Identifying the main factors on spatial diff erences in net growth rate of Yesso scallop(Patinopecten yessoensis)in culture system is the key to eff ective aquaculture management and development.Coupling a 3D ecosyste...Identifying the main factors on spatial diff erences in net growth rate of Yesso scallop(Patinopecten yessoensis)in culture system is the key to eff ective aquaculture management and development.Coupling a 3D ecosystem model(ROMS-CoSiNE)with a dynamic energy budget model for scallops,a Yesso scallop culture ecosystem(YeSCE)model was established with which scallop growth was simulated with real seeding density and juvenile size from local aquaculture experiments from December 1,2012 to November 30,2013.Results show that the YeSCE model has reasonably simulated the environmental variation and scallop net growth rate in the Changhai sea area.The growth of scallops was slow in winter and midsummer and was limited mainly by temperature.Food availability was a key factor that contributed to the fast growth of the scallops during spring to early summer and in autumn.Generally,the scallops cultured in the north part of the Changhai sea area grew faster than those in the south;and the net growth rate for scallops cultured near the island was signifi cantly higher compare to the others,which is probably correlated to the spatial distribution of food availability.Based on the correlation analysis,the spatial diff erences of the net growth rate were largely aff ected by the length of the match timing of temperatures and food availability.The results of this study provide a scientifi c support for optimizing bottom culture planning and adjusting bottom culture methods.展开更多
Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice as...Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications. This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea. The biological model includes both pelagic and sea ice algal habitats with 10 compartments: three phytoplankton (pelagic diatom, flagellates and ice algae: D, F, and Ai) , three zooplankton (copepods, large zooplankton, and microzooplankton : ZS, ZL, ZP) , three nutrients ( nitrate + nitrite, ammonium, silicon : NO3 , NH4, Si) and detritus (Det). The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model. The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model. Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.展开更多
This paper’s simple ecological model to simulate the ecosystem variation and the vertical carbon flux in the central part of the East China Sea in spring, inter-reated the phytoplankton, zooplankton,autotrophic and h...This paper’s simple ecological model to simulate the ecosystem variation and the vertical carbon flux in the central part of the East China Sea in spring, inter-reated the phytoplankton, zooplankton,autotrophic and heterotrophic bacterioplankton, nitrate, and dissolved organic carbon (DOC) in a run lasting 90 days. Except for DOC, because of poor observation precision,the major seasonal features of the vertical distribution for these components can be simulated by this model. The results show that spring bloom is just a short period of 1-2 weeks and that deposit carbon flux at the bottom interface is about 200 mg /m2 ·d in the first 20 days and then reaches its maximum of 1500mg/m2·d about 2 months later after the spring bloom.展开更多
Based on experiment data of the Sino-German comprehensive investigations in the Bohai Sea in 1998 and 1999, a simple coupled pelagic-benthic ecosystem multi-box model is used to simulate the ecosystem seasonal variati...Based on experiment data of the Sino-German comprehensive investigations in the Bohai Sea in 1998 and 1999, a simple coupled pelagic-benthic ecosystem multi-box model is used to simulate the ecosystem seasonal variation. The pelagic sub-model consists of seven state variables: phytoplankton, zooplankton, TIN, TIP, DOC, POC and dissolved oxygen (DO). The benthic sub-model includes macro-benthos, meiobenthos, bacteria, detritus, TIN and TIP in the sediment. Besides the effects of solar radiation, water temperature and the nutrient from sea bottom exudation, land-based inputs are considered. The impact of the advection terms between the boxes is also considered. Meanwhile, the effects of the micro- bial-loop are introduced with a simple parameterization. The seasonal variations and the horizontal distributions of the ecosystem state variables of the Bohai Sea are simulated. Compared with the observations, the results of the multi-box model are reasonable. The modeled results show that about 13% of the photosynthesis primary production goes to the main food loop, 20% transfers to the benthic domain, 44% is consumed by the respiration of phytoplankton, and the rest goes to DOC. Model results also show the importance of the microbial food loop in the ecosystem of the Bohai Sea, and its contribution to the annual zooplankton production can be 60%-64%.展开更多
Marine ecosystem dynamic models(MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM ski...Marine ecosystem dynamic models(MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization(PO), which is an important step in model calibration. An effi cient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the effi ciency of model calibration by analyzing and estimating the goodness-of-fi t of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confi dence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientifi c and normative technical framework for the improvement of MEDM skill.展开更多
Arid and semiarid ecosystems, or dryland, are important to global biogeochemical cycles. Dryland's community structure and vegetation dynamics as well as biogeochemical cycles are sensitive to changes in climate and ...Arid and semiarid ecosystems, or dryland, are important to global biogeochemical cycles. Dryland's community structure and vegetation dynamics as well as biogeochemical cycles are sensitive to changes in climate and atmospheric composition. Vegetation dynamic models has been applied in global change studies, but the com- plex interactions among the carbon (C), water, and nitrogen (N) cycles have not been adequately addressed in the current models. In this study, a process-based vegetation dynamic model was developed to study the responses of dryland ecosystems to environmental changes, emphasizing on the interactions among the C, water, and N proc- esses. To address the interactions between the C and water processes, it not only considers the effects of annual precipitation on vegetation distribution and soil moisture on organic matter (SOM) decomposition, but also explicitly models root competition for water and the water compensation processes. To address the interactions between C and N processes, it models the soil inorganic mater processes, such as N mineralization/immobilization, denitrifica- tion/nitrification, and N leaching, as well as the root competition for soil N. The model was parameterized for major plant functional types and evaluated against field observations.展开更多
For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation...For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation degradation, land degradation, arid climate, policy failure, forest fire, rapid population growth, excessive deforestation, overgrazing, steep slope reclamation, economic poverty, engineering construction, lithology, slope, low cultural level, geological hazards, biological disaster, soil properties etc, were selected to study the Yuanmou arid-hot valleys. Based on the interpretative structural model (ISM), it has found out that the degradation factors of the Yuanmou arid-hot valleys were not at the same level but in a multilevel hierarchical system with internal relations, which pointed out that the degradation mode of the arid-hot valleys was "straight (appearance)-penetrating-background". Such researches have important directive significance for the restoration and reconstruction of the arid-hot valleys ecosystem.展开更多
An interactive simulation model is established based on the methodology of 'sensitivity model' (SM) during the cooperative research process between the founders of SM and the authors. And the conceptual framew...An interactive simulation model is established based on the methodology of 'sensitivity model' (SM) during the cooperative research process between the founders of SM and the authors. And the conceptual framework of SM is developed into the interactively qualitative and quantitative simulation model presented in this paper, which makes it possible to break down a complex urban ecosystem into simple and visual quantitative or qualitative relationships between the factors. By studying the dynamic responses of the system to the changes of the inputs and parameters of the model, future trends in urban development can be predicted and strategies formulated. The whole process is realized on micro-computer in the course of man-computer interaction. Its potential use is shown in a case of Tianjin City.展开更多
A nutrient-phytoplankton-zooplankton-detritus (NPZD) type of marine ecosystem model was developed in this study,and was further coupled to a three-dimensional primitive-equation ocean circulation model with a river ...A nutrient-phytoplankton-zooplankton-detritus (NPZD) type of marine ecosystem model was developed in this study,and was further coupled to a three-dimensional primitive-equation ocean circulation model with a river discharge model and a solar radiation model to reproduce the dynamics of the low nutrition level in the Bohai Sea (BS).The simulation results were validated by observations and it was shown that the seasonal variation in the phytoplankton biomass could be characterized by the double-peak structure,corresponding to the spring and summer blooms,respectively.It was also found that both nitrogen and phosphate declined to the lowest level after the onset of the summer bloom,since the large amounts of nutrients were exhausted by phytoplankton for photosynthesis,and the concentrations of nutrients could resume in winter after a series of the biogeochemical-physical processes.By calculating the nitrogen/phosphorus (N/P) ratio,it is easy to see that the phytoplankton dynamics is nitrogen-limited as a whole in BS,though the phosphorus limitation may occur in the Yellow River (YR) Estuary where the input of riverine nitrogen is much more than that of phosphate.展开更多
Some simplified dynamic models of grass field ecosystem are developed and investigated. The maximum simplified one consists of two variables, living grass biomass and soil wetness. The analyses of such models show tha...Some simplified dynamic models of grass field ecosystem are developed and investigated. The maximum simplified one consists of two variables, living grass biomass and soil wetness. The analyses of such models show that there exists only desert regime without grasses if the precipitation p is less than a critical value pc; the grass biomass continuously depends on p if the interaction between grass biomass and the soil wetness is weak, but the strong interaction results in the bifurcation of grass biomass in the vicinity of pc: the grass biomass is rich as p > pc, but it becomes desertification as p<pc. Periodic solutions also exist in the model, if the seasonal cycle of model's parameters is introduced. An improved model consists of three variables, i.e. the living grass biomass x, the nonliving grass biomass accumulated on the ground surface y and the soil wetness z. The behaviours of such three variables model are more complicated. The initial values of y and z play a very important role.展开更多
An experiment about the effect of diesel oil pollution on the model benthic ecosystem was conducted inthe land-based tank at the 3rd Institute of Oceanography, State Oceanic Administration, in Xiamen, added with No.0 ...An experiment about the effect of diesel oil pollution on the model benthic ecosystem was conducted inthe land-based tank at the 3rd Institute of Oceanography, State Oceanic Administration, in Xiamen, added with No.0 diesel oil at concentrations of 5, 25, 125, 625 mg/dm3 in water of series sub-tanks for 16 h. The changes in polychaete community were studied in the period of two weeks with results that though all concentrations did not basically altered the population structure and composition, the total biomass decreased significantly and individualstended to be smaller in size. The average weight of individual decreased with the increase of diesel pollutant stress.展开更多
Urban planning has become a widely concern for minimizing the negative effects of urban expansion on terrestrial ecosystems. We developed an interdisciplinary modeling framework to evaluate the effectiveness and short...Urban planning has become a widely concern for minimizing the negative effects of urban expansion on terrestrial ecosystems. We developed an interdisciplinary modeling framework to evaluate the effectiveness and shortcomings of urban expansion management strategies. A three-step method was applied to Yinchuan Plain in the northwestern of China, including(1)analyzing the relationship between landscape pattern and ecosystem service values through mathematical statistics;(2) predicting landscape pattern and ecosystem services change under different scenarios based on cellular automaton model(SLEUTH-3r model); and(3) designing and validating optimized scenario through integrating historical analysis experiments and future multi-comparison suggestions. Results have suggested that landscape composition and configuration can significantly affect regional ecosystem service values, especially the connectivity and shape of landscape. Compact urban growth policy and medium environment protection policy are the appropriate setting for urban expansion plan. Optimization validation of the combined designed scenario implied the reliability of this method. Our results highlighted the significance of integrating application of landscape pattern analysis, ecosystem service value evaluation,model simulation and multi-scenario prediction in urban planning.展开更多
The fate of fenitrothion in rice- fish ecosystem was studied using C- fenitrothion (14C- F) labelled at methoxyl and two application rates. The fenitrothion in water disappeared quickly, only 8 and 11 ppb in two treat...The fate of fenitrothion in rice- fish ecosystem was studied using C- fenitrothion (14C- F) labelled at methoxyl and two application rates. The fenitrothion in water disappeared quickly, only 8 and 11 ppb in two treatments at harvest were detected respectively. Most of 14C-F in soil existed in upper layer and that in plants appeared in shoots. The extractable residues in cargo rice were 0.36 and 0.58 ppm in two treatments respectively. 14C- residues (14C- R) were concentrated in bones, next viscera, meat and scales. Total 14C-R in meat were 0.92 and 1.77 ppm at harvest. Comparing two treatments, the residue dynamics of fenitrothion in water, soil, plants and fish were similar. 14C- R in water and soil after harvest affected the rice- fish ecosystem in the next season. However, the extractable 14C- R in cargo rice, soil and water were very low. Fenitrothion 14C- fenitrothion Rice- fish Model展开更多
The ecosystem is important because it is the life sustaining system for human survival.Three ecosystem characteristics are:regional particularities,ecosystem complexity and conventional cultural particularities.This p...The ecosystem is important because it is the life sustaining system for human survival.Three ecosystem characteristics are:regional particularities,ecosystem complexity and conventional cultural particularities.This paper develops a remote sensing based dynamic model to assess grassland ecosystem service values involving multidisciplinary knowledge.The ecological value of grassland ecosystems is focused on using a remote sensing technique in the model,and setting up the framework for a dynamic assessing model.The grassland ecological services condition and value in 1985 is used as the benchmark.The dynamic model has two adjusting indicators:biomass and price index.The biomass is simulated using the CASA(Carnegie-Ames-Stanford Approach) model.The price index was obtained from statistics data published by the statistical bureau.Results show that the grassland ecosystem value in Gansu Province was 28.36 billion Chinese Yuan in 1985,140.37 billion in 1999 and 130.86 billion in 2002.展开更多
Residues of 14C- carbofuran were studied in model late- rice ecosystem (LRE) and early- rice ecosystem (ERE). The treatment consisted of two rates of the pesticide (1x) and 2.5x). At day 56 after application, 7.3% (1x...Residues of 14C- carbofuran were studied in model late- rice ecosystem (LRE) and early- rice ecosystem (ERE). The treatment consisted of two rates of the pesticide (1x) and 2.5x). At day 56 after application, 7.3% (1x) and 2.9% (2.5x) of the pesticide and its degradative products remained in the water of the LRE, and 1.8% (1x) and 2.4% (2.5x) of them remained in the water of the ERE. At harvest, 37.5% (LRE) and 24.0% (ERE) of the pesticide applied were detected in the upper layer of the soil; and 40.6% (LRE) and 26.9% (ERE) remained in the lower layer of the soil. The residues in the rice plants increased at the first stage, reached maximum levels during day 14 to 28 after application, and decreased thereafter. At harvest, residues in the stems and leaves in the two treatments (1x and 2.5x) were 3.91μ g/g and 7.78μ g/g (LRE) and 5.04 μg/g and 17.29 μ g/g (ERE) respectively. Residues in the ears were about 1/8 to 1/12 of that in the other parts of the plants. The pesticide residues in fish bodies in both experiments were also determined.展开更多
Soil erosion can cause considerable effect on global natural resources and eco-environment. In the paper, the CENTURY model has been used to simulate soil erosion in Xilin Gol Grassland of Inner Mongolia. The results ...Soil erosion can cause considerable effect on global natural resources and eco-environment. In the paper, the CENTURY model has been used to simulate soil erosion in Xilin Gol Grassland of Inner Mongolia. The results showed before the 1960s, the soil erosion amount was over 2 kg /m2.a in grassland ecosystem in the study area because no trees had been planted. But after the 1960s the mean annual accumulator C lost from soil organic matter due to soil erosion was only 0.3 kg /m2.a in forest ecosystem. So afforestation has exerted notable effect on decreasing soil erosion amount in Xilin Gol Grassland.展开更多
Restoring degraded forests and agricultural lands has become a global conservation priority. A growing number of tools can quantify ecosystem service tradeoffs associated with forest restoration. This evolving "tools...Restoring degraded forests and agricultural lands has become a global conservation priority. A growing number of tools can quantify ecosystem service tradeoffs associated with forest restoration. This evolving "tools landscape" presents a dilemma: more tools are available, but selecting appropriate tools has become more challenging. We present a Restoration Ecosystem Service Tool Selector (RESTS) framework that describes key characteristics of 13 ecosystem service assessment tools. Analysts enter information about their decision context, services to be analyzed, and desired outputs. Tools are filtered and presented based on five evaluative criteria: scalability, cost, time requirements, handling of uncertainty, and applicability to benefit-cost analysis. RESTS uses a spreadsheet interface but a web-based interface is planned. Given the rapid evolution of ecosystem services science, RESTS provides an adaptable framework to guide forest restoration decision makers toward tools that can help quantify ecosystem services in support of restoration.展开更多
A mass-balanced model was constructed to determine the flow-energy in a community of fishes and invertebrates in the Beibu Gulf, northern South China Sea using Ecopath and Ecosim software. Input parameters were taken ...A mass-balanced model was constructed to determine the flow-energy in a community of fishes and invertebrates in the Beibu Gulf, northern South China Sea using Ecopath and Ecosim software. Input parameters were taken from the literature, except for the biomass of fish groups which was obtained from trawl surveys during October 1997 to May 1999 in the study area. The model consisted of 16 functional groups (boxes), including one marine mammal and seabirds, each representing organisms with a similar role in the food web, and only covered the main trophic flow in the Beibu Gulf ecosystem. The results showed that the food web of Beibu Gulf was dominated by the detrital path and benthic invertebrates played a significant role in transferring energy from the detritus to higher trophic levels; phytoplankton was a primary producer and most utilized as a food source. Fractional trophic levels ranged from 1.0 to 4.08 with marine mammals occupying the highest trophic level. Using network analysis, the system network was mapped into a linear food chain and six discrete trophic levels were found with a mean transfer efficiency of 16.7% from the detritus, 16.2% from the primary producer within the ecosystem. The biomass density of the commercially utilized species estimated by the model is 8.46 t/km^2, only O. 48% of the net primary production.展开更多
Allometric equations developed for the Lama forest, located in southern Benin, West Africa, were applied to estimate carbon stocks of three vegetation types:undisturbed forest, degraded forest, and fallow. Carbon sto...Allometric equations developed for the Lama forest, located in southern Benin, West Africa, were applied to estimate carbon stocks of three vegetation types:undisturbed forest, degraded forest, and fallow. Carbon stock of the undisturbed forest was 2.7 times higher than that in the degraded forest and 3.4 times higher than that in fallow. The structure of the forest suggests that the individual species were generally concentrated in lower diameter classes. Carbon stock was positively correlated to basal area and negatively related to tree density, suggesting that trees in higher diameter classes contributed significantly to the total carbon stock. The study demonstrated that large trees constitute an important component to include in the sampling approach to achieve accurate carbon quantification in forestry. Historical emissions from deforestation that converted more than 30% of the Lama forest into cropland between the years 1946 and 1987 amounted to 260,563.17 tons of carbon per year(t CO2/year) for the biomass pool only. The study explained the application of biomass models and ground truth data to estimate reference carbon stock of forests.展开更多
This paper analyzed the material flow situation in argo-animal husbandry ecosystem by compartment model. This model was an important mean for investigating the whole structural characteristics in ecosystem. Based on t...This paper analyzed the material flow situation in argo-animal husbandry ecosystem by compartment model. This model was an important mean for investigating the whole structural characteristics in ecosystem. Based on this analysis, characteristics of material cycle and integrity in the system were mastered. As an example of natural conditions in Yonghe Village, Shuangcheng Township, Shuangeheng Municipal, Heilongjang Province, the system of linear differential equations in system was established by extracting each compartment and investigating material flow and stability of this model was proved by Lyapunov linear theory. The result showed that this system could not be interfered by initial value in the state of present, input and output.展开更多
基金Supported by the National Key Research and Development Program of China(Nos.2017YFC1404403,2016YFC1401602)the National Natural Science Foundation of China(No.41806018)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23050502)。
文摘Identifying the main factors on spatial diff erences in net growth rate of Yesso scallop(Patinopecten yessoensis)in culture system is the key to eff ective aquaculture management and development.Coupling a 3D ecosystem model(ROMS-CoSiNE)with a dynamic energy budget model for scallops,a Yesso scallop culture ecosystem(YeSCE)model was established with which scallop growth was simulated with real seeding density and juvenile size from local aquaculture experiments from December 1,2012 to November 30,2013.Results show that the YeSCE model has reasonably simulated the environmental variation and scallop net growth rate in the Changhai sea area.The growth of scallops was slow in winter and midsummer and was limited mainly by temperature.Food availability was a key factor that contributed to the fast growth of the scallops during spring to early summer and in autumn.Generally,the scallops cultured in the north part of the Changhai sea area grew faster than those in the south;and the net growth rate for scallops cultured near the island was signifi cantly higher compare to the others,which is probably correlated to the spatial distribution of food availability.Based on the correlation analysis,the spatial diff erences of the net growth rate were largely aff ected by the length of the match timing of temperatures and food availability.The results of this study provide a scientifi c support for optimizing bottom culture planning and adjusting bottom culture methods.
基金supported by North Pacific Research Board(NPRB) grant 607(paper contribution number 202)NSF grant ARC-0652838+1 种基金DOE/EPSCoR grant DE-FG02-08ER46502.This is GLERL Contribution No.1499 and DOE/EPS-CoRInternational Arctic Research Center,University of Alaska Fairbanks supported this study through the JAMSTEC-IARC Research Agreement.
文摘Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications. This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea. The biological model includes both pelagic and sea ice algal habitats with 10 compartments: three phytoplankton (pelagic diatom, flagellates and ice algae: D, F, and Ai) , three zooplankton (copepods, large zooplankton, and microzooplankton : ZS, ZL, ZP) , three nutrients ( nitrate + nitrite, ammonium, silicon : NO3 , NH4, Si) and detritus (Det). The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model. The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model. Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.
文摘This paper’s simple ecological model to simulate the ecosystem variation and the vertical carbon flux in the central part of the East China Sea in spring, inter-reated the phytoplankton, zooplankton,autotrophic and heterotrophic bacterioplankton, nitrate, and dissolved organic carbon (DOC) in a run lasting 90 days. Except for DOC, because of poor observation precision,the major seasonal features of the vertical distribution for these components can be simulated by this model. The results show that spring bloom is just a short period of 1-2 weeks and that deposit carbon flux at the bottom interface is about 200 mg /m2 ·d in the first 20 days and then reaches its maximum of 1500mg/m2·d about 2 months later after the spring bloom.
基金supported by the National Natural Science Foundation of China(Nos.G49790010 and 40476045).
文摘Based on experiment data of the Sino-German comprehensive investigations in the Bohai Sea in 1998 and 1999, a simple coupled pelagic-benthic ecosystem multi-box model is used to simulate the ecosystem seasonal variation. The pelagic sub-model consists of seven state variables: phytoplankton, zooplankton, TIN, TIP, DOC, POC and dissolved oxygen (DO). The benthic sub-model includes macro-benthos, meiobenthos, bacteria, detritus, TIN and TIP in the sediment. Besides the effects of solar radiation, water temperature and the nutrient from sea bottom exudation, land-based inputs are considered. The impact of the advection terms between the boxes is also considered. Meanwhile, the effects of the micro- bial-loop are introduced with a simple parameterization. The seasonal variations and the horizontal distributions of the ecosystem state variables of the Bohai Sea are simulated. Compared with the observations, the results of the multi-box model are reasonable. The modeled results show that about 13% of the photosynthesis primary production goes to the main food loop, 20% transfers to the benthic domain, 44% is consumed by the respiration of phytoplankton, and the rest goes to DOC. Model results also show the importance of the microbial food loop in the ecosystem of the Bohai Sea, and its contribution to the annual zooplankton production can be 60%-64%.
基金Supported by the National Natural Science Foundation of China(Nos.41206111,41206112)
文摘Marine ecosystem dynamic models(MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization(PO), which is an important step in model calibration. An effi cient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the effi ciency of model calibration by analyzing and estimating the goodness-of-fi t of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confi dence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientifi c and normative technical framework for the improvement of MEDM skill.
基金supported by the International Science & Technology Cooperation Program of China (2010DFA92720-10)the "Hundred Talents Program" of the Chinese Academy of Sciences (Y174131001)supported by the National Basic Research Program of China (2009CB825105)
文摘Arid and semiarid ecosystems, or dryland, are important to global biogeochemical cycles. Dryland's community structure and vegetation dynamics as well as biogeochemical cycles are sensitive to changes in climate and atmospheric composition. Vegetation dynamic models has been applied in global change studies, but the com- plex interactions among the carbon (C), water, and nitrogen (N) cycles have not been adequately addressed in the current models. In this study, a process-based vegetation dynamic model was developed to study the responses of dryland ecosystems to environmental changes, emphasizing on the interactions among the C, water, and N proc- esses. To address the interactions between the C and water processes, it not only considers the effects of annual precipitation on vegetation distribution and soil moisture on organic matter (SOM) decomposition, but also explicitly models root competition for water and the water compensation processes. To address the interactions between C and N processes, it models the soil inorganic mater processes, such as N mineralization/immobilization, denitrifica- tion/nitrification, and N leaching, as well as the root competition for soil N. The model was parameterized for major plant functional types and evaluated against field observations.
基金the National Basic Research Program of China (973 Program) ( 2007CB407206)the National Key Technologies Research and Develop-ment Program in the Eleventh Five-Year Plan of China (2006BAC01A11)
文摘For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation degradation, land degradation, arid climate, policy failure, forest fire, rapid population growth, excessive deforestation, overgrazing, steep slope reclamation, economic poverty, engineering construction, lithology, slope, low cultural level, geological hazards, biological disaster, soil properties etc, were selected to study the Yuanmou arid-hot valleys. Based on the interpretative structural model (ISM), it has found out that the degradation factors of the Yuanmou arid-hot valleys were not at the same level but in a multilevel hierarchical system with internal relations, which pointed out that the degradation mode of the arid-hot valleys was "straight (appearance)-penetrating-background". Such researches have important directive significance for the restoration and reconstruction of the arid-hot valleys ecosystem.
基金It is a part of CERP (Cooperative Ecologioal Research Project) supported by UNESCO.
文摘An interactive simulation model is established based on the methodology of 'sensitivity model' (SM) during the cooperative research process between the founders of SM and the authors. And the conceptual framework of SM is developed into the interactively qualitative and quantitative simulation model presented in this paper, which makes it possible to break down a complex urban ecosystem into simple and visual quantitative or qualitative relationships between the factors. By studying the dynamic responses of the system to the changes of the inputs and parameters of the model, future trends in urban development can be predicted and strategies formulated. The whole process is realized on micro-computer in the course of man-computer interaction. Its potential use is shown in a case of Tianjin City.
基金supported by Key Subject Fund of Shanghai Education Committee (No. J50702)Open Foundation of the Key Subject in Environmental Engineering of Shanghai Ocean University(No. B820609000404)Initial Foundation for Ph. D. of ShanghaiOcean University (No. B820607000402)
文摘A nutrient-phytoplankton-zooplankton-detritus (NPZD) type of marine ecosystem model was developed in this study,and was further coupled to a three-dimensional primitive-equation ocean circulation model with a river discharge model and a solar radiation model to reproduce the dynamics of the low nutrition level in the Bohai Sea (BS).The simulation results were validated by observations and it was shown that the seasonal variation in the phytoplankton biomass could be characterized by the double-peak structure,corresponding to the spring and summer blooms,respectively.It was also found that both nitrogen and phosphate declined to the lowest level after the onset of the summer bloom,since the large amounts of nutrients were exhausted by phytoplankton for photosynthesis,and the concentrations of nutrients could resume in winter after a series of the biogeochemical-physical processes.By calculating the nitrogen/phosphorus (N/P) ratio,it is easy to see that the phytoplankton dynamics is nitrogen-limited as a whole in BS,though the phosphorus limitation may occur in the Yellow River (YR) Estuary where the input of riverine nitrogen is much more than that of phosphate.
文摘Some simplified dynamic models of grass field ecosystem are developed and investigated. The maximum simplified one consists of two variables, living grass biomass and soil wetness. The analyses of such models show that there exists only desert regime without grasses if the precipitation p is less than a critical value pc; the grass biomass continuously depends on p if the interaction between grass biomass and the soil wetness is weak, but the strong interaction results in the bifurcation of grass biomass in the vicinity of pc: the grass biomass is rich as p > pc, but it becomes desertification as p<pc. Periodic solutions also exist in the model, if the seasonal cycle of model's parameters is introduced. An improved model consists of three variables, i.e. the living grass biomass x, the nonliving grass biomass accumulated on the ground surface y and the soil wetness z. The behaviours of such three variables model are more complicated. The initial values of y and z play a very important role.
文摘An experiment about the effect of diesel oil pollution on the model benthic ecosystem was conducted inthe land-based tank at the 3rd Institute of Oceanography, State Oceanic Administration, in Xiamen, added with No.0 diesel oil at concentrations of 5, 25, 125, 625 mg/dm3 in water of series sub-tanks for 16 h. The changes in polychaete community were studied in the period of two weeks with results that though all concentrations did not basically altered the population structure and composition, the total biomass decreased significantly and individualstended to be smaller in size. The average weight of individual decreased with the increase of diesel pollutant stress.
基金supported by the National Natural Science Foundation of China [Grant number 41371176]the Fundamental Research Funds for the Central Universities[Grant number lzujbky_2017_it91]
文摘Urban planning has become a widely concern for minimizing the negative effects of urban expansion on terrestrial ecosystems. We developed an interdisciplinary modeling framework to evaluate the effectiveness and shortcomings of urban expansion management strategies. A three-step method was applied to Yinchuan Plain in the northwestern of China, including(1)analyzing the relationship between landscape pattern and ecosystem service values through mathematical statistics;(2) predicting landscape pattern and ecosystem services change under different scenarios based on cellular automaton model(SLEUTH-3r model); and(3) designing and validating optimized scenario through integrating historical analysis experiments and future multi-comparison suggestions. Results have suggested that landscape composition and configuration can significantly affect regional ecosystem service values, especially the connectivity and shape of landscape. Compact urban growth policy and medium environment protection policy are the appropriate setting for urban expansion plan. Optimization validation of the combined designed scenario implied the reliability of this method. Our results highlighted the significance of integrating application of landscape pattern analysis, ecosystem service value evaluation,model simulation and multi-scenario prediction in urban planning.
文摘The fate of fenitrothion in rice- fish ecosystem was studied using C- fenitrothion (14C- F) labelled at methoxyl and two application rates. The fenitrothion in water disappeared quickly, only 8 and 11 ppb in two treatments at harvest were detected respectively. Most of 14C-F in soil existed in upper layer and that in plants appeared in shoots. The extractable residues in cargo rice were 0.36 and 0.58 ppm in two treatments respectively. 14C- residues (14C- R) were concentrated in bones, next viscera, meat and scales. Total 14C-R in meat were 0.92 and 1.77 ppm at harvest. Comparing two treatments, the residue dynamics of fenitrothion in water, soil, plants and fish were similar. 14C- R in water and soil after harvest affected the rice- fish ecosystem in the next season. However, the extractable 14C- R in cargo rice, soil and water were very low. Fenitrothion 14C- fenitrothion Rice- fish Model
基金supported by the CAS (Chinese Academy of Sciences) Action Plan for West Development Project "Watershed Allied Telemetry Experimental Research (WATER)"(grant number:KZCX2-XB2-09)the Global Change Research Program of China (2010CB951403)+2 种基金WP6 of FP7 topic ENV.2007.4.1.4.2 "Improving observing systems for water resource management"the National Natural Science Foundation of China (grant number:41071227)the Major Research Plan "Integrated Research on the Eco-Hydrological Process of Heihe Basin" of National Natural Science Foundation of China,topic (grant number:91025001)
文摘The ecosystem is important because it is the life sustaining system for human survival.Three ecosystem characteristics are:regional particularities,ecosystem complexity and conventional cultural particularities.This paper develops a remote sensing based dynamic model to assess grassland ecosystem service values involving multidisciplinary knowledge.The ecological value of grassland ecosystems is focused on using a remote sensing technique in the model,and setting up the framework for a dynamic assessing model.The grassland ecological services condition and value in 1985 is used as the benchmark.The dynamic model has two adjusting indicators:biomass and price index.The biomass is simulated using the CASA(Carnegie-Ames-Stanford Approach) model.The price index was obtained from statistics data published by the statistical bureau.Results show that the grassland ecosystem value in Gansu Province was 28.36 billion Chinese Yuan in 1985,140.37 billion in 1999 and 130.86 billion in 2002.
基金Research carried out with the support of IAEA under Research Contract No. 4233/RB
文摘Residues of 14C- carbofuran were studied in model late- rice ecosystem (LRE) and early- rice ecosystem (ERE). The treatment consisted of two rates of the pesticide (1x) and 2.5x). At day 56 after application, 7.3% (1x) and 2.9% (2.5x) of the pesticide and its degradative products remained in the water of the LRE, and 1.8% (1x) and 2.4% (2.5x) of them remained in the water of the ERE. At harvest, 37.5% (LRE) and 24.0% (ERE) of the pesticide applied were detected in the upper layer of the soil; and 40.6% (LRE) and 26.9% (ERE) remained in the lower layer of the soil. The residues in the rice plants increased at the first stage, reached maximum levels during day 14 to 28 after application, and decreased thereafter. At harvest, residues in the stems and leaves in the two treatments (1x and 2.5x) were 3.91μ g/g and 7.78μ g/g (LRE) and 5.04 μg/g and 17.29 μ g/g (ERE) respectively. Residues in the ears were about 1/8 to 1/12 of that in the other parts of the plants. The pesticide residues in fish bodies in both experiments were also determined.
基金Partly supported by Postdoctoral Foundation of China (No.24) and the National Natural Science Foundation of China (No. 39900084)
文摘Soil erosion can cause considerable effect on global natural resources and eco-environment. In the paper, the CENTURY model has been used to simulate soil erosion in Xilin Gol Grassland of Inner Mongolia. The results showed before the 1960s, the soil erosion amount was over 2 kg /m2.a in grassland ecosystem in the study area because no trees had been planted. But after the 1960s the mean annual accumulator C lost from soil organic matter due to soil erosion was only 0.3 kg /m2.a in forest ecosystem. So afforestation has exerted notable effect on decreasing soil erosion amount in Xilin Gol Grassland.
文摘Restoring degraded forests and agricultural lands has become a global conservation priority. A growing number of tools can quantify ecosystem service tradeoffs associated with forest restoration. This evolving "tools landscape" presents a dilemma: more tools are available, but selecting appropriate tools has become more challenging. We present a Restoration Ecosystem Service Tool Selector (RESTS) framework that describes key characteristics of 13 ecosystem service assessment tools. Analysts enter information about their decision context, services to be analyzed, and desired outputs. Tools are filtered and presented based on five evaluative criteria: scalability, cost, time requirements, handling of uncertainty, and applicability to benefit-cost analysis. RESTS uses a spreadsheet interface but a web-based interface is planned. Given the rapid evolution of ecosystem services science, RESTS provides an adaptable framework to guide forest restoration decision makers toward tools that can help quantify ecosystem services in support of restoration.
文摘A mass-balanced model was constructed to determine the flow-energy in a community of fishes and invertebrates in the Beibu Gulf, northern South China Sea using Ecopath and Ecosim software. Input parameters were taken from the literature, except for the biomass of fish groups which was obtained from trawl surveys during October 1997 to May 1999 in the study area. The model consisted of 16 functional groups (boxes), including one marine mammal and seabirds, each representing organisms with a similar role in the food web, and only covered the main trophic flow in the Beibu Gulf ecosystem. The results showed that the food web of Beibu Gulf was dominated by the detrital path and benthic invertebrates played a significant role in transferring energy from the detritus to higher trophic levels; phytoplankton was a primary producer and most utilized as a food source. Fractional trophic levels ranged from 1.0 to 4.08 with marine mammals occupying the highest trophic level. Using network analysis, the system network was mapped into a linear food chain and six discrete trophic levels were found with a mean transfer efficiency of 16.7% from the detritus, 16.2% from the primary producer within the ecosystem. The biomass density of the commercially utilized species estimated by the model is 8.46 t/km^2, only O. 48% of the net primary production.
基金conducted as part of the project ‘‘Pilot site:quantification and modelling of forest carbon stocks in Benin’’ funded by the Global Climate Change Alliance and the European Union(No.00009 CILSS/SE/UAM-AFC/2013)
文摘Allometric equations developed for the Lama forest, located in southern Benin, West Africa, were applied to estimate carbon stocks of three vegetation types:undisturbed forest, degraded forest, and fallow. Carbon stock of the undisturbed forest was 2.7 times higher than that in the degraded forest and 3.4 times higher than that in fallow. The structure of the forest suggests that the individual species were generally concentrated in lower diameter classes. Carbon stock was positively correlated to basal area and negatively related to tree density, suggesting that trees in higher diameter classes contributed significantly to the total carbon stock. The study demonstrated that large trees constitute an important component to include in the sampling approach to achieve accurate carbon quantification in forestry. Historical emissions from deforestation that converted more than 30% of the Lama forest into cropland between the years 1946 and 1987 amounted to 260,563.17 tons of carbon per year(t CO2/year) for the biomass pool only. The study explained the application of biomass models and ground truth data to estimate reference carbon stock of forests.
文摘This paper analyzed the material flow situation in argo-animal husbandry ecosystem by compartment model. This model was an important mean for investigating the whole structural characteristics in ecosystem. Based on this analysis, characteristics of material cycle and integrity in the system were mastered. As an example of natural conditions in Yonghe Village, Shuangcheng Township, Shuangeheng Municipal, Heilongjang Province, the system of linear differential equations in system was established by extracting each compartment and investigating material flow and stability of this model was proved by Lyapunov linear theory. The result showed that this system could not be interfered by initial value in the state of present, input and output.