Congenital eversion of the upper eyelids is a rare condition, the exact cause of which remains unknown. It is more frequently associated with Down’s syndrome and black babies. If diagnosed early and treated properly,...Congenital eversion of the upper eyelids is a rare condition, the exact cause of which remains unknown. It is more frequently associated with Down’s syndrome and black babies. If diagnosed early and treated properly, the condition can be managed without surgery. We report a case of non syndromic congenital bilateral severe upper eyelid eversion in otherwise normal 3 days old neonate of African descent (Tanzanian), born by vaginal delivery. The case was conservatively managed by lubricants, antibiotics and eyelid patching. We report this case because from the best of our knowledge it has never been documented here at our hospital and Tanzania before.展开更多
BACKGROUND An unusual case of acute acquired concomitant esotropia(AACE)with congenital paralytic strabismus in the right eye is reported.CASE SUMMARY A 23-year-old woman presented with complaints of binocular diplopi...BACKGROUND An unusual case of acute acquired concomitant esotropia(AACE)with congenital paralytic strabismus in the right eye is reported.CASE SUMMARY A 23-year-old woman presented with complaints of binocular diplopia and esotropia of the right eye lasting 4 years and head tilt to the left since 1 year after birth.The Bielschowsky head tilt test showed right hypertropia on a right head tilt.She did not report any other intracranial pathology.A diagnosis of AACE and right congenital paralytic strabismus was made.Then,she underwent medial rectus muscle recession and lateral rectus muscle resection combined with inferior oblique muscle myectomy in the right eye.One day after surgery,the patient reported that she had no diplopia at either distance or near fixation and was found to be orthophoric in the primary position;furthermore,her head posture immediately and markedly improved.CONCLUSION In future clinical work,in cases of AACE combined with other types of strabismus,we can perform conventional single surgery for both at the same time,and the two types of strabismus can be solved simultaneously.展开更多
Bivalve farming plays a dominant role in mariculture in China.Paralytic shellfish toxins(PSTs)can be accumulated in bivalves and cause poisoning the consumers.A sensitive detection of PSTs can provide early warning to...Bivalve farming plays a dominant role in mariculture in China.Paralytic shellfish toxins(PSTs)can be accumulated in bivalves and cause poisoning the consumers.A sensitive detection of PSTs can provide early warning to decrease poisoning events in bivalve consuming.PSTs are traditionally examined using the whole soft-tissues.However,PSTs accumulation varies dramatically in different tissues of bivalves.Some tough tissues/organs(such as mantle),which account for a large proportion of the total soft body,exhibit a lower accumulation of PSTs and make the toxin extraction time-and reagent-consuming,potentially decreasing the accuracy and sensitivity of PSTs monitoring in bivalves.To develop a sensitive and cost-effective approach for PSTs examination in massively farmed bivalves,we fed three commercially important bivalves,Yesso scallop Patinopecten yessoensis,Pacific oyster Crassostrea gigas,and blue mussel Mytilus edulis with PSTs-producing dinoflagellate Alexandrium catenella,and detected PSTs concentration in different tissues.For all three bivalve species,the digestive gland accumulated much more PSTs than other tissues,and the digestive gland’s toxicity was significantly correlated with the PSTs toxicity of the whole soft-tissues,with r^(2)=0.94,0.92,and 0.94 for Yesso scallop,Pacific oyster,and blue mussel,respectively.When the toxicity of the whole soft-tissues reached 80μgSTXeq(100g)^(−1),the regulatory limit for commercial shellfish,the digestive gland’s toxicity reached 571.48,498.90,and 859.20μgSTXeq(100g)^(−1) in Yesso scallop,Pacific oyster,and blue mussel,respectively.Our results indicate that digestive gland can be used for the sensitive and cost-effective monitoring of PSTs in bivalves.展开更多
Objective To study the transfer of paralytic shellfish toxins (PST) using four simulated marine food chains: dinoflagellate Alexandrium tamarense→Artemia Artemia salina→Mysid shrimp Neomysis awatschensis; A. tama...Objective To study the transfer of paralytic shellfish toxins (PST) using four simulated marine food chains: dinoflagellate Alexandrium tamarense→Artemia Artemia salina→Mysid shrimp Neomysis awatschensis; A. tamarense→N. awatschensis; A. tamarense→A, salina→Perch Lateolabrax japonicus; and A. tamarense→L, japonicus. Methods The ingestion of A. tamarense, a producer of PST, by L. japonicus, N. awatschensis, and A. salina was first confirmed by microscopic observation of A. tamarense cells in the intestine samples of the three different organisms, and by the analysis of Chl.a levels in the samples. Toxin accumulation in L. japonicus and N. awatschensis directly from the feeding on A. tamarense or indirectly through the vector of A. salina was then studied, The toxicity of samples was measured using the AOAC mouse bioassay method, and the toxin content and profile of A. tamarense were analyzed by the HPLC method. Results Both A. salina and N. awatschensis could ingest A. tamarense cells. However, the ingestion capability of A. salina exceeded that of N. awatschensis. After the exposure to the culture of A. tamarense (2 000 cells·mL^-1) for 70 minutes, the content of Chl.a in A. salina and N. awatschensis reached 0.87 and 0.024 μg.mg^-1, respectively. Besides, A. tamarense cells existed in the intestines of L. japonicus, N. awatschensis and A. salina by microscopic observation. Therefore, the three organisms could ingest A. tamarense cells directly. A. salina could accumulate high content of PST, and the toxicity of A. salina in samples collected on days 1, 4, and 5 of the experiment was 2.18, 2.6, and 2.1 MU.g^-1, respectively. All extracts from the samples could lead to death of tested mice within 7 minutes, and the toxin content in anemia sample collected on the 1st day was estimated to be 1.65×10 ^5 μg STX equal/individual. Toxin accumulation in L japonicus and N. awatschensis directly from the feeding on A. tamarense or indirectly from the vector ofA. salina was also studied. The mice injected with extracts from L japonicus and N. awatschensis samples that accumulated PST either directly or indirectly showed PST intoxication symptoms, indicating that low levels of PST existed in these samples. Conclusion Paralytic shellfish toxins can be transferred to L. japonicus, N. awatschensis, and A. salina from A. tamarense directly or indirectly via the food chains.展开更多
Ectropion is an outward turning of the eyelid margin, as a result the conjunctiva is permanently irritated, thickened and dry. Since the lacrimal puncta are moved away from the eyeball, the tear elimination is difficu...Ectropion is an outward turning of the eyelid margin, as a result the conjunctiva is permanently irritated, thickened and dry. Since the lacrimal puncta are moved away from the eyeball, the tear elimination is difficult, tears are always present. Materials and Methods: This study includes patients suffering from senile ectropion, who were treated surgically at Polyclinic “SHOSHI” in Prishtina. Our study includes 19 patients suffering from senile ectropion, out of which, 17 were older than 75 years old and in those patients the ectropion was preset on both lower eyelids, while 2 patients were under 75 years old and the ectropion was present only on one side lower eyelid. Prior to surgery, patients have undergone laboratory examinations. The surgery was performed under local anesthesia. The suturing was done in three layers using 6.0 vicryl sutures. No operative or post-operative complications were encountered. Purpose: The purpose of this case report study is to show the success of the surgical treatment of ectropion, a procedure that is mainly performed so the tear elimination is enabled, and there are no tears present constantly. Conclusion: In old patients where the eyelid is turned outwards its margin, conjunctiva is constantly irritated, thickened and dry, the best method of treatment is the surgical treatment, making it possible for the tears to drain properly.展开更多
Paralytic shellfish toxins(PSTs) are notorious neurotoxins that threaten public health and food safety worldwide.Although PST monitoring programs have recently been established throughout China, the profiles and varia...Paralytic shellfish toxins(PSTs) are notorious neurotoxins that threaten public health and food safety worldwide.Although PST monitoring programs have recently been established throughout China, the profiles and variation of PSTs in important commercial clams(e.g., Mactra veneriformis, Ruditapes philippinarum, and Meretrix meretrix) along the Jiangsu Province coastline remain largely unexplored. In this study, a validated hydrophilic interaction liquid chromatography–tandem mass spectrometry(HILIC-MS/MS) method was used to examine PST profiles and levels in 540 clam samples from natural production areas along Jiangsu Province coastline during2014–2016. Although the PST levels(≤6.38 μg saxitotoxin equivalents(eq)/kg) were consistently below European Union regulatory limits(≤800 μg saxitotoxin eq/kg) during this time period, saxitotoxin, decarbamoylsaxitotoxin,and gonyautoxins 1 and 4 were detected, and nearly 40% of the samples were saxitotoxin-positive. The PST levels also varied significantly by seasons, with peak values observed in May during 2014–2016. This is the first systematic report of PSTs in clams from Jiangsu Province, and additional research and protective measures are needed to ensure the safety of clams harvested in this area.展开更多
Dissected tissues of three shellfish species, the Chinese scallop, Chlamys farreri, Manila clam, Ruditapes philippinarurn, and Razor shell, Solen strictu were evaluated for in vitro transformation of paralytic shellfi...Dissected tissues of three shellfish species, the Chinese scallop, Chlamys farreri, Manila clam, Ruditapes philippinarurn, and Razor shell, Solen strictu were evaluated for in vitro transformation of paralytic shellfish poisoning (PSP) toxins. Tissue homogenates were incubated with extraction from toxic algae Alexandriurn rninutura to determine toxin conversion. The effects of heating and addition of a natural reductant (glutathione) on toxin conversion were also assessed. The toxin profile was investigated through high performance liquid chromatography with fluorescence detection (HPLC-FLD). The evident variations in the toxin content were observed only in Chinese scallop viscera homogenates. The concentration of GTX4 was reduced by 45% (approximately 0.8 μmol/dm^3) and 25% (approximately 1 μmol/dm^3) for GTX1, while GTX2 and GTX3 increased by six times (approximately 1 μmol/dm^3) and 3 times (approximately 0.3μmol/dm^3) respectively. Simultaneously, the total toxicity decreased by 38% during the 48 h incubation period, the final toxicity was 20.4 nmol STXeq/g. Furthermore, heated Chinese scallop viscera homogenates samples were compared with non-heated samples. The concentration of the GTX4 and GTX1 was clearly 28% (approximately 0.53 μmol/dm^3) and 17% (approximately 0.69μmol/dm^3) higher in heated samples, GTX2 and GTX3 were four times (0.66 μmol/dm^3) and two times (0.187 μmol/dm^3) lower respectively. GSH (+) Chinese scallop viscera homogenates samples were compared with GSH (-) samples, the concentration in the GTX4 and GTX1 was 9% (approximately 0.12 μmol/dm^3) and 11% (approximately 0.36 μmol/dm^3) lower respectively, GTX2 and GTX3 was 17% (approximately 0.14 μmol/dm^3) and 19% (approximately 0.006 μmol/dm^3) higher respectively. In contrast,there was a little change in the concentration of PSP toxins of Manila clam and Razor shell tissue ho- mogenates. These observations on three shellfish tissues confirmed that there were species-specific differences in PSP toxins transformation. PSP toxins transformation was more pronounced in viscera tissue than in muscle tissue. PSP toxins was possibly interfered by some carbamoylase enzyme, and the activity in Chinese scallop viscera tissue is more remarkable than in the other two species.展开更多
The current testing for paralytic shellfish poisoning(PSP) in shellfish is based on the mouse bioassay(MBA).To alleviate animal welfare concerns,we evaluated the utility of using sublethal indicators of toxicity as an...The current testing for paralytic shellfish poisoning(PSP) in shellfish is based on the mouse bioassay(MBA).To alleviate animal welfare concerns,we evaluated the utility of using sublethal indicators of toxicity as an alternative to measuring time to death.Live mice were injected with a PSP congener and the changes in neurotransmitter levels were measured 60,90,and 120 min after injection.Acetylcholine(ACh) was the most sensitive marker for PSP toxicity.The changes in neurotransmitter levels were most pronounced in the blood.Thus,measurement of Ach levels in the blood may serve as a sensitive predictor for PSP that would not require sacrifice of the mice.This method was relatively simple,sensitive(less than 1 μg/kg weight,equivalent to 20 ng/mL),low maintenance,and rapid(less than 60 min).展开更多
To study the paralytic shellfish toxins(PSTs) depuration in Japanese scallop Patinopecten yessoensis in natural environment, Japanese scallops naturally contaminated with paralytic shellfish poisoning(PSP) toxins ...To study the paralytic shellfish toxins(PSTs) depuration in Japanese scallop Patinopecten yessoensis in natural environment, Japanese scallops naturally contaminated with paralytic shellfish poisoning(PSP) toxins in the Dayao Bay in the northern Huanghai Sea are transited to Qipanmo waters in the Bohai Sea of no reported PSTs incidents. The levels and profile of PSTs during 30-day depuration are detected by the high performance liquid chromatography with fluorescence detection(HPLC-FLD). The results show that the toxicity of the PSTs in soft tissues decreases to a relatively low level at Day 9. Moreover, the depurated ratio at the early stage of the PSTs depuration is higher than that at the later stage. The toxicity analysis of dissected organs reveals that the digestive gland is the most contaminated PSTs part, which is of important implication for the human health and scallop aquiculture. The mortality of Japanese scallops during PSTs depuration experiment is relevant to PSTs level in the soft tissue.展开更多
An inter-laboratory comparison of the AOAC mouse bioassay for paralytic shellfish poisoning (PSP) toxicity in shellfish was carried out among 25 Chinese laboratories to examine the overall performance for PSP testing ...An inter-laboratory comparison of the AOAC mouse bioassay for paralytic shellfish poisoning (PSP) toxicity in shellfish was carried out among 25 Chinese laboratories to examine the overall performance for PSP testing in China, and to analyze the main factors affecting the performance of this method. The toxic scallop Patinopecten yessoensis collected from coast of Bohai Sea, China, was used as a test sample in the comparison study. The results were reported and evaluated using robust statistical methods. The z scores showed that 80%, 8%, and 12% of laboratories reported satisfactory results, unsatisfactory results, and questionable results, respectively. This evaluation demonstrates that the PSP mouse bioassay is an appropriate method for screening and testing PSP toxicity in shellfish. However, it was found that the experience and skill of technicians, as well as the body weight and health status of mice being used significantly affected the accuracy of the method.展开更多
Paralytic shellfi sh poisoning(PSP)microalgae,as one of the harmful algal blooms,causes great damage to the of fshore fi shery,marine culture,and marine ecological environment.At present,there is no technique for real...Paralytic shellfi sh poisoning(PSP)microalgae,as one of the harmful algal blooms,causes great damage to the of fshore fi shery,marine culture,and marine ecological environment.At present,there is no technique for real-time accurate identifi cation of toxic microalgae,by combining three-dimensional fluorescence with machine learning(ML)and deep learning(DL),we developed methods to classify the PSP and non-PSP microalgae.The average classifi cation accuracies of these two methods for microalgae are above 90%,and the accuracies for discriminating 12 microalgae species in PSP and non-PSP microalgae are above 94%.When the emission wavelength is 650-690 nm,the fl uorescence characteristics bands(excitation wavelength)occur dif ferently at 410-480 nm and 500-560 nm for PSP and non-PSP microalgae,respectively.The identification accuracies of ML models(support vector machine(SVM),and k-nearest neighbor rule(k-NN)),and DL model(convolutional neural network(CNN))to PSP microalgae are 96.25%,96.36%,and 95.88%respectively,indicating that ML and DL are suitable for the classifi cation of toxic microalgae.展开更多
External or internal ophthalmoloplegia will result in a complete or a partial ocular dysmotility leading to a debilitating and variable manifest binocular diplopia for a majority of the patients. Complete third, forth...External or internal ophthalmoloplegia will result in a complete or a partial ocular dysmotility leading to a debilitating and variable manifest binocular diplopia for a majority of the patients. Complete third, forth and sixth nerve cranial nerve palsies are among the many number of etiologies appearing as paralytic strabismus. Successful clinical management, elimination of symptomatic diplopia in the primary field of gaze and increased binocular field of motor and sensory fusion as a result of the oculomotor nerve (III) palsy are challenging tasks for physicians facing this difficult clinical entity. Here we report a novel surgical technique in the clinical management of this disease through suture-fixation of medial rectus muscle onto Titanium plate (T-plate) already anchored into the nasal orbital wall.展开更多
文摘Congenital eversion of the upper eyelids is a rare condition, the exact cause of which remains unknown. It is more frequently associated with Down’s syndrome and black babies. If diagnosed early and treated properly, the condition can be managed without surgery. We report a case of non syndromic congenital bilateral severe upper eyelid eversion in otherwise normal 3 days old neonate of African descent (Tanzanian), born by vaginal delivery. The case was conservatively managed by lubricants, antibiotics and eyelid patching. We report this case because from the best of our knowledge it has never been documented here at our hospital and Tanzania before.
基金Supported by Science and Technology Project of Education Department of Jilin Province during the“13th Five-Year Plan”,No.JJKH20180217KJNatural Science Foundation of Jilin Province,No.20200201530JC.
文摘BACKGROUND An unusual case of acute acquired concomitant esotropia(AACE)with congenital paralytic strabismus in the right eye is reported.CASE SUMMARY A 23-year-old woman presented with complaints of binocular diplopia and esotropia of the right eye lasting 4 years and head tilt to the left since 1 year after birth.The Bielschowsky head tilt test showed right hypertropia on a right head tilt.She did not report any other intracranial pathology.A diagnosis of AACE and right congenital paralytic strabismus was made.Then,she underwent medial rectus muscle recession and lateral rectus muscle resection combined with inferior oblique muscle myectomy in the right eye.One day after surgery,the patient reported that she had no diplopia at either distance or near fixation and was found to be orthophoric in the primary position;furthermore,her head posture immediately and markedly improved.CONCLUSION In future clinical work,in cases of AACE combined with other types of strabismus,we can perform conventional single surgery for both at the same time,and the two types of strabismus can be solved simultaneously.
基金funded by the National Key R&D Project(No.2019YFC1605704)the Taishan Industry Leading Talent Project(No.LJNY201816)supported by Sanya Yazhou Bay Science and Technology City(No.SKJCKJ-2019KY01).
文摘Bivalve farming plays a dominant role in mariculture in China.Paralytic shellfish toxins(PSTs)can be accumulated in bivalves and cause poisoning the consumers.A sensitive detection of PSTs can provide early warning to decrease poisoning events in bivalve consuming.PSTs are traditionally examined using the whole soft-tissues.However,PSTs accumulation varies dramatically in different tissues of bivalves.Some tough tissues/organs(such as mantle),which account for a large proportion of the total soft body,exhibit a lower accumulation of PSTs and make the toxin extraction time-and reagent-consuming,potentially decreasing the accuracy and sensitivity of PSTs monitoring in bivalves.To develop a sensitive and cost-effective approach for PSTs examination in massively farmed bivalves,we fed three commercially important bivalves,Yesso scallop Patinopecten yessoensis,Pacific oyster Crassostrea gigas,and blue mussel Mytilus edulis with PSTs-producing dinoflagellate Alexandrium catenella,and detected PSTs concentration in different tissues.For all three bivalve species,the digestive gland accumulated much more PSTs than other tissues,and the digestive gland’s toxicity was significantly correlated with the PSTs toxicity of the whole soft-tissues,with r^(2)=0.94,0.92,and 0.94 for Yesso scallop,Pacific oyster,and blue mussel,respectively.When the toxicity of the whole soft-tissues reached 80μgSTXeq(100g)^(−1),the regulatory limit for commercial shellfish,the digestive gland’s toxicity reached 571.48,498.90,and 859.20μgSTXeq(100g)^(−1) in Yesso scallop,Pacific oyster,and blue mussel,respectively.Our results indicate that digestive gland can be used for the sensitive and cost-effective monitoring of PSTs in bivalves.
基金The work was supported by National Basic Research Project No. 2001 CB409700, NNSFC KZCX2-YW-208.
文摘Objective To study the transfer of paralytic shellfish toxins (PST) using four simulated marine food chains: dinoflagellate Alexandrium tamarense→Artemia Artemia salina→Mysid shrimp Neomysis awatschensis; A. tamarense→N. awatschensis; A. tamarense→A, salina→Perch Lateolabrax japonicus; and A. tamarense→L, japonicus. Methods The ingestion of A. tamarense, a producer of PST, by L. japonicus, N. awatschensis, and A. salina was first confirmed by microscopic observation of A. tamarense cells in the intestine samples of the three different organisms, and by the analysis of Chl.a levels in the samples. Toxin accumulation in L. japonicus and N. awatschensis directly from the feeding on A. tamarense or indirectly through the vector of A. salina was then studied, The toxicity of samples was measured using the AOAC mouse bioassay method, and the toxin content and profile of A. tamarense were analyzed by the HPLC method. Results Both A. salina and N. awatschensis could ingest A. tamarense cells. However, the ingestion capability of A. salina exceeded that of N. awatschensis. After the exposure to the culture of A. tamarense (2 000 cells·mL^-1) for 70 minutes, the content of Chl.a in A. salina and N. awatschensis reached 0.87 and 0.024 μg.mg^-1, respectively. Besides, A. tamarense cells existed in the intestines of L. japonicus, N. awatschensis and A. salina by microscopic observation. Therefore, the three organisms could ingest A. tamarense cells directly. A. salina could accumulate high content of PST, and the toxicity of A. salina in samples collected on days 1, 4, and 5 of the experiment was 2.18, 2.6, and 2.1 MU.g^-1, respectively. All extracts from the samples could lead to death of tested mice within 7 minutes, and the toxin content in anemia sample collected on the 1st day was estimated to be 1.65×10 ^5 μg STX equal/individual. Toxin accumulation in L japonicus and N. awatschensis directly from the feeding on A. tamarense or indirectly from the vector ofA. salina was also studied. The mice injected with extracts from L japonicus and N. awatschensis samples that accumulated PST either directly or indirectly showed PST intoxication symptoms, indicating that low levels of PST existed in these samples. Conclusion Paralytic shellfish toxins can be transferred to L. japonicus, N. awatschensis, and A. salina from A. tamarense directly or indirectly via the food chains.
文摘Ectropion is an outward turning of the eyelid margin, as a result the conjunctiva is permanently irritated, thickened and dry. Since the lacrimal puncta are moved away from the eyeball, the tear elimination is difficult, tears are always present. Materials and Methods: This study includes patients suffering from senile ectropion, who were treated surgically at Polyclinic “SHOSHI” in Prishtina. Our study includes 19 patients suffering from senile ectropion, out of which, 17 were older than 75 years old and in those patients the ectropion was preset on both lower eyelids, while 2 patients were under 75 years old and the ectropion was present only on one side lower eyelid. Prior to surgery, patients have undergone laboratory examinations. The surgery was performed under local anesthesia. The suturing was done in three layers using 6.0 vicryl sutures. No operative or post-operative complications were encountered. Purpose: The purpose of this case report study is to show the success of the surgical treatment of ectropion, a procedure that is mainly performed so the tear elimination is enabled, and there are no tears present constantly. Conclusion: In old patients where the eyelid is turned outwards its margin, conjunctiva is constantly irritated, thickened and dry, the best method of treatment is the surgical treatment, making it possible for the tears to drain properly.
基金The Public Science and Technology Research Funds Projects of Ocean under contract Nos 201305007 and 201405017
文摘Paralytic shellfish toxins(PSTs) are notorious neurotoxins that threaten public health and food safety worldwide.Although PST monitoring programs have recently been established throughout China, the profiles and variation of PSTs in important commercial clams(e.g., Mactra veneriformis, Ruditapes philippinarum, and Meretrix meretrix) along the Jiangsu Province coastline remain largely unexplored. In this study, a validated hydrophilic interaction liquid chromatography–tandem mass spectrometry(HILIC-MS/MS) method was used to examine PST profiles and levels in 540 clam samples from natural production areas along Jiangsu Province coastline during2014–2016. Although the PST levels(≤6.38 μg saxitotoxin equivalents(eq)/kg) were consistently below European Union regulatory limits(≤800 μg saxitotoxin eq/kg) during this time period, saxitotoxin, decarbamoylsaxitotoxin,and gonyautoxins 1 and 4 were detected, and nearly 40% of the samples were saxitotoxin-positive. The PST levels also varied significantly by seasons, with peak values observed in May during 2014–2016. This is the first systematic report of PSTs in clams from Jiangsu Province, and additional research and protective measures are needed to ensure the safety of clams harvested in this area.
基金The International cooperation programs of the Ministry of Science and Technology of China under contract No.2007DFA30710the Society commonweal programs of the Ministry of Science and Technology of China under contract No.2005DIB2J116
文摘Dissected tissues of three shellfish species, the Chinese scallop, Chlamys farreri, Manila clam, Ruditapes philippinarurn, and Razor shell, Solen strictu were evaluated for in vitro transformation of paralytic shellfish poisoning (PSP) toxins. Tissue homogenates were incubated with extraction from toxic algae Alexandriurn rninutura to determine toxin conversion. The effects of heating and addition of a natural reductant (glutathione) on toxin conversion were also assessed. The toxin profile was investigated through high performance liquid chromatography with fluorescence detection (HPLC-FLD). The evident variations in the toxin content were observed only in Chinese scallop viscera homogenates. The concentration of GTX4 was reduced by 45% (approximately 0.8 μmol/dm^3) and 25% (approximately 1 μmol/dm^3) for GTX1, while GTX2 and GTX3 increased by six times (approximately 1 μmol/dm^3) and 3 times (approximately 0.3μmol/dm^3) respectively. Simultaneously, the total toxicity decreased by 38% during the 48 h incubation period, the final toxicity was 20.4 nmol STXeq/g. Furthermore, heated Chinese scallop viscera homogenates samples were compared with non-heated samples. The concentration of the GTX4 and GTX1 was clearly 28% (approximately 0.53 μmol/dm^3) and 17% (approximately 0.69μmol/dm^3) higher in heated samples, GTX2 and GTX3 were four times (0.66 μmol/dm^3) and two times (0.187 μmol/dm^3) lower respectively. GSH (+) Chinese scallop viscera homogenates samples were compared with GSH (-) samples, the concentration in the GTX4 and GTX1 was 9% (approximately 0.12 μmol/dm^3) and 11% (approximately 0.36 μmol/dm^3) lower respectively, GTX2 and GTX3 was 17% (approximately 0.14 μmol/dm^3) and 19% (approximately 0.006 μmol/dm^3) higher respectively. In contrast,there was a little change in the concentration of PSP toxins of Manila clam and Razor shell tissue ho- mogenates. These observations on three shellfish tissues confirmed that there were species-specific differences in PSP toxins transformation. PSP toxins transformation was more pronounced in viscera tissue than in muscle tissue. PSP toxins was possibly interfered by some carbamoylase enzyme, and the activity in Chinese scallop viscera tissue is more remarkable than in the other two species.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2007AA092001-15)the Key Laboratory of Marine Integrated Monitoring and Applied Technologies of Harmful Algal Blooms,Chinese State Oceanic Administration(No.MATHAB20120101)the Shanghai Municipal Oceanic Bureau(Nos.2011-02,2012-02)
文摘The current testing for paralytic shellfish poisoning(PSP) in shellfish is based on the mouse bioassay(MBA).To alleviate animal welfare concerns,we evaluated the utility of using sublethal indicators of toxicity as an alternative to measuring time to death.Live mice were injected with a PSP congener and the changes in neurotransmitter levels were measured 60,90,and 120 min after injection.Acetylcholine(ACh) was the most sensitive marker for PSP toxicity.The changes in neurotransmitter levels were most pronounced in the blood.Thus,measurement of Ach levels in the blood may serve as a sensitive predictor for PSP that would not require sacrifice of the mice.This method was relatively simple,sensitive(less than 1 μg/kg weight,equivalent to 20 ng/mL),low maintenance,and rapid(less than 60 min).
基金The National Natural Science Foundation of China under contract No.30470275the National Special Grant of China under contract Nos 908-01-ZH3 and 908-ZC-I-15the National Basic Research Grant of China under contract No.2010CB428706
文摘To study the paralytic shellfish toxins(PSTs) depuration in Japanese scallop Patinopecten yessoensis in natural environment, Japanese scallops naturally contaminated with paralytic shellfish poisoning(PSP) toxins in the Dayao Bay in the northern Huanghai Sea are transited to Qipanmo waters in the Bohai Sea of no reported PSTs incidents. The levels and profile of PSTs during 30-day depuration are detected by the high performance liquid chromatography with fluorescence detection(HPLC-FLD). The results show that the toxicity of the PSTs in soft tissues decreases to a relatively low level at Day 9. Moreover, the depurated ratio at the early stage of the PSTs depuration is higher than that at the later stage. The toxicity analysis of dissected organs reveals that the digestive gland is the most contaminated PSTs part, which is of important implication for the human health and scallop aquiculture. The mortality of Japanese scallops during PSTs depuration experiment is relevant to PSTs level in the soft tissue.
基金Supported by a thesis research project of General Administration of Quality Supervision, Inspection and Quarantine of China (No. 2010IK168)
文摘An inter-laboratory comparison of the AOAC mouse bioassay for paralytic shellfish poisoning (PSP) toxicity in shellfish was carried out among 25 Chinese laboratories to examine the overall performance for PSP testing in China, and to analyze the main factors affecting the performance of this method. The toxic scallop Patinopecten yessoensis collected from coast of Bohai Sea, China, was used as a test sample in the comparison study. The results were reported and evaluated using robust statistical methods. The z scores showed that 80%, 8%, and 12% of laboratories reported satisfactory results, unsatisfactory results, and questionable results, respectively. This evaluation demonstrates that the PSP mouse bioassay is an appropriate method for screening and testing PSP toxicity in shellfish. However, it was found that the experience and skill of technicians, as well as the body weight and health status of mice being used significantly affected the accuracy of the method.
基金Supported by the National Natural Science Foundation of China(No.41972244)partially supported by the Science and Technology Basic Resources Survey of the Ministry of Science and Technology(No.2018FY100201)+3 种基金the National Key Research and Development Program(No.2019YFC1407900)to Siyu GOUShuai ZHANGWenyu GANand Tianjiu JIANG。
文摘Paralytic shellfi sh poisoning(PSP)microalgae,as one of the harmful algal blooms,causes great damage to the of fshore fi shery,marine culture,and marine ecological environment.At present,there is no technique for real-time accurate identifi cation of toxic microalgae,by combining three-dimensional fluorescence with machine learning(ML)and deep learning(DL),we developed methods to classify the PSP and non-PSP microalgae.The average classifi cation accuracies of these two methods for microalgae are above 90%,and the accuracies for discriminating 12 microalgae species in PSP and non-PSP microalgae are above 94%.When the emission wavelength is 650-690 nm,the fl uorescence characteristics bands(excitation wavelength)occur dif ferently at 410-480 nm and 500-560 nm for PSP and non-PSP microalgae,respectively.The identification accuracies of ML models(support vector machine(SVM),and k-nearest neighbor rule(k-NN)),and DL model(convolutional neural network(CNN))to PSP microalgae are 96.25%,96.36%,and 95.88%respectively,indicating that ML and DL are suitable for the classifi cation of toxic microalgae.
文摘External or internal ophthalmoloplegia will result in a complete or a partial ocular dysmotility leading to a debilitating and variable manifest binocular diplopia for a majority of the patients. Complete third, forth and sixth nerve cranial nerve palsies are among the many number of etiologies appearing as paralytic strabismus. Successful clinical management, elimination of symptomatic diplopia in the primary field of gaze and increased binocular field of motor and sensory fusion as a result of the oculomotor nerve (III) palsy are challenging tasks for physicians facing this difficult clinical entity. Here we report a novel surgical technique in the clinical management of this disease through suture-fixation of medial rectus muscle onto Titanium plate (T-plate) already anchored into the nasal orbital wall.