A good quality Environmental Impact Statement (EIS) is key for the effectiveness of Environmental Impact Assessment (EIA) processes and consequently to the acceptability of projects subject to EIA. The international l...A good quality Environmental Impact Statement (EIS) is key for the effectiveness of Environmental Impact Assessment (EIA) processes and consequently to the acceptability of projects subject to EIA. The international literature has contributed to the understanding of the essential aspects to be verified regarding the quality of EIS, offering a wide spectrum of good practice examples related to the content of the studies. Even so, there is a need for empirical studies that allow the identification of specific aspects related to the context of application of the EIS, which could lead to the identification of opportunities to improve both the quality of the reports and also the effectiveness of EIA. Therefore, the present paper is focused on the quality review of a number of EIS submitted to the Brazilian Federal Environmental Agency (Ibama) to instruct the assessment of electric power transmission systems. Based on the application of the EIS quality review package as proposed by Lee and Colley (1992), the outcomes reveal opportunities for improving the scope of EIA, analysis of alternatives, prediction of magnitude and the assessment of impact significance. Finally, the development and/or adaptation of a similar tool for the systematic review of the quality of EIA reports is recommended.展开更多
[Objective] This study aimed to evaluate the environmental effects coming from land changes in Hotan oasis during 1980-2010. [Method] Based on the Driving Force-State-Response model, expert weight method and entropy m...[Objective] This study aimed to evaluate the environmental effects coming from land changes in Hotan oasis during 1980-2010. [Method] Based on the Driving Force-State-Response model, expert weight method and entropy method were used to determine weight, and then the composite indexes of environmental effects (CIE for short) were calculated. [Result] During the period from 1980 to 2010, CIE had presented a rising trend whether expert weight method or entropy method in the study area, while the CIE presents downtrend basically in lower reaches. [Conclu- sion] It was the arable land expansion in middle reaches that led to serious land degradation in lower reaches, and may endanger ecosystem safety in Hotan River green corridor. Therefore, it is suggested that the agricultural land use should be restructured, such as reducing the sown areas of some crops with large amount of water consumption. Meanwhile, the effective measures should be taken to distribute water resources and utilize them reasonably. In addition, the oasis-desert ecotone, as well as the groundwater resources, should be also protected.展开更多
[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyl...[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyllus)as research object,the application effect and environmental protection effect of slow release fertilizer on carnation were discussed through field plot test.[Result] The main agronomic characters of carnation improved after the application of slow release fertilizer;compared with Conv-F treatment,the yield of carnation with slow release fertilizer increased by 18.67%-20.83%,and its economic benefit increased by 105 500 yuan/hm2,while the ratio of output to input improved by 74.29%;under the same NPK ratio and nutrient amount,the yield,economic benefit and ratio of output to input of carnation after the application of slow release fertilizer increased by 2.11%,14 800 yuan and 16.2%,respectively;besides,the application of slow release fertilizer improved the nutrient use efficiency of carnation,and N,P and K nutrient use efficiency in Opt-F-0.7% treatment increased by 13.88%,8.57% and 30.14% compared with Conv-F treatment.[Conclusion] Slow release fertilizer could not only reduce the waste of fertilizer resources and improve fertilizer use efficiency but also decrease the pollution caused by nutrient loss,which had important practical significance for protecting ecological environment and promoting the sustainable development of agriculture.展开更多
Based on advances in returning rice and wheat straw to fields at home and abroad, environmental physical, chemical and ecological effects of returning rice and wheat straw to fields were analyzed. The results show tha...Based on advances in returning rice and wheat straw to fields at home and abroad, environmental physical, chemical and ecological effects of returning rice and wheat straw to fields were analyzed. The results show that returning straw to fields can enhance soil porosity, reduce soil bulk density, and increase the ca- pacity of soil to preserve water, fertilizer and temperature. Besides, it can improve the content of organic matter, nitrogen, phosphorus and potassium in soil, of which the increase of potassium content is the most obvious. Meanwhile, it can provide energy and nutrients for microorganisms in soil and change the activity of soil enzymes, of which it affects invertase most greatly and enhances the activity of ure- ase but has no effect on neutral phosphatase. In addition, it can enhance the total quantity of microorganisms in soil obviously, and the increase correlates positively with the quantity of straw returning to fields. Finally, returning straw to fields can promote the sustainable development of agriculture.展开更多
During the last decade of the 20th century, extensive conversion inagricultural land use took place in Northeast China. The goal of this study is to ascertain itsspatial distribution and regional differentiation, dete...During the last decade of the 20th century, extensive conversion inagricultural land use took place in Northeast China. The goal of this study is to ascertain itsspatial distribution and regional differentiation, determine its causes, and analyze itsenvironmental impact. Especially we attempt to elucidate how institutional constraints havefacilitated the change at a time of agrarian restructuring when newly emerging free market washybridized with the former planned economy. Information on six categories of land use was mappedfrom interpretation of Landsat TM images recorded in 1990, 1995 and 2000. Most of land use changestook place during the first half of the decade, coinciding with abrupt and chaotic changes ingovernment directives. Farmland was changed mainly to woodland, water body and built-up areas whilewoodland and grassland were converted chiefly to farmland. Spatially, the change from farmland towoodland was restricted to the west of the study area. The change from grassland to farmland tookplace in the grazing and farming interlocked west. These chaotic and occasionally conflictingchanges were largely caused by lack of stability and consistency in agricultural land use policiespromulgated. They have exerted adverse impacts on the local environment, including land degradation,increased flooding, and modified climate regime.展开更多
The frequency and scale of Harmful Algal Bloom (HAB) and marine algal toxin incidents have been increasing and spreading in the past two decades, causing damages to the marine environment and threatening human life th...The frequency and scale of Harmful Algal Bloom (HAB) and marine algal toxin incidents have been increasing and spreading in the past two decades, causing damages to the marine environment and threatening human life through contaminated seafood. To better understand the effect of HAB and marine algal toxins on marine environment and human health in China, this paper overviews HAB occurrence and marine algal toxin incidents, as well as their environmental and health effects in this country. HAB has been increasing rapidly along the Chinese coast since the 1970s, and at least 512 documented HAB events have occurred from 1952 to 2002 in the Chinese mainland. It has been found that PSP and DSP toxins are distributed widely along both the northern and southern Chinese coasts. The HAB and marine algal toxin events during the 1990s in China were summarized, showing that the HAB and algal toxins resulted in great damages to local fisheries, marine culture, quality of marine environment, and human health. Therefore, to protect the coastal environment and human health, attention to HAB and marine algal toxins is urgently needed from the environmental and epidemiologicalview.展开更多
We investigated the weathering-pedogenesis of carbonate rocks and its environmental effects in subtropical regions of China. The investigation demonstrated that the weathering- pedogenesis of carbonate rocks is the pr...We investigated the weathering-pedogenesis of carbonate rocks and its environmental effects in subtropical regions of China. The investigation demonstrated that the weathering- pedogenesis of carbonate rocks is the process of a joint action of corrosion and illuviation and metasomatism in subtropical region. It is characterized by multi-stage, multi-path and multi-style. With the persisting development of weathering-pedogenesis of carbonate rocks, metasomatic pedogenesis progressively became the main process of the weathering-pedogenesis and the dominant style of formation of minerals. And it proceeds through the whole process of evolution of the weathering-pedogenesis of carbonate rocks. The stage evolution of weathering-pedogenesis of carbonate rocks and the fractionation evolution of newly produced minerals are characterized by obvious vertically zoning structures and the rules of gradation of elements geochemical characteristics in the carbonate rocks weathering profiles. The geochemical process of weathering-pedogenesis of carbonate rocks can be divided into three geochemical evolution stages, i.e., the Ca, Mg-depletion and Si, Al-enrichment stage; the Fe, Mn enrichment stage and the Si-depletion and Al-enrichment stage in the subtropical regions. Consistent with the three geochemical evolution stages, the sequence of formation and evolution of minerals can be divided into the clay mineral stage; the Fe, Mn oxide and the gibbsite stage. The influence of weathering-pedogenesis of carbonate rocks on the chemical forms of heavy elements is mainly affected via newly produced components and minerals in the process of weathering-pedogenesis, e.g., iron oxide minerals and organic matters. The important mechanism for the mobilization, transport and pollution of F and As is affected the selective adsorption and desorption of F and As on the surface of iron oxide minerals in the subtropical karst zones, i.e., the selective adsorption and desorption on mineral surfaces of newly produced minerals in the process of weathering-pedogenesis control the geochemical behavior of elements on the Earth's surface and environmental quality in subtropical regions.展开更多
Conversion of cropland to forestry and grassland is an important method to reduce soil erosion and improve the biophysical environment in the Loess Plateau. The feasibility, methods, and environmental effects of cropl...Conversion of cropland to forestry and grassland is an important method to reduce soil erosion and improve the biophysical environment in the Loess Plateau. The feasibility, methods, and environmental effects of cropland conversion were studied based on 11 typical watersheds of national experimental bases instead of different geographic areas of the Loess Plateau. Between 1986 and 2000, cropland, sloping cropland and non-agricultural land decreased by 8%, 92.5% and 8% respectively, while forestry increased by 15.7%. The land use change not only decreased annual soil erosion by 74%, but also increased vegetation coverage by 100% and improved the soil condition and biodiversity. This can be achieved by building basic farmland, increasing capital and scientific input, and planting trees and grasses according to the natural biophysical restrictions.展开更多
On the basis of the date obtained in two cruises during October 1997 and May 1998, the concentration distribution and the variation of present species of nutrient elements in the water masses are described. The trans...On the basis of the date obtained in two cruises during October 1997 and May 1998, the concentration distribution and the variation of present species of nutrient elements in the water masses are described. The transform mechanism of present species of nutrients and the of differrnt water masses, frontal area and thermohaline transition layer on convergence or divergence and the biogeochemical cycle of nutrient elements off the Changjiang Estuary are studied. Meanwhile, the environmental capaci- ty of nutrients is primarily estimated: they are 1.803 x 104t DIN and 6.18 x 102t PO43- -P in autumn, and 4.20x 102t PO43- -P in spring.展开更多
To investigate genetic factors affecting wheat flour color traits,a linkage map was constructed using a recombinant inbred line (RIL) population derived from Jing 771×Pm 97034.Main,epistatic and QTL×enviro...To investigate genetic factors affecting wheat flour color traits,a linkage map was constructed using a recombinant inbred line (RIL) population derived from Jing 771×Pm 97034.Main,epistatic and QTL×environment (QE) interaction effects of quantitative trait loci (QTLs) controlling wheat flour color were studied by the mixed linear modeling of data collected from wheat RIL plants under three different environmental conditions.13 QTLs with additive effects and 55 pairs of QTLs with epistatic effects were detected for wheat flour color traits.The additive-additive interactions (AA) involved all of the wheat chromosomes except 3D.Epistasis accounted for more of the observed phenotypic variation than did the main effect QTLs (M-QTLs).Our results suggested that dual-locus interactions are widespread in the wheat genome and play a critical role in determining wheat flour color characteristics.In this study,3 QTLs were identified to have QE interaction effects,one of them showing significant QE interaction in E2 environment.展开更多
The behavior and fates of environmental pollutants within the cryosphere and the associated environmental impacts are of increasing concerns in the context of global warming.The Tibetan Plateau(TP),also known as the&q...The behavior and fates of environmental pollutants within the cryosphere and the associated environmental impacts are of increasing concerns in the context of global warming.The Tibetan Plateau(TP),also known as the"Third Pole",represents one of the most important cryospheric regions in the world.Mercury(Hg)is recognized as a global pollutant.Here,we summarize the current knowledge of Hg concentration levels,pools and spatio-temporal distribution in cryospheric environments(e.g.,glacier,permafrost),and its transfer and potential cycle in the TP cryospheric region.Transboundary transport of anthropogenic Hg from the surrounding heavily-polluted regions,such as South and Southeast Asia,provides significant sources of atmospheric Hg depositions onto the TP cryosphere.We concluded that the melting of the cryosphere on the TP represents an increasing source of Hg and brings a risk to the TP environment.In addition,global warming acts as an important catalyst accelerating the release of legacy Hg from the melting cryosphere,adversely impacting ecosystems and biological health.Furthermore,we emphasize on the remaining gaps and proposed issues needed to be addressed in future work,including enhancing our knowledge on some key release pathways and the related environmental effects of Hg in the cryospheric region,integrated observation and consideration of Hg distribution,migration and cycle processes at a key region,and uses of Hg isotopic technical and Hg models to improve the understanding of Hg cycling in the TP cryospheric region.展开更多
This study aims to reveal the mechanism that how the content of steel fibers and strength grades affect the macro performance of the ultra-high performance fiber reinforced cementitious composite (UHPFRCC) and to st...This study aims to reveal the mechanism that how the content of steel fibers and strength grades affect the macro performance of the ultra-high performance fiber reinforced cementitious composite (UHPFRCC) and to study the UHPFRCC durability under the combined effect of loads and environments. Three types of high and ultra-high performance fiber reinforced cement composites with different strength grades (100, 150, 200 MPa) and different steel fiber volume fractions (0%, 1%, 2%, 3%) are prepared. The main properties of mechanical performance and short-term durability are studied. A preloading frame is designed to apply a four- point load external flexural stress with a stress selection ratio of 0.5 for UHPFRCC150 specimens. The results show that the growth in strength grade with a proper content of steel fiber greatly increases the strength and toughness of the HPFRCC and the UHPFRCC while decreasing the dry-shrinkage ratio. For the loaded specimens, the existence of steel fiber can reduce the negative influence of tensile stress on the Cl- penetration resistance of the UHPFRCC in addition to improving its ability to resist the freeze-thaw damage.展开更多
[Objective] The aim was to study the dynamic variation characteristics of phosphorus in paddy field runoff in saline land and its potential environmental effect. [Method] Taking Qianguo irrigation district in soda-sal...[Objective] The aim was to study the dynamic variation characteristics of phosphorus in paddy field runoff in saline land and its potential environmental effect. [Method] Taking Qianguo irrigation district in soda-saline land in Songnen Plain as study object, the dynamic variation law of phosphorus in paddy field runoff under different irrigation conditions and its potential environmental effect were discussed. [Result] Surface water in paddy field was alkaline, and scattered soil had poor fertilizer conservation capacity. Phosphorus accumulated in soil surface, which could increase the risk of phosphorus loss. Phosphorus loss in paddy field mainly occurred in irrigation period and runoff period caused by rainstorm. The concentration of total phosphorus (TP), particulate phosphorus (PP), total dissolved phosphorus (TDP) and dissolved reactive phosphorus (DRP) in paddy field runoff decreased with time, especially PP. Phosphorus concentration exceeded critical value and resulted to eutrophication, which threatened the water quality security of Chagan Lake. Phosphorus concentration in water recession canal increased with time, and eutrophication with different degrees appeared under high temperature. TP concentration in surface water of paddy field was highly negatively correlated with that in water recession canal, and the correlation coefficients R2(α=0.05)in three paddy fields were 0.850 9, 0.896 4 and 0.915 3, respectively. The pollution load of phosphorus in paddy field with the best irrigation condition was higher, and its pollution risk was the highest. Thus, such fields should be monitored and controlled mainly as the critical source area of phosphorus loss. [Conclusion] The study could provide theoretical foundations for developing saline land rationally, establishing optimal management measure of phosphorus in saline land and controlling phosphorus loss from farmland to protect local water resources.展开更多
Based on 3D Biot’s consolidation theory and nonlinear Duncan-Chang’s model, a 3D FEM (finite element method) program is developed considering the coupling of groundwater seepage and soil skeleton deformation during ...Based on 3D Biot’s consolidation theory and nonlinear Duncan-Chang’s model, a 3D FEM (finite element method) program is developed considering the coupling of groundwater seepage and soil skeleton deformation during excavation. The comparison between the analysis result considering the variation of water head difference and that without considering it shows that the porewater pressure distribution of the former is distinctly different from that of the latter and that the foundation pit de- formations of the former are larger than those of the latter, so that the result without considering the variation of water head dif- ference is unreliable. The distribution rules of soil horizontal and vertical displacements around the pit and excess porewater pressure are analyzed in detail in time and space, which is very significant for guiding underground engineering construction and ensuring environment safety around the pit.展开更多
A piston core Z14-6 was used in this study. The core, 896 cm long, was collected from eastern slope of the Okinawa Trough (27°07'N, 127°27'E, water depth 739m). The δ^18O and δ^13C values of the sedime...A piston core Z14-6 was used in this study. The core, 896 cm long, was collected from eastern slope of the Okinawa Trough (27°07'N, 127°27'E, water depth 739m). The δ^18O and δ^13C values of the sediment bearing planktonic foraminifera G. sacculifer and N. dutertrei were determined; and the abundance of volcanic glass was analyzed. The volcanic glass content high occurred in early stage of polar ice-sheet growth period, or the beginning of cold climate periods corresponding to Milankovitch cycles (Peak Ⅰ, Ⅱ and V are corresponding to the beginnings of oxygen isotopic stages 2, 4 and 6, and Peak Ⅲ and Ⅳ are matching oxygen isotopic stage 5b-5d.). It might be possible that volcanic episodes and climate changes were responding to orbital forcing in the Okinawa Trough in late Quaternary. The δ^18O difference between N. dutertrei and G. sacculifer shows no clear correlation to the volcanic glass content high, which suggests that the volcanic eruptions did not influence the structure of upper water column. However, the low δ^13C difference between G. sacculifer and N. dutertrei is coeval with the volcanic glass high or sub-high content. This fact suggests that volcanic eruptions might influence the reduction in vertical nutritional gradient and carbon cycle process in upper water column. A possible mechanism is that huge quantity of ash and dust had weakened the light intensity, resulting in photosynthesis reduction, productivity decrease, and biological pumping.展开更多
Epilepsy is a neurodegenerative disease that interrupts the normal electrical activity of the brain and promotes abnormal wiring in this organ.Epileptic seizures are often associated with significant changes in the fu...Epilepsy is a neurodegenerative disease that interrupts the normal electrical activity of the brain and promotes abnormal wiring in this organ.Epileptic seizures are often associated with significant changes in the functioning of the autonomic nervous system(ANS).展开更多
This paper summarizes the negative effects on geological environment caused by groundwater exploitation and its distribution. There are seven main types of the geological environment negative effects, which are genera...This paper summarizes the negative effects on geological environment caused by groundwater exploitation and its distribution. There are seven main types of the geological environment negative effects, which are generally as follows:(1) Constant decrease of groundwater level is mainly distributed in China(East Asia), India(South Asia), Tajikistan(Central Asia) and Saudi Arabia(West Asia);(2) land subsidence occurs mainly in eastern plains of East Asia and west Siberian Plain of North Asia;(3) seawater intrusion occurs mainly in China, Japan and South Korea in East Asia, Philippines and Indonesia in Southeast Asia, the Indian coastal areas in South Asia;(4) groundwater level decline caused by groundwater exploitation in oil fields;(5) mining collapse is mainly in 50° to 70° north latitude band;(6) the total area of karst collapse in China of East Asia is as much as 197.05 km^2; and(7) ground fracture is mainly distributed in the North China Plain, Fenwei Plain and the Yangtze River Delta. Asia can be divided into 6 zones in terms of the geological environment negative effect caused by groundwater exploitation. According to analysis, with the increasing intensity of human activities, geological environment issues become more and more serious, therefore it is vital to control the human activities within the scope of 5× 10~5 people/km^2 to 9.9× 10~5 people/km^2 for the effective control of the size of the affected area by geological environment problems.展开更多
The rapid expansion of urban construction land has become the major characteristic of urban land-use change in China today. Meanwhile, the rapid urbanization process has led to the great changes of urban landscape in ...The rapid expansion of urban construction land has become the major characteristic of urban land-use change in China today. Meanwhile, the rapid urbanization process has led to the great changes of urban landscape in China, and it also has had certain impacts on environmental factors such as climate, soil, hydrology, biodiversity, etc., then it has made the overall ecological environment deteriorated. This study is based on the summary and analysis of research on land-use change and ecological environment effect of urban landscape in recent 20 years in China, and it aims at providing scientific bases and theoretical supports for the planning and construction of urban landscape, the sustainable land-use of city and the protection of ecological environment in China.展开更多
The objective of this study is to determine the main adverse impacts that may be caused by tourism architecture upon island ecosystems consisting of small islands or islets and to propose an architectural and landscap...The objective of this study is to determine the main adverse impacts that may be caused by tourism architecture upon island ecosystems consisting of small islands or islets and to propose an architectural and landscape design with a focus on the environmental sustainability of the same. A study of projects was undertaken in Cayo Guillermo, located to the north of Ciego de Avila in Cuba using methods of life-cycle assessment of buildings, matrix methods of the activities that caused severe environmental impact and statistical processing through multivariate analysis. Conclusions were reached on the need for designs that did not harm the ecosystems of islands with high ecological fragility. It has been determined that suitable construction intervention would decrease the negative impact and would allow the natural resources of these valuable ecosystems that are the basis for responsible sun and sand tourism to be preserved.展开更多
Due to global climate warming and natural and man-made land subsidence etc., relative sea level rise in the coastal plains of China will exceed 2-3 times over the golbal mean value during the first half part of the 21...Due to global climate warming and natural and man-made land subsidence etc., relative sea level rise in the coastal plains of China will exceed 2-3 times over the golbal mean value during the first half part of the 21st century. It will result in a series of adverse impacts on evolution of natural environment and socioeconomic development of the coastal area. This paper analyses environmental and resource effects induced by relative sea level rise in China's coastal areas on the basis of rough estimate of future relative sea level rise. These effects include inundating tidal flat and wetlands and increase in inundated risk of coastal habitable land,exacerbating storm surge. coastal erosion, flooding and salt water intrusion hazards.as well as endangering land. water. tourism and living resources and their utilization.展开更多
文摘A good quality Environmental Impact Statement (EIS) is key for the effectiveness of Environmental Impact Assessment (EIA) processes and consequently to the acceptability of projects subject to EIA. The international literature has contributed to the understanding of the essential aspects to be verified regarding the quality of EIS, offering a wide spectrum of good practice examples related to the content of the studies. Even so, there is a need for empirical studies that allow the identification of specific aspects related to the context of application of the EIS, which could lead to the identification of opportunities to improve both the quality of the reports and also the effectiveness of EIA. Therefore, the present paper is focused on the quality review of a number of EIS submitted to the Brazilian Federal Environmental Agency (Ibama) to instruct the assessment of electric power transmission systems. Based on the application of the EIS quality review package as proposed by Lee and Colley (1992), the outcomes reveal opportunities for improving the scope of EIA, analysis of alternatives, prediction of magnitude and the assessment of impact significance. Finally, the development and/or adaptation of a similar tool for the systematic review of the quality of EIA reports is recommended.
基金Supported by Major State Basic Research Development Program of China(973 Program,2010CB955905)Fund from Hebei Normal University for Nationalities for the Research of the Temporal Evolution in Hotan Oasis with Climate Change(201304)~~
文摘[Objective] This study aimed to evaluate the environmental effects coming from land changes in Hotan oasis during 1980-2010. [Method] Based on the Driving Force-State-Response model, expert weight method and entropy method were used to determine weight, and then the composite indexes of environmental effects (CIE for short) were calculated. [Result] During the period from 1980 to 2010, CIE had presented a rising trend whether expert weight method or entropy method in the study area, while the CIE presents downtrend basically in lower reaches. [Conclu- sion] It was the arable land expansion in middle reaches that led to serious land degradation in lower reaches, and may endanger ecosystem safety in Hotan River green corridor. Therefore, it is suggested that the agricultural land use should be restructured, such as reducing the sown areas of some crops with large amount of water consumption. Meanwhile, the effective measures should be taken to distribute water resources and utilize them reasonably. In addition, the oasis-desert ecotone, as well as the groundwater resources, should be also protected.
基金Supported by National Key Technology R&D Program(2006BAD05B06-04)Kunming Science and Technology Program(08S010201)~~
文摘[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyllus)as research object,the application effect and environmental protection effect of slow release fertilizer on carnation were discussed through field plot test.[Result] The main agronomic characters of carnation improved after the application of slow release fertilizer;compared with Conv-F treatment,the yield of carnation with slow release fertilizer increased by 18.67%-20.83%,and its economic benefit increased by 105 500 yuan/hm2,while the ratio of output to input improved by 74.29%;under the same NPK ratio and nutrient amount,the yield,economic benefit and ratio of output to input of carnation after the application of slow release fertilizer increased by 2.11%,14 800 yuan and 16.2%,respectively;besides,the application of slow release fertilizer improved the nutrient use efficiency of carnation,and N,P and K nutrient use efficiency in Opt-F-0.7% treatment increased by 13.88%,8.57% and 30.14% compared with Conv-F treatment.[Conclusion] Slow release fertilizer could not only reduce the waste of fertilizer resources and improve fertilizer use efficiency but also decrease the pollution caused by nutrient loss,which had important practical significance for protecting ecological environment and promoting the sustainable development of agriculture.
文摘Based on advances in returning rice and wheat straw to fields at home and abroad, environmental physical, chemical and ecological effects of returning rice and wheat straw to fields were analyzed. The results show that returning straw to fields can enhance soil porosity, reduce soil bulk density, and increase the ca- pacity of soil to preserve water, fertilizer and temperature. Besides, it can improve the content of organic matter, nitrogen, phosphorus and potassium in soil, of which the increase of potassium content is the most obvious. Meanwhile, it can provide energy and nutrients for microorganisms in soil and change the activity of soil enzymes, of which it affects invertase most greatly and enhances the activity of ure- ase but has no effect on neutral phosphatase. In addition, it can enhance the total quantity of microorganisms in soil obviously, and the increase correlates positively with the quantity of straw returning to fields. Finally, returning straw to fields can promote the sustainable development of agriculture.
文摘During the last decade of the 20th century, extensive conversion inagricultural land use took place in Northeast China. The goal of this study is to ascertain itsspatial distribution and regional differentiation, determine its causes, and analyze itsenvironmental impact. Especially we attempt to elucidate how institutional constraints havefacilitated the change at a time of agrarian restructuring when newly emerging free market washybridized with the former planned economy. Information on six categories of land use was mappedfrom interpretation of Landsat TM images recorded in 1990, 1995 and 2000. Most of land use changestook place during the first half of the decade, coinciding with abrupt and chaotic changes ingovernment directives. Farmland was changed mainly to woodland, water body and built-up areas whilewoodland and grassland were converted chiefly to farmland. Spatially, the change from farmland towoodland was restricted to the west of the study area. The change from grassland to farmland tookplace in the grazing and farming interlocked west. These chaotic and occasionally conflictingchanges were largely caused by lack of stability and consistency in agricultural land use policiespromulgated. They have exerted adverse impacts on the local environment, including land degradation,increased flooding, and modified climate regime.
基金This study was supported by National Basic Research Project No. 2001CB4097 NSFC Projects No.20177023+2 种基金 40076030 CAS Innovation Project No. KZCX2-206 Project of Shandong Province Science Committee No.012110115.
文摘The frequency and scale of Harmful Algal Bloom (HAB) and marine algal toxin incidents have been increasing and spreading in the past two decades, causing damages to the marine environment and threatening human life through contaminated seafood. To better understand the effect of HAB and marine algal toxins on marine environment and human health in China, this paper overviews HAB occurrence and marine algal toxin incidents, as well as their environmental and health effects in this country. HAB has been increasing rapidly along the Chinese coast since the 1970s, and at least 512 documented HAB events have occurred from 1952 to 2002 in the Chinese mainland. It has been found that PSP and DSP toxins are distributed widely along both the northern and southern Chinese coasts. The HAB and marine algal toxin events during the 1990s in China were summarized, showing that the HAB and algal toxins resulted in great damages to local fisheries, marine culture, quality of marine environment, and human health. Therefore, to protect the coastal environment and human health, attention to HAB and marine algal toxins is urgently needed from the environmental and epidemiologicalview.
基金the Ministry of Science and Technology of China(Grant No.2006CB403200)National Natural Science Foundation of China(Grant No.49463011,49833002 and 49962002)+2 种基金the open foundation projects of the State Key Laboratory of Environmental Geochemistry(in the years of 1993 and 1995)Engineering Project for Cross-century Qualified Scientific and Technological Personnel of Guizhou Province (2000-2004)Science Foundation of Guizhou Province.
文摘We investigated the weathering-pedogenesis of carbonate rocks and its environmental effects in subtropical regions of China. The investigation demonstrated that the weathering- pedogenesis of carbonate rocks is the process of a joint action of corrosion and illuviation and metasomatism in subtropical region. It is characterized by multi-stage, multi-path and multi-style. With the persisting development of weathering-pedogenesis of carbonate rocks, metasomatic pedogenesis progressively became the main process of the weathering-pedogenesis and the dominant style of formation of minerals. And it proceeds through the whole process of evolution of the weathering-pedogenesis of carbonate rocks. The stage evolution of weathering-pedogenesis of carbonate rocks and the fractionation evolution of newly produced minerals are characterized by obvious vertically zoning structures and the rules of gradation of elements geochemical characteristics in the carbonate rocks weathering profiles. The geochemical process of weathering-pedogenesis of carbonate rocks can be divided into three geochemical evolution stages, i.e., the Ca, Mg-depletion and Si, Al-enrichment stage; the Fe, Mn enrichment stage and the Si-depletion and Al-enrichment stage in the subtropical regions. Consistent with the three geochemical evolution stages, the sequence of formation and evolution of minerals can be divided into the clay mineral stage; the Fe, Mn oxide and the gibbsite stage. The influence of weathering-pedogenesis of carbonate rocks on the chemical forms of heavy elements is mainly affected via newly produced components and minerals in the process of weathering-pedogenesis, e.g., iron oxide minerals and organic matters. The important mechanism for the mobilization, transport and pollution of F and As is affected the selective adsorption and desorption of F and As on the surface of iron oxide minerals in the subtropical karst zones, i.e., the selective adsorption and desorption on mineral surfaces of newly produced minerals in the process of weathering-pedogenesis control the geochemical behavior of elements on the Earth's surface and environmental quality in subtropical regions.
基金Knowledge Innovation ProjectofCAS,No.KZCX3-SW -421NationalKey Task Research ofthe Ninth Five-YearPlan, No.96-004-05+1 种基金 Knowledge Innovation Project of CAS, No.KZCX1-06 Special Research Foundation ofISW C,CAS,No.ISW C-SP-C128
文摘Conversion of cropland to forestry and grassland is an important method to reduce soil erosion and improve the biophysical environment in the Loess Plateau. The feasibility, methods, and environmental effects of cropland conversion were studied based on 11 typical watersheds of national experimental bases instead of different geographic areas of the Loess Plateau. Between 1986 and 2000, cropland, sloping cropland and non-agricultural land decreased by 8%, 92.5% and 8% respectively, while forestry increased by 15.7%. The land use change not only decreased annual soil erosion by 74%, but also increased vegetation coverage by 100% and improved the soil condition and biodiversity. This can be achieved by building basic farmland, increasing capital and scientific input, and planting trees and grasses according to the natural biophysical restrictions.
基金the China - Japan Joint Research Project-Environmental Loading from River Inputs andTheir Effects on the Marine Ecosystem in S
文摘On the basis of the date obtained in two cruises during October 1997 and May 1998, the concentration distribution and the variation of present species of nutrient elements in the water masses are described. The transform mechanism of present species of nutrients and the of differrnt water masses, frontal area and thermohaline transition layer on convergence or divergence and the biogeochemical cycle of nutrient elements off the Changjiang Estuary are studied. Meanwhile, the environmental capaci- ty of nutrients is primarily estimated: they are 1.803 x 104t DIN and 6.18 x 102t PO43- -P in autumn, and 4.20x 102t PO43- -P in spring.
基金funded by a grant from the National Natural Science Foundation of China (30471076)
文摘To investigate genetic factors affecting wheat flour color traits,a linkage map was constructed using a recombinant inbred line (RIL) population derived from Jing 771×Pm 97034.Main,epistatic and QTL×environment (QE) interaction effects of quantitative trait loci (QTLs) controlling wheat flour color were studied by the mixed linear modeling of data collected from wheat RIL plants under three different environmental conditions.13 QTLs with additive effects and 55 pairs of QTLs with epistatic effects were detected for wheat flour color traits.The additive-additive interactions (AA) involved all of the wheat chromosomes except 3D.Epistasis accounted for more of the observed phenotypic variation than did the main effect QTLs (M-QTLs).Our results suggested that dual-locus interactions are widespread in the wheat genome and play a critical role in determining wheat flour color characteristics.In this study,3 QTLs were identified to have QE interaction effects,one of them showing significant QE interaction in E2 environment.
文摘The behavior and fates of environmental pollutants within the cryosphere and the associated environmental impacts are of increasing concerns in the context of global warming.The Tibetan Plateau(TP),also known as the"Third Pole",represents one of the most important cryospheric regions in the world.Mercury(Hg)is recognized as a global pollutant.Here,we summarize the current knowledge of Hg concentration levels,pools and spatio-temporal distribution in cryospheric environments(e.g.,glacier,permafrost),and its transfer and potential cycle in the TP cryospheric region.Transboundary transport of anthropogenic Hg from the surrounding heavily-polluted regions,such as South and Southeast Asia,provides significant sources of atmospheric Hg depositions onto the TP cryosphere.We concluded that the melting of the cryosphere on the TP represents an increasing source of Hg and brings a risk to the TP environment.In addition,global warming acts as an important catalyst accelerating the release of legacy Hg from the melting cryosphere,adversely impacting ecosystems and biological health.Furthermore,we emphasize on the remaining gaps and proposed issues needed to be addressed in future work,including enhancing our knowledge on some key release pathways and the related environmental effects of Hg in the cryospheric region,integrated observation and consideration of Hg distribution,migration and cycle processes at a key region,and uses of Hg isotopic technical and Hg models to improve the understanding of Hg cycling in the TP cryospheric region.
基金The Technical Research Program from NV Bekaert SA of Belgium (No. 8612000003)the National Natural Science Foundation of China (No. 50908047)
文摘This study aims to reveal the mechanism that how the content of steel fibers and strength grades affect the macro performance of the ultra-high performance fiber reinforced cementitious composite (UHPFRCC) and to study the UHPFRCC durability under the combined effect of loads and environments. Three types of high and ultra-high performance fiber reinforced cement composites with different strength grades (100, 150, 200 MPa) and different steel fiber volume fractions (0%, 1%, 2%, 3%) are prepared. The main properties of mechanical performance and short-term durability are studied. A preloading frame is designed to apply a four- point load external flexural stress with a stress selection ratio of 0.5 for UHPFRCC150 specimens. The results show that the growth in strength grade with a proper content of steel fiber greatly increases the strength and toughness of the HPFRCC and the UHPFRCC while decreasing the dry-shrinkage ratio. For the loaded specimens, the existence of steel fiber can reduce the negative influence of tensile stress on the Cl- penetration resistance of the UHPFRCC in addition to improving its ability to resist the freeze-thaw damage.
基金Supported by National Water Pollution Control and Management Science & Technology Specific Projects of China(2008ZX07207-006-04)Innovation Foundation Projects for Doctoral Students of Donghua University in 2011(11D11311)
文摘[Objective] The aim was to study the dynamic variation characteristics of phosphorus in paddy field runoff in saline land and its potential environmental effect. [Method] Taking Qianguo irrigation district in soda-saline land in Songnen Plain as study object, the dynamic variation law of phosphorus in paddy field runoff under different irrigation conditions and its potential environmental effect were discussed. [Result] Surface water in paddy field was alkaline, and scattered soil had poor fertilizer conservation capacity. Phosphorus accumulated in soil surface, which could increase the risk of phosphorus loss. Phosphorus loss in paddy field mainly occurred in irrigation period and runoff period caused by rainstorm. The concentration of total phosphorus (TP), particulate phosphorus (PP), total dissolved phosphorus (TDP) and dissolved reactive phosphorus (DRP) in paddy field runoff decreased with time, especially PP. Phosphorus concentration exceeded critical value and resulted to eutrophication, which threatened the water quality security of Chagan Lake. Phosphorus concentration in water recession canal increased with time, and eutrophication with different degrees appeared under high temperature. TP concentration in surface water of paddy field was highly negatively correlated with that in water recession canal, and the correlation coefficients R2(α=0.05)in three paddy fields were 0.850 9, 0.896 4 and 0.915 3, respectively. The pollution load of phosphorus in paddy field with the best irrigation condition was higher, and its pollution risk was the highest. Thus, such fields should be monitored and controlled mainly as the critical source area of phosphorus loss. [Conclusion] The study could provide theoretical foundations for developing saline land rationally, establishing optimal management measure of phosphorus in saline land and controlling phosphorus loss from farmland to protect local water resources.
基金Project supported by the China Postdoctoral Science Foundation (No. 20060400672)Innovation Fund of Shanghai University, China
文摘Based on 3D Biot’s consolidation theory and nonlinear Duncan-Chang’s model, a 3D FEM (finite element method) program is developed considering the coupling of groundwater seepage and soil skeleton deformation during excavation. The comparison between the analysis result considering the variation of water head difference and that without considering it shows that the porewater pressure distribution of the former is distinctly different from that of the latter and that the foundation pit de- formations of the former are larger than those of the latter, so that the result without considering the variation of water head dif- ference is unreliable. The distribution rules of soil horizontal and vertical displacements around the pit and excess porewater pressure are analyzed in detail in time and space, which is very significant for guiding underground engineering construction and ensuring environment safety around the pit.
基金supported by the Knowledge Innovation Program ofChinese Academy of Sciences (Project No. KZCX3-SW-220), NSFC (No.90411014 and 40176019) and the National Major Fundamental Researchand Development Project (No. G20000467).
文摘A piston core Z14-6 was used in this study. The core, 896 cm long, was collected from eastern slope of the Okinawa Trough (27°07'N, 127°27'E, water depth 739m). The δ^18O and δ^13C values of the sediment bearing planktonic foraminifera G. sacculifer and N. dutertrei were determined; and the abundance of volcanic glass was analyzed. The volcanic glass content high occurred in early stage of polar ice-sheet growth period, or the beginning of cold climate periods corresponding to Milankovitch cycles (Peak Ⅰ, Ⅱ and V are corresponding to the beginnings of oxygen isotopic stages 2, 4 and 6, and Peak Ⅲ and Ⅳ are matching oxygen isotopic stage 5b-5d.). It might be possible that volcanic episodes and climate changes were responding to orbital forcing in the Okinawa Trough in late Quaternary. The δ^18O difference between N. dutertrei and G. sacculifer shows no clear correlation to the volcanic glass content high, which suggests that the volcanic eruptions did not influence the structure of upper water column. However, the low δ^13C difference between G. sacculifer and N. dutertrei is coeval with the volcanic glass high or sub-high content. This fact suggests that volcanic eruptions might influence the reduction in vertical nutritional gradient and carbon cycle process in upper water column. A possible mechanism is that huge quantity of ash and dust had weakened the light intensity, resulting in photosynthesis reduction, productivity decrease, and biological pumping.
基金supported by the Research Fund of the Erciyes University(TSD-09-1039)
文摘Epilepsy is a neurodegenerative disease that interrupts the normal electrical activity of the brain and promotes abnormal wiring in this organ.Epileptic seizures are often associated with significant changes in the functioning of the autonomic nervous system(ANS).
基金supported by Geological Map of Groundwater Resources and Environment of China and Surrounding Areas(12120113014200)Series Maps of Karst Environment Geology of China and South East Asia(12120114006401,12120114006301)
文摘This paper summarizes the negative effects on geological environment caused by groundwater exploitation and its distribution. There are seven main types of the geological environment negative effects, which are generally as follows:(1) Constant decrease of groundwater level is mainly distributed in China(East Asia), India(South Asia), Tajikistan(Central Asia) and Saudi Arabia(West Asia);(2) land subsidence occurs mainly in eastern plains of East Asia and west Siberian Plain of North Asia;(3) seawater intrusion occurs mainly in China, Japan and South Korea in East Asia, Philippines and Indonesia in Southeast Asia, the Indian coastal areas in South Asia;(4) groundwater level decline caused by groundwater exploitation in oil fields;(5) mining collapse is mainly in 50° to 70° north latitude band;(6) the total area of karst collapse in China of East Asia is as much as 197.05 km^2; and(7) ground fracture is mainly distributed in the North China Plain, Fenwei Plain and the Yangtze River Delta. Asia can be divided into 6 zones in terms of the geological environment negative effect caused by groundwater exploitation. According to analysis, with the increasing intensity of human activities, geological environment issues become more and more serious, therefore it is vital to control the human activities within the scope of 5× 10~5 people/km^2 to 9.9× 10~5 people/km^2 for the effective control of the size of the affected area by geological environment problems.
文摘The rapid expansion of urban construction land has become the major characteristic of urban land-use change in China today. Meanwhile, the rapid urbanization process has led to the great changes of urban landscape in China, and it also has had certain impacts on environmental factors such as climate, soil, hydrology, biodiversity, etc., then it has made the overall ecological environment deteriorated. This study is based on the summary and analysis of research on land-use change and ecological environment effect of urban landscape in recent 20 years in China, and it aims at providing scientific bases and theoretical supports for the planning and construction of urban landscape, the sustainable land-use of city and the protection of ecological environment in China.
文摘The objective of this study is to determine the main adverse impacts that may be caused by tourism architecture upon island ecosystems consisting of small islands or islets and to propose an architectural and landscape design with a focus on the environmental sustainability of the same. A study of projects was undertaken in Cayo Guillermo, located to the north of Ciego de Avila in Cuba using methods of life-cycle assessment of buildings, matrix methods of the activities that caused severe environmental impact and statistical processing through multivariate analysis. Conclusions were reached on the need for designs that did not harm the ecosystems of islands with high ecological fragility. It has been determined that suitable construction intervention would decrease the negative impact and would allow the natural resources of these valuable ecosystems that are the basis for responsible sun and sand tourism to be preserved.
文摘Due to global climate warming and natural and man-made land subsidence etc., relative sea level rise in the coastal plains of China will exceed 2-3 times over the golbal mean value during the first half part of the 21st century. It will result in a series of adverse impacts on evolution of natural environment and socioeconomic development of the coastal area. This paper analyses environmental and resource effects induced by relative sea level rise in China's coastal areas on the basis of rough estimate of future relative sea level rise. These effects include inundating tidal flat and wetlands and increase in inundated risk of coastal habitable land,exacerbating storm surge. coastal erosion, flooding and salt water intrusion hazards.as well as endangering land. water. tourism and living resources and their utilization.