Protoplast has been widely used in biotechnologies to circumvent the breeding obstacles in citrus, including long juvenility, polyembryony, and male/female sterility. The protoplast-based transient gene expression sys...Protoplast has been widely used in biotechnologies to circumvent the breeding obstacles in citrus, including long juvenility, polyembryony, and male/female sterility. The protoplast-based transient gene expression system is a powerful tool for gene functional characterization and CRISPR/Cas9 genome editing in higher plants, but it has not been widely used in citrus. In this study, the polyethylene glycol(PEG)-mediated method was optimized for citrus callus protoplast transfection, with an improved transfection efficiency of 68.4%. Consequently, the efficiency of protein subcellular localization assay was increased to 65.8%, through transient expression of the target gene in protoplasts that stably express the fluorescent organelle marker protein. The gene editing frequencies in citrus callus protoplasts reached 14.2% after transient expression of CRISPR/Cas9 constructs. We demonstrated that the intronic polycistronic tRNAgRNA(inPTG) genome editing construct was functional in both the protoplast transient expression system and epicotyl stable transformation system in citrus. With this optimized protoplast transient expression system, we improved the efficiency of protein subcellular localization assay and developed the genome editing system in callus protoplasts, which provides an approach for prompt test of CRISPR vectors.展开更多
基金supported by the National Natural Science Foundation of ChinaChina (Grant Nos. 31872051, 32072528)the Foundation of Hubei Hongshan Laboratory (Grant No.2021hszd009)。
文摘Protoplast has been widely used in biotechnologies to circumvent the breeding obstacles in citrus, including long juvenility, polyembryony, and male/female sterility. The protoplast-based transient gene expression system is a powerful tool for gene functional characterization and CRISPR/Cas9 genome editing in higher plants, but it has not been widely used in citrus. In this study, the polyethylene glycol(PEG)-mediated method was optimized for citrus callus protoplast transfection, with an improved transfection efficiency of 68.4%. Consequently, the efficiency of protein subcellular localization assay was increased to 65.8%, through transient expression of the target gene in protoplasts that stably express the fluorescent organelle marker protein. The gene editing frequencies in citrus callus protoplasts reached 14.2% after transient expression of CRISPR/Cas9 constructs. We demonstrated that the intronic polycistronic tRNAgRNA(inPTG) genome editing construct was functional in both the protoplast transient expression system and epicotyl stable transformation system in citrus. With this optimized protoplast transient expression system, we improved the efficiency of protein subcellular localization assay and developed the genome editing system in callus protoplasts, which provides an approach for prompt test of CRISPR vectors.