Absence of wastewater and solid waste facilities impacts the quality of life of many people in developing countries. Implementation of these facilities will benefit public health, water quality, livelihoods and proper...Absence of wastewater and solid waste facilities impacts the quality of life of many people in developing countries. Implementation of these facilities will benefit public health, water quality, livelihoods and property value. Additional benefits may result from the potential recovery of valuable resources from wastewater and solid waste, such as compost, energy, phosphorus, plastics and paper. Improving water quality through implementation of wastewater and solid waste interventions requires, among others, an analysis of i) sources of pollution, ii) mitigating measures and resource recovery potentials and their effect on water quality and health, and iii) benefits and costs of interventions. We present an integrated approach to evaluate costs and benefits of domestic and industrial wastewater and solid waste interventions. To support a policy maker in formulating a cost and environmentally effective approach, we quantified the impact of these interventions on 1) water quality improvement, 2) resource recovery potential, and 3) monetized benefits versus costs. The integration of technical, hydrological, agronomical and socio-economic elements to derive these three tangible outputs in a joint approach is a novelty. The approach is demonstrated using the heavily polluted Indonesian Upper Citarum River in the Bandung region. Domestic interventions, applying simple (anaerobic filter) technologies, were economically most attractive with a benefit cost ratio (BCR) of 3.2, but could not reach target water quality standards. To approach the target water quality, both advanced domestic (nutrient removal systems) and industrial wastewater treatment interventions were required, leading to a BCR of 2. We showed that benefits from selling recovered resources represent here an additional driver for improving water quality and outweigh the additional costs for resource recovery facilities. While included benefits captured some of the major items, these may have been undervalued. Based on these findings, water quality interventions justify their costs and are socially and economically beneficial.展开更多
文摘Absence of wastewater and solid waste facilities impacts the quality of life of many people in developing countries. Implementation of these facilities will benefit public health, water quality, livelihoods and property value. Additional benefits may result from the potential recovery of valuable resources from wastewater and solid waste, such as compost, energy, phosphorus, plastics and paper. Improving water quality through implementation of wastewater and solid waste interventions requires, among others, an analysis of i) sources of pollution, ii) mitigating measures and resource recovery potentials and their effect on water quality and health, and iii) benefits and costs of interventions. We present an integrated approach to evaluate costs and benefits of domestic and industrial wastewater and solid waste interventions. To support a policy maker in formulating a cost and environmentally effective approach, we quantified the impact of these interventions on 1) water quality improvement, 2) resource recovery potential, and 3) monetized benefits versus costs. The integration of technical, hydrological, agronomical and socio-economic elements to derive these three tangible outputs in a joint approach is a novelty. The approach is demonstrated using the heavily polluted Indonesian Upper Citarum River in the Bandung region. Domestic interventions, applying simple (anaerobic filter) technologies, were economically most attractive with a benefit cost ratio (BCR) of 3.2, but could not reach target water quality standards. To approach the target water quality, both advanced domestic (nutrient removal systems) and industrial wastewater treatment interventions were required, leading to a BCR of 2. We showed that benefits from selling recovered resources represent here an additional driver for improving water quality and outweigh the additional costs for resource recovery facilities. While included benefits captured some of the major items, these may have been undervalued. Based on these findings, water quality interventions justify their costs and are socially and economically beneficial.