The trace elements chemistry of Bartlett Pond, a small shallow wetland pond in Laredo, Southern Texas, was sampled to evaluate the dynamics of trace elements impacts on water quality and ecosystems ecology of the pond...The trace elements chemistry of Bartlett Pond, a small shallow wetland pond in Laredo, Southern Texas, was sampled to evaluate the dynamics of trace elements impacts on water quality and ecosystems ecology of the pond. Two types of fish (bass and tilapia) were also sampled to see the trace element accumulation in different parts of their body. The concentrations of trace elements in water samples were found in the following order: Fe ≫Sb > Pb > As ≫Co > Tl > Cr > Cd within Bartlett Pond. Overall, the water quality of the pond is unacceptable for drinking and any other purposes as trace element concentrations (e.g. As, Cd, Co, Cr, Pb, Fe, Sb and Tl) are exceedingly higher (several fold) than the WHO and US EPA guidelines. Predictive and correlation analysis shows that most trace elements exhibit a strong positive correlation among them indicating the same anthropogenic sources and biogeochemical processes regulate these trace elements within the pond. Distributions of the trace elements in water exhibit different shapes mostly as positively skewed distribution for As, Cd, Co, Cr, and Tl, symmetrical distribution for Fe and almost symmetrical distribution for Pb and Sb. Concentrations of As, Co and Tl accumulated much higher in different parts of the Bass than Tilapia fish. The concentrations of As, Tl, Co, and Sb appeared significantly higher in different parts of the body of both Bass and Tilapia than the maximum SRM certified values. Accumulation of these contaminants in fish tissues pose increased health risks to humans who consume these contaminated fish although fishing is prohibited. Anthropogenic activities in the region primarily degrade the whole pond ecosystem ecology of the Bartlett Pond and waters of this pond to be not recommended for any use. These findings may be useful for the scientific community and concerned authorities to improve understanding about these precious natural resources and conservation of the ecosystem ecology.展开更多
Background:Forests contribute to human wellbeing through the provision of important ecosystem services.Methods:In this study,we investigated how the perceived importance of ecosystem services may impact the overall ...Background:Forests contribute to human wellbeing through the provision of important ecosystem services.Methods:In this study,we investigated how the perceived importance of ecosystem services may impact the overall benefit provided by managed watersheds at the Hubbard Brook Experimental Forest over a 45-year period,using standardized measures of service capacity weighted by service importance weights derived from a survey of beneficiaries.Results:The capacity of watersheds to regulate water flow and quality was high in all watersheds throughout the study period,whereas cultural services such as scenic beauty declined after harvest.Impacts on greenhouse gas regulation depended on the efficiency with which harvested biomass was used.Surveys revealed that stakeholders placed high value on all ecosystem services,with regulating and cultural services seen as more important than provisioning services.When service metrics were weighted by survey responses and aggregated into a single measure,total service provision followed the same overall trend as greenhouse gas regulation.Where biomass use was less efficient in terms of greenhouse gas emissions,harvesting resulted in an overall "ecosystem service debt";where use was more efficient,this "ecosystem service debt" was reduced.Beneficiaries' educational backgrounds significantly affected overall assessment of service provision.Beneficiaries with college or university degrees incurred smaller "ecosystem service debts" and were less negatively affected by harvesting overall.Conclusions:This study highlights the importance of including empirical measures of beneficiary preference when attempting to quantify overall provision of ecosystem services to human beneficiaries over time.展开更多
Human activities significantly alter ecosystems and their services; however, quantifying the impact of human activities on ecosystems has been a great challenge in ecosystem management. We used the Universal Soil Loss...Human activities significantly alter ecosystems and their services; however, quantifying the impact of human activities on ecosystems has been a great challenge in ecosystem management. We used the Universal Soil Loss Equation and county-level socioeconomic data to assess the changes in the ecosystem service of soil conservation between 2000 and 2010, and to analyze its spatial characteristics and driving factors in the southwestern China. The results showed that cropland in the southwestern China decreased by 3.74%, while urban land, forest, and grassland areas increased by 46.78%, 0.86%, and 1.12%, respectively. The soil conservation increased by 1.88 × 10^(11) kg, with deterioration only in some local areas. The improved and the degraded areas accounted for 6.41% and 2.44% of the total land area, respectively. Implementation of the Sloping Land Conversion Program and urbanization explained 57.80% and 23.90% of the variation in the soil conservation change, respectively, and were found to be the main factors enhancing soil conservation. The 2008 Wenchuan earthquake was one of the factors that led to the degradation of soil conservation. Furthermore, industrial adjustment, by increasing shares of Industry and Service and reducing those of Agriculture, has also promoted soil conservation. Our results quantitatively showed and emphasized the contributions to soil conservation improvement made by implementing ecological restoration programs and promoting urbanization. Consequently, these results provide basic information to improve our understanding of the effects of ecological restoration programs, and help guide future sustainable urban development and regional industrial restructuring.展开更多
A new form of producing and sharing knowledge has emerged as an international(United States of America,Asia,and Europe) research collaboration,known as the Long-Term Ecological Research(LTER) Network.Although Africa b...A new form of producing and sharing knowledge has emerged as an international(United States of America,Asia,and Europe) research collaboration,known as the Long-Term Ecological Research(LTER) Network.Although Africa boasts rich biodiversity,including endemic species,it lacks the long-term initiatives to underpin sustainable biodiversity managements.At present,climate change may exacerbate hunger and poverty concerns in addition to resulting in ecosystem degradation,land use change,and other threats in Africa.Therefore,ecosystem monitoring was suggested to understanding the effects of climate change and setting strategies to mitigate these changes.This paper aimed to investigate ecosystem monitoring ground sites and address their coverage gaps in Africa to provide a foundation for optimizing the African Ecosystem Research Network(AERN) ground sites.The geographic coordinates and characteristics of ground sites-based ecosystem monitoring were collected from various networks aligned with the LTER implementation in Africa.Additionally,climatic data and biodiversity distribution maps were retrieved from various sources.These data were used to assess the size of existing ground sites and the gaps in description,ecosystems and biomes.The results reveal that there were 1089 sites established by various networks.Among these sites,30.5%,27.5%,and 28.8% had no information of area,year of establishment,current status,respectively.However,68.0% of them had an area equal to or greater than 1 km2.Sites were created progressively over the course of the years,with 68.9% being created from 2000 to 2005.To date,only 41.5% of the sites were operational.The sites were scattered across Africa,but they were concentrated in Eastern and Southern Africa.The unbalanced distribution pattern of the sites left Central and Northern Africa hardly covered,and many unique ecosystems in Central Africa were not included.To sustain these sites,the AERN should be based on operational sites,seeking secure funding by establishing multiple partnerships.展开更多
At present about 60% of ecosystem has been damaged and degraded severely, resulting in enormous ecological loss globally. The essential cause is the irrational utilization of ecosystem by humankind, so it is tire key ...At present about 60% of ecosystem has been damaged and degraded severely, resulting in enormous ecological loss globally. The essential cause is the irrational utilization of ecosystem by humankind, so it is tire key to changing improper environmental performance of humankind so as to prevent ecosystem from being damaged The quantitative valuation on the loss of ecological damage is an effective tool to guide human eco-environmental performance. In this paper, the concepts related to the valuation on ecological damage cost are introduced," uncertainties that might arise in the valuation on the loss of ecological damage such as area coverage of valuation, ecological damage quantity, borders of ecological damage cost and data support are analyzed and the valuation approaches for the loss of ecological damage are also discussed As a case study, the economic losses of ecological damage of forest in 2005 in China are valuated.展开更多
Ecocriticism is a literary critical theory rising in 1990s in Europe and America in a state of ecological degradation. As it is newly born, there are various opinions on it. This paper sets out to make a systematic ex...Ecocriticism is a literary critical theory rising in 1990s in Europe and America in a state of ecological degradation. As it is newly born, there are various opinions on it. This paper sets out to make a systematic exposition on its cause, definition, history, philosophical basis, aim, etc.展开更多
Ecosystem services have become one of the core elements of ecosystem management and evaluation. As a key area of ecosystem services and for maintaining national ecological security, ecosystem changes and implementatio...Ecosystem services have become one of the core elements of ecosystem management and evaluation. As a key area of ecosystem services and for maintaining national ecological security, ecosystem changes and implementation effect evaluation are important in national key ecological function zones, for promoting the main function zone strategy and for improving the construction of an ecological civilization. This article studies the ecological zone of a tropical rainforest region in the central mountain area of Hainan Island, China. Multi-source satellite data and ground observation statistics are analyzed with geo-statistics method and ecological assessment model. The core analysis of this paper includes ecosystem patterns, quality and services. By means of spatial and temporal scale expansion and multidimensional space-time correlation analysis, the trends and stability characteristics of ecosystem changes are analyzed, and implementation effect evaluation is discussed. The analysis shows a variety of results. The proportion of forest area inside the ecological zone was significantly higher than the average level in Hainan Island. During 1990–2013, settlement gradually increased inside the ecological zone. After implementation of the zone in 2010, human activity intensity increased, with the main land use being urban construction and land reclamation. Water conservation in the ecological function zone was higher than that outside the zone. In general, it increased slightly, but had obvious fluctuations. Soil conservation inside the zone was also better than that outside. However, it demonstrated dramatic fluctuations and relatively poor stability during 1990–2013. The human disturbance index inside the zone was significantly lower than that outside, and had a lower biodiversity threat level. Especially in 2010–2013, the increased range of the human disturbance index inside the zone was significantly less than that outside.展开更多
Protection of the ecological environment is an effective strategy for maintaining ecosystem health,improving provision of ecosystem services,and increasing human well-being.However,traditional calculations of the valu...Protection of the ecological environment is an effective strategy for maintaining ecosystem health,improving provision of ecosystem services,and increasing human well-being.However,traditional calculations of the value of ecosystem services(VES)provide weak guidance because they ignore the costs of these services,leading to economically inefficient strategies.To understand the difference between VES and the net ecosystem services value(NES,after subtracting costs from VES)and to improve evaluations of ecosystem services,we estimated NES for China's Mainland(including farmland,grassland,forest,and wetland).NES totaled 10.0×10~3RMB ha^(-1)yr^(-1)in 2014,which is only 35.1%of the corresponding VES.Grassland NES was–0.7×10~3RMB ha^(-1)yr^(-1),in contrast with a positive grassland VES.NES of farmland,grassland,forest,and wetland in2014 totaled 7.2×10^(12)RMB,accounting for 27.0%of China’s GNP.Recent Chinese planning based on VES emphasizes forest conservation and ignores the conservation of other important ecosystems,such as grassland,leading to a continuing loss of China’s natural capital.Due to regional differences in economic conditions,resource endowments,and geographical characteristics,VES and NES differ among regions.To maximize the ecological benefits from conservation,it is necessary to account for these differences by comparing strategies based on NES,thereby choosing projects that maximize both economic and ecological benefits.To maintain the ecological balance,ecological restoration and socioeconomic activities should account for the costs of providing ecosystem services.This is essential to minimize the costs and maximize the benefits of projects.展开更多
文摘The trace elements chemistry of Bartlett Pond, a small shallow wetland pond in Laredo, Southern Texas, was sampled to evaluate the dynamics of trace elements impacts on water quality and ecosystems ecology of the pond. Two types of fish (bass and tilapia) were also sampled to see the trace element accumulation in different parts of their body. The concentrations of trace elements in water samples were found in the following order: Fe ≫Sb > Pb > As ≫Co > Tl > Cr > Cd within Bartlett Pond. Overall, the water quality of the pond is unacceptable for drinking and any other purposes as trace element concentrations (e.g. As, Cd, Co, Cr, Pb, Fe, Sb and Tl) are exceedingly higher (several fold) than the WHO and US EPA guidelines. Predictive and correlation analysis shows that most trace elements exhibit a strong positive correlation among them indicating the same anthropogenic sources and biogeochemical processes regulate these trace elements within the pond. Distributions of the trace elements in water exhibit different shapes mostly as positively skewed distribution for As, Cd, Co, Cr, and Tl, symmetrical distribution for Fe and almost symmetrical distribution for Pb and Sb. Concentrations of As, Co and Tl accumulated much higher in different parts of the Bass than Tilapia fish. The concentrations of As, Tl, Co, and Sb appeared significantly higher in different parts of the body of both Bass and Tilapia than the maximum SRM certified values. Accumulation of these contaminants in fish tissues pose increased health risks to humans who consume these contaminated fish although fishing is prohibited. Anthropogenic activities in the region primarily degrade the whole pond ecosystem ecology of the Bartlett Pond and waters of this pond to be not recommended for any use. These findings may be useful for the scientific community and concerned authorities to improve understanding about these precious natural resources and conservation of the ecosystem ecology.
基金support from the USDA Forest Service's Northeastern States Research Cooperative(NSRC)in collaboration with the Hubbard Brook Research Foundationthe Cary Institute of Ecosystem Studies
文摘Background:Forests contribute to human wellbeing through the provision of important ecosystem services.Methods:In this study,we investigated how the perceived importance of ecosystem services may impact the overall benefit provided by managed watersheds at the Hubbard Brook Experimental Forest over a 45-year period,using standardized measures of service capacity weighted by service importance weights derived from a survey of beneficiaries.Results:The capacity of watersheds to regulate water flow and quality was high in all watersheds throughout the study period,whereas cultural services such as scenic beauty declined after harvest.Impacts on greenhouse gas regulation depended on the efficiency with which harvested biomass was used.Surveys revealed that stakeholders placed high value on all ecosystem services,with regulating and cultural services seen as more important than provisioning services.When service metrics were weighted by survey responses and aggregated into a single measure,total service provision followed the same overall trend as greenhouse gas regulation.Where biomass use was less efficient in terms of greenhouse gas emissions,harvesting resulted in an overall "ecosystem service debt";where use was more efficient,this "ecosystem service debt" was reduced.Beneficiaries' educational backgrounds significantly affected overall assessment of service provision.Beneficiaries with college or university degrees incurred smaller "ecosystem service debts" and were less negatively affected by harvesting overall.Conclusions:This study highlights the importance of including empirical measures of beneficiary preference when attempting to quantify overall provision of ecosystem services to human beneficiaries over time.
基金Under the auspices of National Key Technology Research and Development Program of China(No.2011BAC09B08)Special Issue of National Remote Sensing Survey and Assessment of Eco-Environment Change between 2000 and 2010(No.STSN-04-01)
文摘Human activities significantly alter ecosystems and their services; however, quantifying the impact of human activities on ecosystems has been a great challenge in ecosystem management. We used the Universal Soil Loss Equation and county-level socioeconomic data to assess the changes in the ecosystem service of soil conservation between 2000 and 2010, and to analyze its spatial characteristics and driving factors in the southwestern China. The results showed that cropland in the southwestern China decreased by 3.74%, while urban land, forest, and grassland areas increased by 46.78%, 0.86%, and 1.12%, respectively. The soil conservation increased by 1.88 × 10^(11) kg, with deterioration only in some local areas. The improved and the degraded areas accounted for 6.41% and 2.44% of the total land area, respectively. Implementation of the Sloping Land Conversion Program and urbanization explained 57.80% and 23.90% of the variation in the soil conservation change, respectively, and were found to be the main factors enhancing soil conservation. The 2008 Wenchuan earthquake was one of the factors that led to the degradation of soil conservation. Furthermore, industrial adjustment, by increasing shares of Industry and Service and reducing those of Agriculture, has also promoted soil conservation. Our results quantitatively showed and emphasized the contributions to soil conservation improvement made by implementing ecological restoration programs and promoting urbanization. Consequently, these results provide basic information to improve our understanding of the effects of ecological restoration programs, and help guide future sustainable urban development and regional industrial restructuring.
基金Under the auspices of National Natural Science Foundation of China(No.31161140355)
文摘A new form of producing and sharing knowledge has emerged as an international(United States of America,Asia,and Europe) research collaboration,known as the Long-Term Ecological Research(LTER) Network.Although Africa boasts rich biodiversity,including endemic species,it lacks the long-term initiatives to underpin sustainable biodiversity managements.At present,climate change may exacerbate hunger and poverty concerns in addition to resulting in ecosystem degradation,land use change,and other threats in Africa.Therefore,ecosystem monitoring was suggested to understanding the effects of climate change and setting strategies to mitigate these changes.This paper aimed to investigate ecosystem monitoring ground sites and address their coverage gaps in Africa to provide a foundation for optimizing the African Ecosystem Research Network(AERN) ground sites.The geographic coordinates and characteristics of ground sites-based ecosystem monitoring were collected from various networks aligned with the LTER implementation in Africa.Additionally,climatic data and biodiversity distribution maps were retrieved from various sources.These data were used to assess the size of existing ground sites and the gaps in description,ecosystems and biomes.The results reveal that there were 1089 sites established by various networks.Among these sites,30.5%,27.5%,and 28.8% had no information of area,year of establishment,current status,respectively.However,68.0% of them had an area equal to or greater than 1 km2.Sites were created progressively over the course of the years,with 68.9% being created from 2000 to 2005.To date,only 41.5% of the sites were operational.The sites were scattered across Africa,but they were concentrated in Eastern and Southern Africa.The unbalanced distribution pattern of the sites left Central and Northern Africa hardly covered,and many unique ecosystems in Central Africa were not included.To sustain these sites,the AERN should be based on operational sites,seeking secure funding by establishing multiple partnerships.
文摘At present about 60% of ecosystem has been damaged and degraded severely, resulting in enormous ecological loss globally. The essential cause is the irrational utilization of ecosystem by humankind, so it is tire key to changing improper environmental performance of humankind so as to prevent ecosystem from being damaged The quantitative valuation on the loss of ecological damage is an effective tool to guide human eco-environmental performance. In this paper, the concepts related to the valuation on ecological damage cost are introduced," uncertainties that might arise in the valuation on the loss of ecological damage such as area coverage of valuation, ecological damage quantity, borders of ecological damage cost and data support are analyzed and the valuation approaches for the loss of ecological damage are also discussed As a case study, the economic losses of ecological damage of forest in 2005 in China are valuated.
文摘Ecocriticism is a literary critical theory rising in 1990s in Europe and America in a state of ecological degradation. As it is newly born, there are various opinions on it. This paper sets out to make a systematic exposition on its cause, definition, history, philosophical basis, aim, etc.
基金National Key R&D Program of China,No.2017YFC0506506,No.2016YFC0500206National Natural Science Foundation of China,No.41501484
文摘Ecosystem services have become one of the core elements of ecosystem management and evaluation. As a key area of ecosystem services and for maintaining national ecological security, ecosystem changes and implementation effect evaluation are important in national key ecological function zones, for promoting the main function zone strategy and for improving the construction of an ecological civilization. This article studies the ecological zone of a tropical rainforest region in the central mountain area of Hainan Island, China. Multi-source satellite data and ground observation statistics are analyzed with geo-statistics method and ecological assessment model. The core analysis of this paper includes ecosystem patterns, quality and services. By means of spatial and temporal scale expansion and multidimensional space-time correlation analysis, the trends and stability characteristics of ecosystem changes are analyzed, and implementation effect evaluation is discussed. The analysis shows a variety of results. The proportion of forest area inside the ecological zone was significantly higher than the average level in Hainan Island. During 1990–2013, settlement gradually increased inside the ecological zone. After implementation of the zone in 2010, human activity intensity increased, with the main land use being urban construction and land reclamation. Water conservation in the ecological function zone was higher than that outside the zone. In general, it increased slightly, but had obvious fluctuations. Soil conservation inside the zone was also better than that outside. However, it demonstrated dramatic fluctuations and relatively poor stability during 1990–2013. The human disturbance index inside the zone was significantly lower than that outside, and had a lower biodiversity threat level. Especially in 2010–2013, the increased range of the human disturbance index inside the zone was significantly less than that outside.
基金supported by the National Natural Science Foundation of China (Grant No. 41641002)
文摘Protection of the ecological environment is an effective strategy for maintaining ecosystem health,improving provision of ecosystem services,and increasing human well-being.However,traditional calculations of the value of ecosystem services(VES)provide weak guidance because they ignore the costs of these services,leading to economically inefficient strategies.To understand the difference between VES and the net ecosystem services value(NES,after subtracting costs from VES)and to improve evaluations of ecosystem services,we estimated NES for China's Mainland(including farmland,grassland,forest,and wetland).NES totaled 10.0×10~3RMB ha^(-1)yr^(-1)in 2014,which is only 35.1%of the corresponding VES.Grassland NES was–0.7×10~3RMB ha^(-1)yr^(-1),in contrast with a positive grassland VES.NES of farmland,grassland,forest,and wetland in2014 totaled 7.2×10^(12)RMB,accounting for 27.0%of China’s GNP.Recent Chinese planning based on VES emphasizes forest conservation and ignores the conservation of other important ecosystems,such as grassland,leading to a continuing loss of China’s natural capital.Due to regional differences in economic conditions,resource endowments,and geographical characteristics,VES and NES differ among regions.To maximize the ecological benefits from conservation,it is necessary to account for these differences by comparing strategies based on NES,thereby choosing projects that maximize both economic and ecological benefits.To maintain the ecological balance,ecological restoration and socioeconomic activities should account for the costs of providing ecosystem services.This is essential to minimize the costs and maximize the benefits of projects.