slightly polluted and had low ecological risk.As a consequence,it suggested that the supervision of industrial and domestic waste discharge and the protection of the ecological environment in northeast Jiaozhou Bay should be paid more attention.