There is the need to take seriously the task of conserving soil moisture in agricultural fields and free-water surfaces in reservoirs, especially in recent years of climate change. Many strategies exist for achieving ...There is the need to take seriously the task of conserving soil moisture in agricultural fields and free-water surfaces in reservoirs, especially in recent years of climate change. Many strategies exist for achieving this task and improving the productivity of arable soils. These strategies traditionally come under biological and physical or mechanical measures. Some other relatively new techniques operate neither on physical nor on biological principle. All these measures which operate on different principles frequently overlap. The principles involved, together with the prospects and constraints of the key techniques of conserving soil moisture found in the literature, are reviewed in this paper. Among other considerations, the effectiveness and/or practicability of any one of the techniques depend upon soil type, topography, climate, scale of production, level of technology, and socio-economic status. Such agronomic practices as conservation tillage and live vegetation mulch that maintain infiltration rates often appear to be more beneficial in the long run than engineering structures, especially those that lead to blocking of waterways on the soil surface. However, this review reveals that none of the soil moisture conservation strategies could be credited as universally applicable. Consequently, an integrated approach to soil water management and conservation, where feasible, is considered more appropriate. This is because the different principles involved in the techniques identified to be compatible would readily complement and strengthen one another. Such a multi-mechanistic approach is expected to result in improved efficacy in conserving water resources in soils and open reservoirs.展开更多
To solve the problems of high moisture content,high viscosity,and poor engineering mechanical properties of soil,this paper using with steel slag(SS)and desulfurization ash(DS)as initial raw materials,realizing the co...To solve the problems of high moisture content,high viscosity,and poor engineering mechanical properties of soil,this paper using with steel slag(SS)and desulfurization ash(DS)as initial raw materials,realizing the coop-erative treatment of solid waste and solidification of silt soil.The synergistic utilization of SS and DS can reduce the production cost of curing agent and promote its own consumption.According to blended cement of various SS contents and inspected compressive strength performances,the most suitable raw materials ratio was selected.The best formula for this curing agent is cement:steel slag=3:7 with 5%DS,and its 28-day compressive strength can reach 30 MPa.The experiment shows that the effect of DS and Na_(2)SO_(4) reagent with the same quality on early compressive strength improvement of cement and SS system is not much different.In this study,the mineral composition and microstructure of different gel system blocks were characterized by XRD,SEM and EDX,and a large number of webbed structures were found in the SEM test,which was not seen in previous studies.Besides,unconfined compressive strength(UCS),water resistance,and toxic characteristic leaching procedure(TCLP)were used to evaluate silt solidified soil properties.The results demonstrated that the solidified silt could meet not only the standard of general subgrade;but also has a partial stabilization effect of heavy metal ions.展开更多
Benggang erosion is caused by a special type of gully erosion in southern China that seriously endangers the local ecology and environment.In this study,typical Benggang collapsing-wall soils were used as the study ar...Benggang erosion is caused by a special type of gully erosion in southern China that seriously endangers the local ecology and environment.In this study,typical Benggang collapsing-wall soils were used as the study area to investigate the effects of different initial moisture contents and dicranopteris linearis root weight densities,as well as their interactions on disintegration in orthogonal test method.The results showed that the rate of soil disintegration decreased as a linear function of the initial moisture content.The soil disintegration rate tended to rise and then fall as the root weight density increased,reflecting an optimum root weight density of 0.75-1.00 g/100 cm3.The incorporation of dicranopteris linearis roots was most effective for soil consolidation in the shallow layers of soil.In addition,the disintegration rate of the collapsing-wall soils increases as the soil layer deepened.The dicranopteris linearis root system and initial moisture content had an interactive effect that was more pronounced in deeper soils.However,the combined effect of these processes was always dominated by the initial moisture content.Moderate initial soil moisture content(0.20-0.24 g/g)and the addition of a high root density in dicranopteris linearis(0.75-1.00 g/100 cm3)were the optimal combinations that reduced the disintegration rate.In conclusion,maintaining a suitable natural moisture content in collapsing-wall soils and taking measures that use plants to consolidate soil can effectively prevent and control the occurrence of Benggang erosion.The results of this study provided further insight into the factors that influence soil disintegration and offered a scientific basis for soil erosion management in the southern China.展开更多
Since the early 2000s, many satellite passive microwave brightness temperature (BT) archives, such as the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) BTs, have become the useful ...Since the early 2000s, many satellite passive microwave brightness temperature (BT) archives, such as the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) BTs, have become the useful resources for assessing the changes in the surface and deep soil moistures over both arid and semi-arid regions. In this study, we used a new soil effective temperature (T scheme and the archived AMSR-E BTs to estimate surface soil moisture (SM) over the Nagqu region in the central Tibetan Plateau, China. The surface and deep soil temperatures required for the calculation of regional-scale T were obtained from outputs of the Community Land Model version 4.5 (CLM4.5). In situ SM measurements at the CEOP-CAMP/Tibet (Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau) experimental sites were used to validate the AMSR-E-based SM estimations at regional and single-site scales. Furthermore, the spatial distribution of monthly mean surface SM over the Nagqu region was obtained from 16 daytime AMSR-E BT observations in July 2004 over the Nagqu region. Results revealed that the AMSR-E-based surface SM estimations agreed well with the in situ-based surface SM measurements, with the root mean square error (RMSE) ranging from 0.042 to 0.066 m3/m3 and the coefficient of determination (R2) ranging from 0.71 to 0.92 during the nighttime and daytime. The regional surface soil water state map showed a clear spatial pattern related to the terrain. It indicated that the lower surface SM values occurred in the mountainous areas of the northern, mid-western and southeastern parts of Nagqu region, while the higher surface SM values appeared in the low elevation areas such as the Tongtian River Basin, Namco Lake and bog meadows in the central part of Nagqu region. Our analysis also showed that the new T^scheme does not require special fitting parameters or additional assumptions, which simplifies the data requirements for regional-scale applications. This scheme combined with the archived satellite passive microwave BT observations can be used to estimate the historical surface SM for hydrological process studies over the Tibetan Plateau regions.展开更多
The FDR automatic soil moisture sensor must determine reference frequency in the air and water. Experimental studies show that the water reference frequency is influenced by water temperature. The variation of the ref...The FDR automatic soil moisture sensor must determine reference frequency in the air and water. Experimental studies show that the water reference frequency is influenced by water temperature. The variation of the reference frequency of the sensor is measured with the change of the water temperature,then analysis the influence of the volume water content measurement of the sensor,analysis found that the error is not more than 3% for the measurement of the volumetric water content of the temperature.展开更多
Interactions between elevated [CO2] and soil water availability have the potential impact on crops and future food security of the world. The study was conducted to investigate vegetative growth response of soybeans u...Interactions between elevated [CO2] and soil water availability have the potential impact on crops and future food security of the world. The study was conducted to investigate vegetative growth response of soybeans under two [CO2] (380 and 800 μmol mol-1) with three soil moisture levels in controlled environment. Slow growth rate and altered crop phenology of soybeans were observed under elevated [CO2] at early stage (V-3/V-4), but showed positive physiologically response at later stage (R3) indicating adoptive mechanism of plants to high [CO2]. Elevated [CO2] decreases the number of leaves by 23% and 14% and reduces in leaf areas by 11.7% and 9.7% compared with ambient [CO2] at 29 and 44 days after planting (DAP), respectively. Adaptive mechanism of plants to high [CO2] produced 39% and 83.7% greater leaf number and leaf areas, respectively at later stage (R3) of the crop growth (59 DAP). There was a reduction in a specific leaf area (SLA) at 29 DAP (22.2%) but an increase at 44 DAP (1.4%) and 58 DAP (8.5%) under elevated [CO2]. Dry matter production of plants was increased significantly for elevated [CO2]. Increase in leaf C (<1%) and reduction in N concentration (6.0% - 9.5%) increased the C:N ratio of soybean leaves (4.4% - 12.98%) under elevated [CO2]. Elevated [CO2] with normal soil moisture condition produced a maximum number of pods (54.8% - 122.4%) and an increase in dry weight of pods (29.8% - 56.6%). Plants under elevated [CO2] produced significantly greater numbers of root nodules per plant by 114% compared with plants under ambient [CO2] at 44 DAP. These results show a direct and interactive effect of elevated [CO2] and soil moisture on plant growth that will affect not only the global food security but also nutritional security.展开更多
By determining the earth moisture content of artificial forestland between 0 and 6 m deep in the Loess Plateau of Shaanxi province, the vertical change of moisture content, distribution and formation causes of a dried...By determining the earth moisture content of artificial forestland between 0 and 6 m deep in the Loess Plateau of Shaanxi province, the vertical change of moisture content, distribution and formation causes of a dried earth layer are researched. The results show that the average moisture content is 9.3%-9.5% between 2 and 4 m under artificial forest of over 10 year's growth in Guanzhong Plain, and chronic weak dried earth layers are developed which show that the dried earth layers are distributed extensively on the Loess Plateau. The southern boundary of the dried earth layer has reached the northern foot of the Qinling Mountains. When precipitation reaches 600 mm, there are weak dried earth layers between 2 and 4 m under artificial forest of more than 10 years old. When the precipitation is between 400 and 500 mm, there are moderate dried earth layers. When precipitation is above 800 mm, there are no dried earth layers. There are no dried earth layers under meadow land, corn land and less than 5 years old of artificial forestland in central and southern parts of the Loess Plateau. The development of dried earth layers under cypress forest is weaker than broad-leaved forest. Under the same climatic conditions, the development of dried earth layers under the loess tableland is nearly at the same level as the 2nd and 3rd river terrace. Dried earth layers developed in membrane water zone, and the buried depth is small and motion velocity is slow in the Loess Plateau, which is the direct water factor of the formation of the dried earth layer, while differences of tree age and tree species are the plant factors that consumed much moisture. From the depth of the gravity water and the membrane water in Guanzhong Plain, it is clear that the formation cause of dried earth layers is mainly due to natural factors. The dried layers generally develop in middle-aged artificial forestland that consumed too much moisture, which is the general character of earth moisture in subhumid and semiarid zones. The appearance of dried layers doesn't show that the forest doesn't develop in this area; this is depended on their development intensity. Artificial forest of Chinese poplar, locust tree and Chinese scholartree consuming less water can be planted in the areas where dried earth layer developed weakly, but can not be planted in the areas where dried earth layer developed intensely.展开更多
Biological soil crusts (BSCs) are an important type of land cover in arid desert landscapes and play an important role in the carbon source-sink exchange within a desert system. In this study, two typical BSCs, moss...Biological soil crusts (BSCs) are an important type of land cover in arid desert landscapes and play an important role in the carbon source-sink exchange within a desert system. In this study, two typical BSCs, moss crusts and algae crusts, were selected from a revegetated sandy area of the Tengger Desert in northern China, and the experiment was carried out over a 3-year period from January 2010 to November 2012. We obtained the effec- tive active wetting time to maintain the physiological activity of BSCs basing on continuous field measurements and previous laboratory studies on BSCs photosynthesis and respiration rates. And then we developed a BSCs carbon fixation model that is driven by soil moisture. The results indicated that moss crusts and algae crusts had significant effects on soil moisture and temperature dynamics by decreasing rainfall infiltration. The mean carbon fixation rates of moss and algae crusts were 0.21 and 0.13 g C/(m2.d), respectively. The annual carbon fixations of moss crusts and algae crusts were 64.9 and 38.6 g C/(m2.a), respectively, and the carbon fixation of non-rainfall water reached 11.6 g C/(m2.a) (30.2% of the total) and 8.8 g C/(m2.a) (43.6% of the total), respectively. Finally, the model was tested and verified with continuous field observations. The data of the modeled and measured CO2 fluxes matched notably well. In desert regions, the carbon fixation is higher with high-frequency rainfall even the total amount of seasonal rainfall was the same.展开更多
Soil moisture is an important parameter for the interaction between soil and atmosphere. It is the sec- ond important factor that influences climate change, next to sea surface temperature (SST). Most previous studi...Soil moisture is an important parameter for the interaction between soil and atmosphere. It is the sec- ond important factor that influences climate change, next to sea surface temperature (SST). Most previous studies focused on the monsoon regions in East China, and only a few laid emphases on arid environments. In Xinjiang, which is located in Northwest China, the climate is typically arid and semi-arid. During the past 20 years, the pre- cipitation in Xinjiang has shown a significant increasing trend, and it is closely related to oasis irrigation. This paper aims at discussing whether abnormal soil moisture in spring can be the signal to forecast summer precipitation. The effects of abnormal soil moisture due to farm irrigation in spring in arid environments on regional climate are inves- tigated by using a regional climate model (RegCM3). The results indicate that positive soil moisture anomaly in irrigated cropland surface in May led to an increase in precipitation in spring as well as across the whole summer. The impact could last for about four months. The effects of soil moisture on the surface air temperature showed a time-lagging trend. The summer air temperature declined by a maximum amplitude of 0.8℃. The increased soil moisture could enhance evaporation and ascending motion in the low troposphere, which brought in more precipi- tation. The soil moisture affected regional weather and climate mainly by altering the surface sensible and latent heat fluxes.展开更多
Aims Clonal plant species have the potential for high relative performance in heterogeneous environments,and this might increase the com-petitive ability and invasiveness of introduced clonal plant species.It was hypo...Aims Clonal plant species have the potential for high relative performance in heterogeneous environments,and this might increase the com-petitive ability and invasiveness of introduced clonal plant species.It was hypothesized that clonal species whose performance responds more to heterogeneity of a resource have higher competitive ability in habitats where this resource is more heterogeneous and that this relationship is stronger when other resources are less limiting.Methods To test these hypotheses,the perennial clonal herb Alternanthera philoxeroides,which is invasive in China,was grown alone or with each of four clonal perennial,co-occurring herbs native to China,i.e.Alternanthera sessilis,Cynodon dactylon,Hemarthria altissima and Wedelia chinensis.Plants were given homogeneous or het-erogeneous soil substrate crossed with low and high levels of soil moisture.Important Findings Effects of heterogeneity on the accumulation of mass and ramets and on competitive effect and response of A.philoxeroides differed between native species and interacted with effects of soil moisture.A.philoxeroides reduced the final total mass or ramet number of the native species except A.sessilis,and the negative competitive effects on H.altissima and C.dactylon were more pronounced in heterogeneous than in homogeneous soil.Competitive response of A.philoxeroides was more negative to A.sessilis than to the other native species.Across native species,the competitive response of A.philoxeroides was more negative in heterogeneous than in homo-geneous soils at low moisture level,but the reverse was true at high moisture level.Results do not consistently support either hypoth-esis,but do suggest that competitive ability can be partly explained by individual species traits such as size,and that some competi-tive effects and responses are emergent properties of interspecific interactions.展开更多
A land-process scheme has been incorporated in a vertical one-dimensional time-dependent atmospheric model and numerical experiments have been performed with the coupled model to examine influences of soil wetness and...A land-process scheme has been incorporated in a vertical one-dimensional time-dependent atmospheric model and numerical experiments have been performed with the coupled model to examine influences of soil wetness and vege- tation on climate changes associated to thermal forcing.It is showed that response of land-surface temperature to the thermal forcing becomes small with increase of soil water content and vegetation cover.Furthermore,the response is more obvious in arid climate region than in humid one.The result also shows that there exist two patterns of corre- sponding relation between variations in air temperature and humidity on the land surface in response to hydrologic and thermal focing.展开更多
文摘There is the need to take seriously the task of conserving soil moisture in agricultural fields and free-water surfaces in reservoirs, especially in recent years of climate change. Many strategies exist for achieving this task and improving the productivity of arable soils. These strategies traditionally come under biological and physical or mechanical measures. Some other relatively new techniques operate neither on physical nor on biological principle. All these measures which operate on different principles frequently overlap. The principles involved, together with the prospects and constraints of the key techniques of conserving soil moisture found in the literature, are reviewed in this paper. Among other considerations, the effectiveness and/or practicability of any one of the techniques depend upon soil type, topography, climate, scale of production, level of technology, and socio-economic status. Such agronomic practices as conservation tillage and live vegetation mulch that maintain infiltration rates often appear to be more beneficial in the long run than engineering structures, especially those that lead to blocking of waterways on the soil surface. However, this review reveals that none of the soil moisture conservation strategies could be credited as universally applicable. Consequently, an integrated approach to soil water management and conservation, where feasible, is considered more appropriate. This is because the different principles involved in the techniques identified to be compatible would readily complement and strengthen one another. Such a multi-mechanistic approach is expected to result in improved efficacy in conserving water resources in soils and open reservoirs.
基金Funding from the Jiangsu Provincial Department of Science and Technology Key Research and Development Program(Social Development)(Grant No.BE2018697)the Demonstration Engineering Technology Research Center of Suqian Science and Technology Bureau(Grant No.M201912)+1 种基金the Jiangsu Provincial Science and Technology Department Social Development Project(Grant No.BE2017704)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘To solve the problems of high moisture content,high viscosity,and poor engineering mechanical properties of soil,this paper using with steel slag(SS)and desulfurization ash(DS)as initial raw materials,realizing the coop-erative treatment of solid waste and solidification of silt soil.The synergistic utilization of SS and DS can reduce the production cost of curing agent and promote its own consumption.According to blended cement of various SS contents and inspected compressive strength performances,the most suitable raw materials ratio was selected.The best formula for this curing agent is cement:steel slag=3:7 with 5%DS,and its 28-day compressive strength can reach 30 MPa.The experiment shows that the effect of DS and Na_(2)SO_(4) reagent with the same quality on early compressive strength improvement of cement and SS system is not much different.In this study,the mineral composition and microstructure of different gel system blocks were characterized by XRD,SEM and EDX,and a large number of webbed structures were found in the SEM test,which was not seen in previous studies.Besides,unconfined compressive strength(UCS),water resistance,and toxic characteristic leaching procedure(TCLP)were used to evaluate silt solidified soil properties.The results demonstrated that the solidified silt could meet not only the standard of general subgrade;but also has a partial stabilization effect of heavy metal ions.
基金supported by the Special Projects of the Central Government Guiding Local Science and Technology Development in China(Guike.ZY21195022)the National Natural Science Foundation of China(No.42007055 and 42107350)。
文摘Benggang erosion is caused by a special type of gully erosion in southern China that seriously endangers the local ecology and environment.In this study,typical Benggang collapsing-wall soils were used as the study area to investigate the effects of different initial moisture contents and dicranopteris linearis root weight densities,as well as their interactions on disintegration in orthogonal test method.The results showed that the rate of soil disintegration decreased as a linear function of the initial moisture content.The soil disintegration rate tended to rise and then fall as the root weight density increased,reflecting an optimum root weight density of 0.75-1.00 g/100 cm3.The incorporation of dicranopteris linearis roots was most effective for soil consolidation in the shallow layers of soil.In addition,the disintegration rate of the collapsing-wall soils increases as the soil layer deepened.The dicranopteris linearis root system and initial moisture content had an interactive effect that was more pronounced in deeper soils.However,the combined effect of these processes was always dominated by the initial moisture content.Moderate initial soil moisture content(0.20-0.24 g/g)and the addition of a high root density in dicranopteris linearis(0.75-1.00 g/100 cm3)were the optimal combinations that reduced the disintegration rate.In conclusion,maintaining a suitable natural moisture content in collapsing-wall soils and taking measures that use plants to consolidate soil can effectively prevent and control the occurrence of Benggang erosion.The results of this study provided further insight into the factors that influence soil disintegration and offered a scientific basis for soil erosion management in the southern China.
基金supported by the National Natural Science Foundation of China (41575013)the National Supercomputer Center in Guangzhou, China
文摘Since the early 2000s, many satellite passive microwave brightness temperature (BT) archives, such as the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) BTs, have become the useful resources for assessing the changes in the surface and deep soil moistures over both arid and semi-arid regions. In this study, we used a new soil effective temperature (T scheme and the archived AMSR-E BTs to estimate surface soil moisture (SM) over the Nagqu region in the central Tibetan Plateau, China. The surface and deep soil temperatures required for the calculation of regional-scale T were obtained from outputs of the Community Land Model version 4.5 (CLM4.5). In situ SM measurements at the CEOP-CAMP/Tibet (Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau) experimental sites were used to validate the AMSR-E-based SM estimations at regional and single-site scales. Furthermore, the spatial distribution of monthly mean surface SM over the Nagqu region was obtained from 16 daytime AMSR-E BT observations in July 2004 over the Nagqu region. Results revealed that the AMSR-E-based surface SM estimations agreed well with the in situ-based surface SM measurements, with the root mean square error (RMSE) ranging from 0.042 to 0.066 m3/m3 and the coefficient of determination (R2) ranging from 0.71 to 0.92 during the nighttime and daytime. The regional surface soil water state map showed a clear spatial pattern related to the terrain. It indicated that the lower surface SM values occurred in the mountainous areas of the northern, mid-western and southeastern parts of Nagqu region, while the higher surface SM values appeared in the low elevation areas such as the Tongtian River Basin, Namco Lake and bog meadows in the central part of Nagqu region. Our analysis also showed that the new T^scheme does not require special fitting parameters or additional assumptions, which simplifies the data requirements for regional-scale applications. This scheme combined with the archived satellite passive microwave BT observations can be used to estimate the historical surface SM for hydrological process studies over the Tibetan Plateau regions.
文摘The FDR automatic soil moisture sensor must determine reference frequency in the air and water. Experimental studies show that the water reference frequency is influenced by water temperature. The variation of the reference frequency of the sensor is measured with the change of the water temperature,then analysis the influence of the volume water content measurement of the sensor,analysis found that the error is not more than 3% for the measurement of the volumetric water content of the temperature.
文摘Interactions between elevated [CO2] and soil water availability have the potential impact on crops and future food security of the world. The study was conducted to investigate vegetative growth response of soybeans under two [CO2] (380 and 800 μmol mol-1) with three soil moisture levels in controlled environment. Slow growth rate and altered crop phenology of soybeans were observed under elevated [CO2] at early stage (V-3/V-4), but showed positive physiologically response at later stage (R3) indicating adoptive mechanism of plants to high [CO2]. Elevated [CO2] decreases the number of leaves by 23% and 14% and reduces in leaf areas by 11.7% and 9.7% compared with ambient [CO2] at 29 and 44 days after planting (DAP), respectively. Adaptive mechanism of plants to high [CO2] produced 39% and 83.7% greater leaf number and leaf areas, respectively at later stage (R3) of the crop growth (59 DAP). There was a reduction in a specific leaf area (SLA) at 29 DAP (22.2%) but an increase at 44 DAP (1.4%) and 58 DAP (8.5%) under elevated [CO2]. Dry matter production of plants was increased significantly for elevated [CO2]. Increase in leaf C (<1%) and reduction in N concentration (6.0% - 9.5%) increased the C:N ratio of soybean leaves (4.4% - 12.98%) under elevated [CO2]. Elevated [CO2] with normal soil moisture condition produced a maximum number of pods (54.8% - 122.4%) and an increase in dry weight of pods (29.8% - 56.6%). Plants under elevated [CO2] produced significantly greater numbers of root nodules per plant by 114% compared with plants under ambient [CO2] at 44 DAP. These results show a direct and interactive effect of elevated [CO2] and soil moisture on plant growth that will affect not only the global food security but also nutritional security.
基金Foundation: National Natural Science Foundation of China, No.40672108 Project of State Key Laboratory of Loess and Quaternary Geology, CAS, No.SKLLQG0606
文摘By determining the earth moisture content of artificial forestland between 0 and 6 m deep in the Loess Plateau of Shaanxi province, the vertical change of moisture content, distribution and formation causes of a dried earth layer are researched. The results show that the average moisture content is 9.3%-9.5% between 2 and 4 m under artificial forest of over 10 year's growth in Guanzhong Plain, and chronic weak dried earth layers are developed which show that the dried earth layers are distributed extensively on the Loess Plateau. The southern boundary of the dried earth layer has reached the northern foot of the Qinling Mountains. When precipitation reaches 600 mm, there are weak dried earth layers between 2 and 4 m under artificial forest of more than 10 years old. When the precipitation is between 400 and 500 mm, there are moderate dried earth layers. When precipitation is above 800 mm, there are no dried earth layers. There are no dried earth layers under meadow land, corn land and less than 5 years old of artificial forestland in central and southern parts of the Loess Plateau. The development of dried earth layers under cypress forest is weaker than broad-leaved forest. Under the same climatic conditions, the development of dried earth layers under the loess tableland is nearly at the same level as the 2nd and 3rd river terrace. Dried earth layers developed in membrane water zone, and the buried depth is small and motion velocity is slow in the Loess Plateau, which is the direct water factor of the formation of the dried earth layer, while differences of tree age and tree species are the plant factors that consumed much moisture. From the depth of the gravity water and the membrane water in Guanzhong Plain, it is clear that the formation cause of dried earth layers is mainly due to natural factors. The dried layers generally develop in middle-aged artificial forestland that consumed too much moisture, which is the general character of earth moisture in subhumid and semiarid zones. The appearance of dried layers doesn't show that the forest doesn't develop in this area; this is depended on their development intensity. Artificial forest of Chinese poplar, locust tree and Chinese scholartree consuming less water can be planted in the areas where dried earth layer developed weakly, but can not be planted in the areas where dried earth layer developed intensely.
基金supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX2-EW-301-3)the National Program on Key Basic Research Project (2013CB429905)+1 种基金the National Natural Scientific Foundation of China (41201084 31170385)
文摘Biological soil crusts (BSCs) are an important type of land cover in arid desert landscapes and play an important role in the carbon source-sink exchange within a desert system. In this study, two typical BSCs, moss crusts and algae crusts, were selected from a revegetated sandy area of the Tengger Desert in northern China, and the experiment was carried out over a 3-year period from January 2010 to November 2012. We obtained the effec- tive active wetting time to maintain the physiological activity of BSCs basing on continuous field measurements and previous laboratory studies on BSCs photosynthesis and respiration rates. And then we developed a BSCs carbon fixation model that is driven by soil moisture. The results indicated that moss crusts and algae crusts had significant effects on soil moisture and temperature dynamics by decreasing rainfall infiltration. The mean carbon fixation rates of moss and algae crusts were 0.21 and 0.13 g C/(m2.d), respectively. The annual carbon fixations of moss crusts and algae crusts were 64.9 and 38.6 g C/(m2.a), respectively, and the carbon fixation of non-rainfall water reached 11.6 g C/(m2.a) (30.2% of the total) and 8.8 g C/(m2.a) (43.6% of the total), respectively. Finally, the model was tested and verified with continuous field observations. The data of the modeled and measured CO2 fluxes matched notably well. In desert regions, the carbon fixation is higher with high-frequency rainfall even the total amount of seasonal rainfall was the same.
基金supported by the National Natural Science Foundation of China(40875010,41005050)the Xinjiang Science and Technology Support Project(200891129)the Global Change National Key Scientific Research Project(2011 CB952002)
文摘Soil moisture is an important parameter for the interaction between soil and atmosphere. It is the sec- ond important factor that influences climate change, next to sea surface temperature (SST). Most previous studies focused on the monsoon regions in East China, and only a few laid emphases on arid environments. In Xinjiang, which is located in Northwest China, the climate is typically arid and semi-arid. During the past 20 years, the pre- cipitation in Xinjiang has shown a significant increasing trend, and it is closely related to oasis irrigation. This paper aims at discussing whether abnormal soil moisture in spring can be the signal to forecast summer precipitation. The effects of abnormal soil moisture due to farm irrigation in spring in arid environments on regional climate are inves- tigated by using a regional climate model (RegCM3). The results indicate that positive soil moisture anomaly in irrigated cropland surface in May led to an increase in precipitation in spring as well as across the whole summer. The impact could last for about four months. The effects of soil moisture on the surface air temperature showed a time-lagging trend. The summer air temperature declined by a maximum amplitude of 0.8℃. The increased soil moisture could enhance evaporation and ascending motion in the low troposphere, which brought in more precipi- tation. The soil moisture affected regional weather and climate mainly by altering the surface sensible and latent heat fluxes.
基金This research was supported by the Fundamental Research Funds for the Central Universities(TD-JC-2013-1)the National Natural Science Foundation of China(31570413,31500331).
文摘Aims Clonal plant species have the potential for high relative performance in heterogeneous environments,and this might increase the com-petitive ability and invasiveness of introduced clonal plant species.It was hypothesized that clonal species whose performance responds more to heterogeneity of a resource have higher competitive ability in habitats where this resource is more heterogeneous and that this relationship is stronger when other resources are less limiting.Methods To test these hypotheses,the perennial clonal herb Alternanthera philoxeroides,which is invasive in China,was grown alone or with each of four clonal perennial,co-occurring herbs native to China,i.e.Alternanthera sessilis,Cynodon dactylon,Hemarthria altissima and Wedelia chinensis.Plants were given homogeneous or het-erogeneous soil substrate crossed with low and high levels of soil moisture.Important Findings Effects of heterogeneity on the accumulation of mass and ramets and on competitive effect and response of A.philoxeroides differed between native species and interacted with effects of soil moisture.A.philoxeroides reduced the final total mass or ramet number of the native species except A.sessilis,and the negative competitive effects on H.altissima and C.dactylon were more pronounced in heterogeneous than in homogeneous soil.Competitive response of A.philoxeroides was more negative to A.sessilis than to the other native species.Across native species,the competitive response of A.philoxeroides was more negative in heterogeneous than in homo-geneous soils at low moisture level,but the reverse was true at high moisture level.Results do not consistently support either hypoth-esis,but do suggest that competitive ability can be partly explained by individual species traits such as size,and that some competi-tive effects and responses are emergent properties of interspecific interactions.
基金The research is sponsored by the National Natural Science Foundation of China.
文摘A land-process scheme has been incorporated in a vertical one-dimensional time-dependent atmospheric model and numerical experiments have been performed with the coupled model to examine influences of soil wetness and vege- tation on climate changes associated to thermal forcing.It is showed that response of land-surface temperature to the thermal forcing becomes small with increase of soil water content and vegetation cover.Furthermore,the response is more obvious in arid climate region than in humid one.The result also shows that there exist two patterns of corre- sponding relation between variations in air temperature and humidity on the land surface in response to hydrologic and thermal focing.