Carbon (C) dynamics are central to understanding ecosystem restoration effects within the context of Grain for Green Project (GGP). GGP stared in China since 2003 to improve the environment. Despite its importance...Carbon (C) dynamics are central to understanding ecosystem restoration effects within the context of Grain for Green Project (GGP). GGP stared in China since 2003 to improve the environment. Despite its importance, how total forest ecosystem C stock (FECS) develops fol- lowing land-use changes from cropland to plantation is poorly under- stood, in particular the relationship of C allocation to pools. We quanti- fied C pools in a chronosequence ranging from 0 to 48 years, using com- plete above- and below-ground harvests based on detailed field inventory Stands were chosen along a succession sequence in managed plantations of Korean larch (Larix olgensis Henry.), a native planting species in the Lesser Khingan Mountains, Northeast of China. The FECS of Korean larch plantation (KLP) were dynamic across stand development, chang- ing from 88.2 Mg.ha-1 at cropland, to 183.9 Mg.ha·-1 as an average of forest C from 7- through 48-year-old plantation. In a 48-year-old mature KLP, vegetation comprises 48.63% of FECS and accounts for 67.66% of annual net C increment (ANCI). Soil is responsible for 38.19% and 13.53% of those, and with the remainders of 13.18% and 18.81% in down woody materials. Based on comparisons of our estimate to those of others, we conclude that afforestation of Korean larch plantation is a valid approach to sequester carbon.展开更多
Background:Mangroves are important tropical carbon sinks,and their role in mitigating climate change is well documented across the globe.However,the ecosystem carbon stocks in the mangroves of India have not been stud...Background:Mangroves are important tropical carbon sinks,and their role in mitigating climate change is well documented across the globe.However,the ecosystem carbon stocks in the mangroves of India have not been studied comprehensively.Data from this region is very limited for providing sufficient insights and authentic evaluation of carbon stocks on a regional scale.In this study,we evaluated the ecosystem carbon stock and its spatial variation in mangroves of Kerala,southwest coast of India.Results:The mean biomass stored in mangrove vegetation of Kerala is 117.11±1.02 t/ha(ABG=80.22±0.80,BGB=36.89±0.23 t/ha).Six mangrove species were found distributed in the study area.Among the different species,Avicennia marina had the highest biomass(162.18 t/ha)and least biomass was observed in Sonneratia alba(0.61 t/ha).The mean ecosystem carbon stock of mangrove systems in Kerala was estimated to be 139.82 t/ha,equivalent to 513.13 t CO2 e/ha with the vegetation and soil storing 58.56 t C/ha and 81.26 t C/ha respectively.Conclusion:The present study reveals that Kerala mangroves store sizable volume of carbon and therefore need to be preserved and managed sustainably,to retain along with the increase in carbon storage.This features the need of broadening mangrove cover as well as restoring deteriorated land in the past 50 years.Although mangrove forests in this region are protected by the Kerala Forest Department,they have been frequently facing illegal encroachment,prawn cultivation,and coastal erosion.展开更多
近百年来,温室效应的日益加剧,引发了全球温暖化、海平面上升等一系列重大环境问题,碳循环研究因此而受到全球范围的普遍关注和重视.东亚地区因其独特的气候特征,多样化的物种和生态系统,以及活跃的人类活动而成为世界碳循环研究中不可...近百年来,温室效应的日益加剧,引发了全球温暖化、海平面上升等一系列重大环境问题,碳循环研究因此而受到全球范围的普遍关注和重视.东亚地区因其独特的气候特征,多样化的物种和生态系统,以及活跃的人类活动而成为世界碳循环研究中不可或缺的一部分.在中、日、韩三国联合启动东亚碳循环前沿研究计划(A3 Foresight Program)三周年之际,《中国科学生命科学》(Science China Life Sciences)2010年第7期发表了东亚地区碳循环研究专题,包括14篇述评和研究论文,从区域碳储量及其变化特征,不同地带森林生态系统的碳源汇变化,草地和农田生态系统的碳储量和碳循环研究中的新方法等多个方面系统展示了东亚地区碳循环研究的最新进展.展开更多
Ecosystem carbon allocation can indicate ecosystem carbon cycling visually through its quantification within different carbon pools and carbon exchange.Using the ecological inventory and eddy covariance measurement ap...Ecosystem carbon allocation can indicate ecosystem carbon cycling visually through its quantification within different carbon pools and carbon exchange.Using the ecological inventory and eddy covariance measurement applied to both a mature temperate mixed forest in Changbai Mountain (CBM)and a mature subtropical evergreen forest in Dinghu Mountain (DHM),we partitioned the ecosystem carbon pool and carbon exchange into different components,determined the allocation and analyzed relationships within those components.Generally, the total carbon stock of CBM was slightly higher than that of DHM due to a higher carbon stock in the arbor layer at CBM.It was interesting that the proportions of carbon stock in vegetation,soil and litter were similar for the two mature forests.The ratio of vegetation carbon pool to soil carbon stock was 1.5 at CBM and 1.3 at DHM.However, more carbon was allocated to the trunk and root from the vegetation carbon pool at CBM,while more carbon was allocated to foliage and branches at DHM.Moreover,77% of soil carbon storage was limited to the surface soil layer (0-20cm),while there was still plentiful carbon stored in the deeper soil layers at DHM.The root/shoot ratios were 0.30 and 0.25 for CBM and DHM,respectively.The rates of net ecosystem productivity (NPP)to gross ecosystem productivity (GPP)were 0.76 and 0.58,and the ratios of ecosystem respiration (Re)to GPP were 0.98and 0.87for CBM and DHM,respectively.The net ecosystem carbon exchange/productivity (NEP)was 0.24t C ha^-1 yr^-1 for CBM and 3.38t C ha^-1 yr^-1 for DHM.Due to the common seasonal and inter-annual variations of ecosystem carbon exchange resulting from the influence of environmental factors,it was necessary to use the long record dataset to evaluate the ecosystem sink capacity.展开更多
基金supported by the Special Public Interest Research and Industry Fund of Forestry(No.200904003-1)Project of Forestry Science and Technology Research(No.2012-07)the Importation of Foreign Advanced Agricultural Science and Technology Program(2008-4-48)
文摘Carbon (C) dynamics are central to understanding ecosystem restoration effects within the context of Grain for Green Project (GGP). GGP stared in China since 2003 to improve the environment. Despite its importance, how total forest ecosystem C stock (FECS) develops fol- lowing land-use changes from cropland to plantation is poorly under- stood, in particular the relationship of C allocation to pools. We quanti- fied C pools in a chronosequence ranging from 0 to 48 years, using com- plete above- and below-ground harvests based on detailed field inventory Stands were chosen along a succession sequence in managed plantations of Korean larch (Larix olgensis Henry.), a native planting species in the Lesser Khingan Mountains, Northeast of China. The FECS of Korean larch plantation (KLP) were dynamic across stand development, chang- ing from 88.2 Mg.ha-1 at cropland, to 183.9 Mg.ha·-1 as an average of forest C from 7- through 48-year-old plantation. In a 48-year-old mature KLP, vegetation comprises 48.63% of FECS and accounts for 67.66% of annual net C increment (ANCI). Soil is responsible for 38.19% and 13.53% of those, and with the remainders of 13.18% and 18.81% in down woody materials. Based on comparisons of our estimate to those of others, we conclude that afforestation of Korean larch plantation is a valid approach to sequester carbon.
基金The Kerala Council for Science,Technology,and Environment(KSCSTE),India,provided the funding for this whole work including surveys and wages.
文摘Background:Mangroves are important tropical carbon sinks,and their role in mitigating climate change is well documented across the globe.However,the ecosystem carbon stocks in the mangroves of India have not been studied comprehensively.Data from this region is very limited for providing sufficient insights and authentic evaluation of carbon stocks on a regional scale.In this study,we evaluated the ecosystem carbon stock and its spatial variation in mangroves of Kerala,southwest coast of India.Results:The mean biomass stored in mangrove vegetation of Kerala is 117.11±1.02 t/ha(ABG=80.22±0.80,BGB=36.89±0.23 t/ha).Six mangrove species were found distributed in the study area.Among the different species,Avicennia marina had the highest biomass(162.18 t/ha)and least biomass was observed in Sonneratia alba(0.61 t/ha).The mean ecosystem carbon stock of mangrove systems in Kerala was estimated to be 139.82 t/ha,equivalent to 513.13 t CO2 e/ha with the vegetation and soil storing 58.56 t C/ha and 81.26 t C/ha respectively.Conclusion:The present study reveals that Kerala mangroves store sizable volume of carbon and therefore need to be preserved and managed sustainably,to retain along with the increase in carbon storage.This features the need of broadening mangrove cover as well as restoring deteriorated land in the past 50 years.Although mangrove forests in this region are protected by the Kerala Forest Department,they have been frequently facing illegal encroachment,prawn cultivation,and coastal erosion.
文摘近百年来,温室效应的日益加剧,引发了全球温暖化、海平面上升等一系列重大环境问题,碳循环研究因此而受到全球范围的普遍关注和重视.东亚地区因其独特的气候特征,多样化的物种和生态系统,以及活跃的人类活动而成为世界碳循环研究中不可或缺的一部分.在中、日、韩三国联合启动东亚碳循环前沿研究计划(A3 Foresight Program)三周年之际,《中国科学生命科学》(Science China Life Sciences)2010年第7期发表了东亚地区碳循环研究专题,包括14篇述评和研究论文,从区域碳储量及其变化特征,不同地带森林生态系统的碳源汇变化,草地和农田生态系统的碳储量和碳循环研究中的新方法等多个方面系统展示了东亚地区碳循环研究的最新进展.
基金National Key Research and Development Program of China(2017YFC0503801,2016YFC0500202)National Natural Science Foundation of China(31570446)Science and Technology Service Network Initiative(KFJ-SW-STS-169)
文摘Ecosystem carbon allocation can indicate ecosystem carbon cycling visually through its quantification within different carbon pools and carbon exchange.Using the ecological inventory and eddy covariance measurement applied to both a mature temperate mixed forest in Changbai Mountain (CBM)and a mature subtropical evergreen forest in Dinghu Mountain (DHM),we partitioned the ecosystem carbon pool and carbon exchange into different components,determined the allocation and analyzed relationships within those components.Generally, the total carbon stock of CBM was slightly higher than that of DHM due to a higher carbon stock in the arbor layer at CBM.It was interesting that the proportions of carbon stock in vegetation,soil and litter were similar for the two mature forests.The ratio of vegetation carbon pool to soil carbon stock was 1.5 at CBM and 1.3 at DHM.However, more carbon was allocated to the trunk and root from the vegetation carbon pool at CBM,while more carbon was allocated to foliage and branches at DHM.Moreover,77% of soil carbon storage was limited to the surface soil layer (0-20cm),while there was still plentiful carbon stored in the deeper soil layers at DHM.The root/shoot ratios were 0.30 and 0.25 for CBM and DHM,respectively.The rates of net ecosystem productivity (NPP)to gross ecosystem productivity (GPP)were 0.76 and 0.58,and the ratios of ecosystem respiration (Re)to GPP were 0.98and 0.87for CBM and DHM,respectively.The net ecosystem carbon exchange/productivity (NEP)was 0.24t C ha^-1 yr^-1 for CBM and 3.38t C ha^-1 yr^-1 for DHM.Due to the common seasonal and inter-annual variations of ecosystem carbon exchange resulting from the influence of environmental factors,it was necessary to use the long record dataset to evaluate the ecosystem sink capacity.