Limit equilibrium method (LEM) and strength reduction method (SRM) are the most widely used methods for slope stability analysis. However, it can be noted that they both have some limitations in practical applicat...Limit equilibrium method (LEM) and strength reduction method (SRM) are the most widely used methods for slope stability analysis. However, it can be noted that they both have some limitations in practical application. In the LEM, the constitutive model cannot be considered and many assumptions are needed between slices of soil/rock. The SRM requires iterative calculations and does not give the slip surface directly. A method for slope stability analysis based on the graph theory is recently developed to directly calculate the minimum safety factor and potential critical slip surface according to the stress results of numerical simulation. The method is based on current stress state and can overcome the disadvantages mentioned above in the two traditional methods. The influences of edge generation and mesh geometry on the position of slip surface and the safety factor of slope are studied, in which a new method for edge generation is proposed, and reasonable mesh size is suggested. The results of benchmark examples and a rock slope show good accuracy and efficiency of the presented method.展开更多
In the present paper the edge stabilization technique is applied to a convection-diffusion problem with exponential boundary layers on the unit square, using a Shishkin mesh with bilinear finite elements in the layer ...In the present paper the edge stabilization technique is applied to a convection-diffusion problem with exponential boundary layers on the unit square, using a Shishkin mesh with bilinear finite elements in the layer regions and linear elements on the coarse part of the mesh. An error bound is proved for ‖πu-u^h‖Е, where πu is some interpolant of the solution u and uh the discrete solution. This supercloseness result implies an optimal error estimate with respect to the L2 norm and opens the door to the application of postprocessing for improving the discrete solution.展开更多
In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization G...In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization Galerkin method. A priori error estimates are derived for the state, the adjoint state and the control. Moreover, residual type a posteriori error estimates in the L^2-norm are obtained. Finally, two numerical experiments are presented to illustrate the theoretical results.展开更多
基金support of the National Natural Science Foundation of China (Grant No. 41130751)China Scholarship Council, Research Program for Western China Communication (Grant No. 2011ZB04)China Central University Funding
文摘Limit equilibrium method (LEM) and strength reduction method (SRM) are the most widely used methods for slope stability analysis. However, it can be noted that they both have some limitations in practical application. In the LEM, the constitutive model cannot be considered and many assumptions are needed between slices of soil/rock. The SRM requires iterative calculations and does not give the slip surface directly. A method for slope stability analysis based on the graph theory is recently developed to directly calculate the minimum safety factor and potential critical slip surface according to the stress results of numerical simulation. The method is based on current stress state and can overcome the disadvantages mentioned above in the two traditional methods. The influences of edge generation and mesh geometry on the position of slip surface and the safety factor of slope are studied, in which a new method for edge generation is proposed, and reasonable mesh size is suggested. The results of benchmark examples and a rock slope show good accuracy and efficiency of the presented method.
文摘In the present paper the edge stabilization technique is applied to a convection-diffusion problem with exponential boundary layers on the unit square, using a Shishkin mesh with bilinear finite elements in the layer regions and linear elements on the coarse part of the mesh. An error bound is proved for ‖πu-u^h‖Е, where πu is some interpolant of the solution u and uh the discrete solution. This supercloseness result implies an optimal error estimate with respect to the L2 norm and opens the door to the application of postprocessing for improving the discrete solution.
基金support of the Chinese and German Research Foundations through the Sino-German Workshop on Applied Mathematics held in Hangzhou in October 2007support of the German Research Foundation through the grants DFG06-381 and DFG06-382+1 种基金support of the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grant 60474027 and 10771211
文摘In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization Galerkin method. A priori error estimates are derived for the state, the adjoint state and the control. Moreover, residual type a posteriori error estimates in the L^2-norm are obtained. Finally, two numerical experiments are presented to illustrate the theoretical results.