Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest v...Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest vortex in the warm-sector during a“rain-generated vortex”process and the deep southwest vortex in a“vortex-generated rain”process.The findings were as follows:(1)During the extreme rainstorm on August 11,2020(hereinafter referred to as the“8·11”process),intense surface heating and a high-energy unstable environment were observed.The mesoscale convergence system triggered convection to produce heavy rainfall,and the release of latent condensation heat generated by the rainfall promoted the formation of a southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy preceded the increase(decrease)in vorticity.By contrast,the extreme rainstorm on August 16,2020(hereinafter referred to as the“8·16”process)involved the generation of southwest vortex in a low-energy and highhumidity environment.The dynamic uplift of the southwest vortex triggered rainfall,and the release of condensation latent heat from rainfall further strengthened the development of the southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy exhibited a delayed progression compared to the increase(decrease)in vorticity.(2)The heating effect around the southwest vortex region was non-uniform,and the heating intensity varied in different stages.In the“8·11”process,the heating effect was the strongest in the initial stage,but weakened during the vortex's development.On the contrary,the heating effect was initially weak in the“8·16”process,and intensified during the development stage.(3)The available potential energy of the“8·11”process significantly increased in kinetic energy converted from rotational and divergent winds through baroclinic action,and the divergent wind energy continued to convert into rotational wind energy.By contrast,the“8·16”process involved the conversion of rotational wind energy into divergent wind energy,which in turn converted kinetic energy back into available potential energy,thereby impeding the further development and maintenance of the southwest vortex.展开更多
In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest a...In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest access. Urban Heat Island Effects are measurable phenomenon that are being experienced by the world’s most urbanized areas, including increased summer high temperatures and lower evapotranspiration from having impervious surfaces instead of vegetation and trees. Tree canopy cover is our natural mitigation tool that absorbs sunlight for photosynthesis, protects humans from incoming radiation, and releases cooling moisture into the air. Unfortunately, urban areas typically have low levels of vegetation. Vulnerable urban communities are lower-income areas of inner cities with less access to heat protection like air conditioners. This study uses mean evapotranspiration levels to assess the variability of urban heat island effects across the state of Tennessee. Results show that increased developed land surface cover in Tennessee creates measurable changes in atmospheric evapotranspiration. As a result, the mean evapotranspiration levels in areas with less tree vegetation are significantly lower than the surrounding forested areas. Central areas of urban cities in Tennessee had lower mean evapotranspiration recordings than surrounding areas with less development. This work demonstrates the need for increased tree canopy coverage.展开更多
Nanofluids have attracted many scientists due to their remarkable thermophysical properties.Small percentage of nanoparticles when added to conventional fluid significantly enhances the heat transfer features.Sustaina...Nanofluids have attracted many scientists due to their remarkable thermophysical properties.Small percentage of nanoparticles when added to conventional fluid significantly enhances the heat transfer features.Sustainability and efficiency of nanomaterials have key role in the advancement of nanotechnology.This article analyzes the Hall,Ohmic heating and velocity slip effects on the peristalsis of nanofluid.Convective boundary conditions and heat generation/absorption are considered to facilitate the heat transfer characteristics.Governing equations for the peristaltic flow through a curved channel are derived in curvilinear coordinates.The equations are numerically solved under the assumption of long wavelength and small Reynold number.It has been observed that nanofluid enhances the heat transfer rate and reduces the fluid temperature.Hartman number and Hall parameter show reverse behavior in fluid motion and heat transfer characteristics.In the presence of velocity slip,the pressure gradient rapidly decreases and dominant effect is seen in narrow portion of channel.展开更多
A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH,...A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH, a unit cell (UC) for thermal transport analysis was selected to calculate its effective thermal conductivity. Without introducing any empirical coefficient, we modified and extended the analytical model of parallel-series thermal-electric network to a wider porosity range (0.7 ~ 0.98) by considering the effects of two-dimensional local heat conduction in solid ligaments inside each UC. Good agreement was achieved between analytical predictions and numerical simulations based on the method of finite volume. The concept of ligament heat conduction efficiency (LTCE) was proposed to physically explain the mechanisms underlying the effects of ligament configuration on effective thermal conductivity (ETC). Based upon the proposed theory, a construct strategy was developed for designing the ETC by altering the equivalent interaction angle with the direction of heat flow: relatively small average interaction angle for thermal conduction and relatively large one for thermal insulation.展开更多
Flow thermomechanics in reactive porous media is of importance in industry including the thermal processing of fossil fuel(coking understood as a slow pyrolysis)involving devolatilisation.On the way to provide a detai...Flow thermomechanics in reactive porous media is of importance in industry including the thermal processing of fossil fuel(coking understood as a slow pyrolysis)involving devolatilisation.On the way to provide a detailed description of the process,a multi-scale approach was chosen to estimate effective transport coefficients.For this case the Lattice Boltzmann method(LBM)was used due to its advantages to accurately model multi-physics and chemistry in a random geometry of granular media.After account for earlier studies,the paper presents description of the model with improved boundary conditions and a benchmark case.Results from meso-scale LBM calculations are presented and discussed regarding the spatial resolution and the choice of relaxation parameter along its influence on the accuracy compared with empirical formulae.Regarding the estimation of effective thermal conductivity coefficient it is shown that occurrence of devolatilization has a crucial effect by reducing heat transfer.Some quantitative results characterise the propagation of thermal front;also presented is the evolution of effective thermal conductivity.The work is a step forward towards a physically sound simulation of thermal processing of fossil fuel.展开更多
Dielectrophoresis(DEP)technology has become important application of microfluidic technology to manipulate particles.By using a local modulating electric field to control the combination of electroosmotic microvortice...Dielectrophoresis(DEP)technology has become important application of microfluidic technology to manipulate particles.By using a local modulating electric field to control the combination of electroosmotic microvortices and DEP,our group proposed a device using a direct current(DC)electric field to achieve continuous particle separation.In this paper,the influence of the Joule heating effect on the continuous separation of particles is analyzed.Results show that the Joule heating effect is caused by the local electric field,and the Joule heating effect caused by adjusting the modulating voltage is more significant than that by driving voltage.Moreover,a non-uniform temperature distribution exists in the channel due to the Joule heating effect,and the temperature is the highest at the midpoint of the modulating electrodes.The channel flux can be enhanced,and the enhancement of both the channel flux and temperature is more obvious for a stronger Joule heating effect.In addition,the ability of the vortices to trap particles is enhanced since a larger DEP force is exerted on the particles with the Joule heating effect;and the ability of the vortex to capture particles is stronger with a stronger Joule heating effect.The separation efficiency can also be increased because perfect separation is achieved at a higher channel flux.Parameter optimization of the separation device,such as the convective heat transfer coefficient of the channel wall,the length of modulating electrode,and the width of the channel,is performed.展开更多
This paper presents a numerical analysis of Joule heating effect of electroosmo- sis in a finite-length microchannel made of the glass and polydimethylsiloxane (PDMS) polymer. The Poisson-Boltzmann equation of elect...This paper presents a numerical analysis of Joule heating effect of electroosmo- sis in a finite-length microchannel made of the glass and polydimethylsiloxane (PDMS) polymer. The Poisson-Boltzmann equation of electric double layer, the Navier-Stokes equation of liquid flow, and the liquid-solid coupled heat transfer equation are solved to investigate temperature behaviors of electroosmosis in a two-dimensional microchannel. The feedback effect of temperature variation on liquid properties (dielectric constant, vis- cosity, and thermal and electric conductivities) is taken into account. Numerical results indicate that there exists a heat developing length near the channel inlet where the flow velocity, temperature, pressure, and electric field rapidly vary and then approach to a steady state after the heat developing length, which may occupy a considerable portion of the microchannel in cases of thick chip and high electric field. The liquid temperature of steady state increases with the increase of the applied electric field, channel width, and chip thickness. The temperature on a PDMS wall is higher than that on a glass wall due to the difference of heat conductivities of materials. Temperature variations are found in the both longitudinal and transverse directions of the microchannel. The increase of the temperature on the wall decreases the charge density of the electric double layer. The longitudinal temperature variation induces a pressure gradient and changes the behavior of the electric field in the microchannel. The inflow liquid temperature does not change the liquid temperature of steady state and the heat developing length.展开更多
Fe3O4 magnetic nanoparticles with diameters varying from 10 to 426 nm were synthesized and characterized.Heating effects of Fe3O4 magnetic nanoparticles under radiofrequency capacitive field(RCF) with frequency of 27....Fe3O4 magnetic nanoparticles with diameters varying from 10 to 426 nm were synthesized and characterized.Heating effects of Fe3O4 magnetic nanoparticles under radiofrequency capacitive field(RCF) with frequency of 27.12 MHz and power of 60-150 W were investigated.When the power of RCF is lower than 90 W,temperatures of Fe3O4 magnetic nanoparticles(75-150 mg/mL) can be raised and maximal temperatures are all lower than 50 ℃.When the power of RCF is 90-150 W,temperatures of Fe3O4 magnetic nanoparticles can be quickly raised and are all obviously higher than those of normal saline and distilled water under the same conditions.Temperature of Fe3O4 magnetic nanoparticles can even reach 70.2 ℃ under 150 W RCF.Heating effects of Fe3O4 magnetic nanoparticles are related to RCF power,particle size and particle concentration.展开更多
A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied. It includes the discharge time-accumulating heating effect, discharge power, inter-electrode distance, and to...A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied. It includes the discharge time-accumulating heating effect, discharge power, inter-electrode distance, and total gas flow rate induced heating effect. It is found that the heating effects mentioned above are in some ways quite similar to and in other ways very different from each other. However, all of them will directly or indirectly cause the increase of the substrate surface temperature during the process of depositing microcrystalline silicon thin films, which will affect the properties of the materials with increasing time. This phenomenon is very serious for the high deposition rate of microcrystalline silicon thin films because of the high input power and the relatively small inter-electrode distance needed. Through analysis of the heating effects occurring in the process of depositing microcrystalline silicon, it is proposed that the discharge power and the heating temperature should be as low as possible, and the total gas flow rate and the inter-electrode distance should be suitable so that device-grade high quality deposition rate microcrystalline silicon thin films can be fabricated.展开更多
Alterations made to the natural ground surface and the anthropogenic activity elevate the surface and air temperature in the urban areas compared with the surrounding rural areas,known as urban heat island effect.Ther...Alterations made to the natural ground surface and the anthropogenic activity elevate the surface and air temperature in the urban areas compared with the surrounding rural areas,known as urban heat island effect.Thermal remote sensors measure the radiation emitted by ground objects,which can be used to estimate the land surface temperature and are beneficial for studying urban heat island effects.The present study investigates the spatial and temporal variations in the effects of urban heat island over Tiruchirappalli city in India during the summer and winter seasons.The study also identifies hot spots and cold spots within the study area.In this study,a significant land surface temperature difference was observed between the urban and rural areas,predominantly at night,indicating the presence of urban heat island at night.These diurnal land surface temperature fluctuations are also detected seasonally,with a relatively higher temperature intensity during the summer.The trend line analysis shows that the mean land surface temperature of the study area is increasing at a rate of 0.166 K/decade with p less than 0.01.By using the spatial autocorrelation method with the urban heat island index as the key parameter,hot spots with a 99 percent confidence level and a 95 percent confidence level were found within the urban area.A hot spot with 95 and 90 percent confidence level was identified outside the urban area.This spike in temperature for a particular region in the rural area is due to industry and the associated built-up area.The study also identified cold spots with a 90 percent confidence level within the rural area.However,cold spots with a 95 and 99 percent confidence level were not identified within the study area.展开更多
With the advancement of urbanization,the urban heat island effect and ozone pollution have become hot issues in urban research.The urban heat island effect can impact ozone conversion,but its mechanism of action is un...With the advancement of urbanization,the urban heat island effect and ozone pollution have become hot issues in urban research.The urban heat island effect can impact ozone conversion,but its mechanism of action is unclear.In this study,the effects of the urban heat island effect on ozone concentration in Chengdu City,China,were investigated by comparing the ozone concentration under different heat island levels with ozone data from March 2020 to February 2021 and the temperature and wind field data of ERA5-Land during the same period.The results showed that:1)regarding the distribution characteristics,the ozone concentration in Chengdu presented a‘high in summer and low in winter’distribution.The ozone concentration in summer(189.54µg/m^(3))was nearly twice that in winter(91.99µg/m^(3)),and the ozone diurnal variation presented a‘single peak and single valley’distribution,with a peak at 16:00.2)For the characteristics of the heat island effect,the heat island intensity in Chengdu was obviously higher in spring than in other seasons,and the diurnal variation showed a‘single peak and single valley’distribution,with the peak and trough values appearing at 9:00 and 17:00,respectively.Spatially,the eastern part of Chengdu was a heat island,while the western and northwestern parts were mostly cold island.3)The correlation analysis between heat island intensity and ozone concentration showed a significant positive correlation but with a 7–8 h time lag.Ambient air temperature was not the main factor affecting ozone concentration.The heat island effect impacts the ozone concentration in two ways:changing the local heat budget to promote ozone generation and forming local urban wind,which promotes ozone diffusion or accumulation and forms different areas of low and high ozone values.展开更多
The Qinghai-Tibet Plateau(QTP)possesses the largest areas of permafrost in the midand low latitude regions on the earth and many large lakes in the permafrost area.Based on a comprehensive investigation around certain...The Qinghai-Tibet Plateau(QTP)possesses the largest areas of permafrost in the midand low latitude regions on the earth and many large lakes in the permafrost area.Based on a comprehensive investigation around certain typical lakes,this study found that although the presence of lakes formed different ranges of unfrozen zones in permafrost,the heating effect of lake water on surrounding permafrost is limited to a small extent.The temperature of permafrost around the lake is closely related to the distance to the lake and the ice content of the permafrost.Around lakes are ice-rich permafrost zones and permafrost temperature in this area is significantly lower than that far away from the lake,which indicates that the existence of lakes in the QTP has special effect on the permafrost distribution.Based on the monitoring results,this study presents the typical distribution pattern of the permafrost around large lakes and discusses the reasons for the distribution pattern.Due to the huge area of lakes and the significant impact of lakes on permafrost distribution,it is suggested to re-estimate the total permafrost area and underground ice storage in the QTP.展开更多
In the present research,we proposed a scheme to address the issues of severe heat damage,high energy consumption,low cooling system efficiency,and wastage of cold capacity in mines.To elucidate the seasonal variations...In the present research,we proposed a scheme to address the issues of severe heat damage,high energy consumption,low cooling system efficiency,and wastage of cold capacity in mines.To elucidate the seasonal variations of environmental temperature through field measurements,we selected a high-temperature working face in a deep mine as our engineering background.To enhance the heat damage control cability of the working face and minimize unnecessary cooling capac-ity loss,we introduced the multi-dimensional heat hazard prevention and control method called"Heat source barrier and cooling equipment".First,we utilize shotcrete and liquid nitrogen injection to eliminate the heat source and implemented pressure equalization ventilation to disrupt the heat transfer path,thereby creating a heat barrier.Second,we establish divi-sional prediction models for airflow temperature based on the variation patterns obtained through numerical simulation.Third,we devise the location and dynamic control strategy for the cooling equipment based on the prediction models.The results of field application show that the heat resistance and cooling linkage method comply with the safety requirement throughout the entire mining cycle while effectively reducing energy consumption.The ambient temperature is maintained below 30℃,resulting in the energy saving of 10%during the high-temperature period and over 50%during the low-temperature period.These findings serve as a valuable reference for managing heat damage in high-temperature working faces.展开更多
Based on the local climate zoning theory and the observation data of hourly temperature of 22 automatic weather stations from 2012 to 2021, K-means clustering algorithm was used to analyze the daily, monthly, seasonal...Based on the local climate zoning theory and the observation data of hourly temperature of 22 automatic weather stations from 2012 to 2021, K-means clustering algorithm was used to analyze the daily, monthly, seasonal, annual and spatial variation characteristics of urban heat island effect in Weihai City in the past 10 years. The results showed that in recent 10 years, the average urban heat island intensity was 1.24 ℃, showing a gradual weakening trend of -0.169 3 ℃/10 a;the summer average heat island intensity was 0.86 ℃, showing a gradual weakening trend of -0.047 5 ℃/10 a. The heat island intensity had obvious diurnal variation characteristics, that is, "it was weak in the day and strong at night". In terms of seasonal variation, heat island effect was the weakest in summer, stronger in spring and autumn, and the strongest in winter. The diurnal, seasonal and annual changes of heat island intensity showed a reverse trend to those of temperature. The high-value area of urban heat island was highly consistent with human residential activity areas and industrial and commercial intensive areas, and the extension trend of heat island intensity was the same as the direction of urban development and construction. The "cold island phenomenon" in some offshore areas was related to the geographical location, terrain and the southeast monsoon trend in summer. The adverse effects of urban heat island effect can be reduced by optimizing the types and distribution of vegetation communities, rationally planning and constructing urban water body, promoting green building materials and adjusting shape design, etc.展开更多
Metal nanoparticle@porous material composites have attracted increasing attention due to their excellent synergistic catalytic performance.However,it is a challenge to introduce metal nanoparticles into cavities of po...Metal nanoparticle@porous material composites have attracted increasing attention due to their excellent synergistic catalytic performance.However,it is a challenge to introduce metal nanoparticles into cavities of porous materials without agglomeration on the exterior.Despite the progress achieved,a universal approach that can integrate different kinds of metal nanoparticles and porous materials is still highly desirable.Here we report a facile and general approach to fabricating metal nanoparticle@porous materials by microwave-triggered selective heating.The microwave can pass through the non-polar solvent and act on the polar solvent in the porous materials,causing the polar solvent to be heated,vaporized,and away from the pores of porous materials.The local void produced by the escape of polar solvent facilitates non-polar solvent containing metallic precursor to be dragged into the narrow pores,followed by further reduction,resulting in the complete encapsulation of nanoparticles.A series of metal nanoparticles@porous materials,ranging from metal-organic frameworks(MOFs)to zeolites,are successfully prepared by this method and show excellent size selectivity in catalytic reactions.展开更多
London’s approaches to tackling climate change after the 21st century are multifaceted and relatively systematic.The aim of this research paper is to analyse London’s actions in response to climate change and to dra...London’s approaches to tackling climate change after the 21st century are multifaceted and relatively systematic.The aim of this research paper is to analyse London’s actions in response to climate change and to draw out what valuable lessons London has for the world in terms of its response to climate change.This paper provides an in-depth analysis of London’s policies and actions on climate mitigation in the areas of“greenhouse gas emissions”and“energy infrastructure”,and climate adaptation actions in the areas of“city green belt and urban afforestation”,“UHI and thermal crisis management”and“water supply infrastructure and sustainable drainage”.It then examines the positive aspects of these actions to determine what London has to say about climate change to the rest of the world and other cities.This paper also discovers that to effectively mitigate and adapt to climate change,London has not only established carbon reduction targets,but also created a large academic research network,represented by the LCCP.At the same time,London has developed a scientific climate change adaptation planning framework(P2R2)that focuses on four key areas:Economic,environmental,health,and infrastructure sectors,and three types of risks:Flooding,heat,and water supply,and emphasizes the dynamics and flexibility of each adaptation strategy.展开更多
Considering the coupled heat transfer effect induced by parallel cross-river road tunnels, the long-term soil temperature variations of shallow sections of cross-river tunnels under the river beach are predicted using...Considering the coupled heat transfer effect induced by parallel cross-river road tunnels, the long-term soil temperature variations of shallow sections of cross-river tunnels under the river beach are predicted using the finite difference method for numerical simulation. The boundary conditions and the initial values are determined by in situ observations and numerical iterations.The simulation results indicate that the ultimate calculated steady heat transfer time is 68 years, and most of the heat transfer is completed in 20 years.The initial constant temperature soil surrounding the tunnels is transformed to an annually variable one.An obvious temperature-varying region of the surrounding soil is discovered within 5 m from the tunnel exterior, as well as within the entire range of soil between the two tunnels.The maximum temperature increase value reaches 7.14 ℃ and the maximum peak-to-valley value of annual temperature increase reaches 10 ℃.The temperature variation of soils surrounding tunnels below 10 m is completely controlled by the heat transfer from the tunnels.The coupled heat transfer effect is confirmed because the ultimate steady temperature of soil between the two tunnels is higher than the ones along other positions.Moreover, the regression model comprising a series of univariate functions is proposed for the annual soil temperature fluctuation estimation for the locations varied distances around the tunnel.This investigation is beneficial to gain an insight into the long-term variation tendencies of local engineering geological conditions of the river beach above shallow sections of the cross-river road tunnels.展开更多
DSOI,bulk Si and SOI MOSFETs are fabricated on the same die successfully using local oxygen implantation process.The thermal properties of the three kinds of devices are described and compared from simulation and mea...DSOI,bulk Si and SOI MOSFETs are fabricated on the same die successfully using local oxygen implantation process.The thermal properties of the three kinds of devices are described and compared from simulation and measurement.Both simulation and measurement prove that DSOI MOSFETs have the advantage of much lower thermal resistance of substrate and suffer less severe self heating effect than their SOI counterparts. At the same time,the electrical advantages of SOI devices can stay.The thermal resistance of DSOI devices is very close to that of bulk devices and DSOI devices can keep this advantage into deep sub micron realm.展开更多
[Objective] The aim was to analyse the variation characteristics of temperature in Anqing City and urban heat island effect.[Method] Based on the observation data of temperature from Anqing Station,other surrounding m...[Objective] The aim was to analyse the variation characteristics of temperature in Anqing City and urban heat island effect.[Method] Based on the observation data of temperature from Anqing Station,other surrounding meteorological stations and local automatic meteorological stations in suburbs,the annual variation of temperature and regional consistency was analysed,then the abrupt change of annual average temperature was tested by Mann-Kendall test,finally the influences of urban heat island effect on temperature variation in Anqing Station were studied.[Result] Affected by station migration and urban construction,the annual average temperature increased significantly in Anqing Station from 1977 to 2009,and the rising was more prominent after the middle of the 1990s.Mann-Kendall test showed that the change of temperature in Anqing Station was obviously abrupt around 1993;because of the development of urbanization,average temperature in Anqing Station was 0.8 ℃ higher than that in suburbs,and the minimum temperature rose more remarkably.In addition,urban heat island effect was the strongest in spring,followed by summer and autumn,while it was the weakest in winter.[Conclusion] The effects of urbanization development on the temperature in Anqing City were understood through this research.展开更多
Considering the main thermal forcing factor, which is critical for the development of synoptic systems, the concept of the moist ageostrophic vector Q is introduced. A formula of the moist ageostrophic Q and the ageos...Considering the main thermal forcing factor, which is critical for the development of synoptic systems, the concept of the moist ageostrophic vector Q is introduced. A formula of the moist ageostrophic Q and the ageostrophic diabatic equation, in which the divergence of the moist ageostrophic Q is taken as a single forcing term, is derived. Meanwhile, the moist ageostrophic Q is applied to diagnose a torrential rain process in North China. The results suggest that the moist ageostrophic Q can clearly reveal the system development during the torrential rain process; the corresponding relationship between the divergence of the moist ageostrophic Q and the rainfall area is better than that of the vertical velocity (w) and the divergence of the dry Q; the 6-h rainfall region can be correctly drawn according to the negative area of the divergence of the moist ageostrophic Q, and its precipitation is positively correlated to the magnitude of the divergence of the moist ageostrophic Q. The research provides valuable information for improving short-term weather forecast.展开更多
基金Key Project of Joint Meteorological Fund of the National Natural Science Foundation of China (U2242202)Key Project of the National Natural Science Foundation of China (42030611)+1 种基金Innovative Development Special Project of China Meteorological Administration (CXFZ2023J016)Innovation Team Fund of Sichuan Provincial Meteorological Service (SCQXCX7D-202201)。
文摘Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest vortex in the warm-sector during a“rain-generated vortex”process and the deep southwest vortex in a“vortex-generated rain”process.The findings were as follows:(1)During the extreme rainstorm on August 11,2020(hereinafter referred to as the“8·11”process),intense surface heating and a high-energy unstable environment were observed.The mesoscale convergence system triggered convection to produce heavy rainfall,and the release of latent condensation heat generated by the rainfall promoted the formation of a southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy preceded the increase(decrease)in vorticity.By contrast,the extreme rainstorm on August 16,2020(hereinafter referred to as the“8·16”process)involved the generation of southwest vortex in a low-energy and highhumidity environment.The dynamic uplift of the southwest vortex triggered rainfall,and the release of condensation latent heat from rainfall further strengthened the development of the southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy exhibited a delayed progression compared to the increase(decrease)in vorticity.(2)The heating effect around the southwest vortex region was non-uniform,and the heating intensity varied in different stages.In the“8·11”process,the heating effect was the strongest in the initial stage,but weakened during the vortex's development.On the contrary,the heating effect was initially weak in the“8·16”process,and intensified during the development stage.(3)The available potential energy of the“8·11”process significantly increased in kinetic energy converted from rotational and divergent winds through baroclinic action,and the divergent wind energy continued to convert into rotational wind energy.By contrast,the“8·16”process involved the conversion of rotational wind energy into divergent wind energy,which in turn converted kinetic energy back into available potential energy,thereby impeding the further development and maintenance of the southwest vortex.
文摘In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest access. Urban Heat Island Effects are measurable phenomenon that are being experienced by the world’s most urbanized areas, including increased summer high temperatures and lower evapotranspiration from having impervious surfaces instead of vegetation and trees. Tree canopy cover is our natural mitigation tool that absorbs sunlight for photosynthesis, protects humans from incoming radiation, and releases cooling moisture into the air. Unfortunately, urban areas typically have low levels of vegetation. Vulnerable urban communities are lower-income areas of inner cities with less access to heat protection like air conditioners. This study uses mean evapotranspiration levels to assess the variability of urban heat island effects across the state of Tennessee. Results show that increased developed land surface cover in Tennessee creates measurable changes in atmospheric evapotranspiration. As a result, the mean evapotranspiration levels in areas with less tree vegetation are significantly lower than the surrounding forested areas. Central areas of urban cities in Tennessee had lower mean evapotranspiration recordings than surrounding areas with less development. This work demonstrates the need for increased tree canopy coverage.
文摘Nanofluids have attracted many scientists due to their remarkable thermophysical properties.Small percentage of nanoparticles when added to conventional fluid significantly enhances the heat transfer features.Sustainability and efficiency of nanomaterials have key role in the advancement of nanotechnology.This article analyzes the Hall,Ohmic heating and velocity slip effects on the peristalsis of nanofluid.Convective boundary conditions and heat generation/absorption are considered to facilitate the heat transfer characteristics.Governing equations for the peristaltic flow through a curved channel are derived in curvilinear coordinates.The equations are numerically solved under the assumption of long wavelength and small Reynold number.It has been observed that nanofluid enhances the heat transfer rate and reduces the fluid temperature.Hartman number and Hall parameter show reverse behavior in fluid motion and heat transfer characteristics.In the presence of velocity slip,the pressure gradient rapidly decreases and dominant effect is seen in narrow portion of channel.
基金supported by the National Natural Science Foundation of China(51506160,11472208,11472209)China Post-Doctoral Science Foundation Project(2015M580845)+1 种基金the Fundamental Research Funds for Xi’an Jiaotong University(xjj2015102)the Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering(NR2016K01)
文摘A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH, a unit cell (UC) for thermal transport analysis was selected to calculate its effective thermal conductivity. Without introducing any empirical coefficient, we modified and extended the analytical model of parallel-series thermal-electric network to a wider porosity range (0.7 ~ 0.98) by considering the effects of two-dimensional local heat conduction in solid ligaments inside each UC. Good agreement was achieved between analytical predictions and numerical simulations based on the method of finite volume. The concept of ligament heat conduction efficiency (LTCE) was proposed to physically explain the mechanisms underlying the effects of ligament configuration on effective thermal conductivity (ETC). Based upon the proposed theory, a construct strategy was developed for designing the ETC by altering the equivalent interaction angle with the direction of heat flow: relatively small average interaction angle for thermal conduction and relatively large one for thermal insulation.
文摘Flow thermomechanics in reactive porous media is of importance in industry including the thermal processing of fossil fuel(coking understood as a slow pyrolysis)involving devolatilisation.On the way to provide a detailed description of the process,a multi-scale approach was chosen to estimate effective transport coefficients.For this case the Lattice Boltzmann method(LBM)was used due to its advantages to accurately model multi-physics and chemistry in a random geometry of granular media.After account for earlier studies,the paper presents description of the model with improved boundary conditions and a benchmark case.Results from meso-scale LBM calculations are presented and discussed regarding the spatial resolution and the choice of relaxation parameter along its influence on the accuracy compared with empirical formulae.Regarding the estimation of effective thermal conductivity coefficient it is shown that occurrence of devolatilization has a crucial effect by reducing heat transfer.Some quantitative results characterise the propagation of thermal front;also presented is the evolution of effective thermal conductivity.The work is a step forward towards a physically sound simulation of thermal processing of fossil fuel.
基金Project supported by the National Natural Science Foundation of China(Grant No.11572139).
文摘Dielectrophoresis(DEP)technology has become important application of microfluidic technology to manipulate particles.By using a local modulating electric field to control the combination of electroosmotic microvortices and DEP,our group proposed a device using a direct current(DC)electric field to achieve continuous particle separation.In this paper,the influence of the Joule heating effect on the continuous separation of particles is analyzed.Results show that the Joule heating effect is caused by the local electric field,and the Joule heating effect caused by adjusting the modulating voltage is more significant than that by driving voltage.Moreover,a non-uniform temperature distribution exists in the channel due to the Joule heating effect,and the temperature is the highest at the midpoint of the modulating electrodes.The channel flux can be enhanced,and the enhancement of both the channel flux and temperature is more obvious for a stronger Joule heating effect.In addition,the ability of the vortices to trap particles is enhanced since a larger DEP force is exerted on the particles with the Joule heating effect;and the ability of the vortex to capture particles is stronger with a stronger Joule heating effect.The separation efficiency can also be increased because perfect separation is achieved at a higher channel flux.Parameter optimization of the separation device,such as the convective heat transfer coefficient of the channel wall,the length of modulating electrode,and the width of the channel,is performed.
基金supported by the National Natural Science Foundation of China (Nos.10872076 and 50805059)
文摘This paper presents a numerical analysis of Joule heating effect of electroosmo- sis in a finite-length microchannel made of the glass and polydimethylsiloxane (PDMS) polymer. The Poisson-Boltzmann equation of electric double layer, the Navier-Stokes equation of liquid flow, and the liquid-solid coupled heat transfer equation are solved to investigate temperature behaviors of electroosmosis in a two-dimensional microchannel. The feedback effect of temperature variation on liquid properties (dielectric constant, vis- cosity, and thermal and electric conductivities) is taken into account. Numerical results indicate that there exists a heat developing length near the channel inlet where the flow velocity, temperature, pressure, and electric field rapidly vary and then approach to a steady state after the heat developing length, which may occupy a considerable portion of the microchannel in cases of thick chip and high electric field. The liquid temperature of steady state increases with the increase of the applied electric field, channel width, and chip thickness. The temperature on a PDMS wall is higher than that on a glass wall due to the difference of heat conductivities of materials. Temperature variations are found in the both longitudinal and transverse directions of the microchannel. The increase of the temperature on the wall decreases the charge density of the electric double layer. The longitudinal temperature variation induces a pressure gradient and changes the behavior of the electric field in the microchannel. The inflow liquid temperature does not change the liquid temperature of steady state and the heat developing length.
基金Projects(30571779,10775085) supported by the National Natural Science Foundation of ChinaProject(Z07000200540704) supported by Beijing Municipal Science and Technology Commission,China
文摘Fe3O4 magnetic nanoparticles with diameters varying from 10 to 426 nm were synthesized and characterized.Heating effects of Fe3O4 magnetic nanoparticles under radiofrequency capacitive field(RCF) with frequency of 27.12 MHz and power of 60-150 W were investigated.When the power of RCF is lower than 90 W,temperatures of Fe3O4 magnetic nanoparticles(75-150 mg/mL) can be raised and maximal temperatures are all lower than 50 ℃.When the power of RCF is 90-150 W,temperatures of Fe3O4 magnetic nanoparticles can be quickly raised and are all obviously higher than those of normal saline and distilled water under the same conditions.Temperature of Fe3O4 magnetic nanoparticles can even reach 70.2 ℃ under 150 W RCF.Heating effects of Fe3O4 magnetic nanoparticles are related to RCF power,particle size and particle concentration.
基金Project supported by Hi-Tech Research and Development Program of China (Grant Nos. 2007AA05Z436 and 2009AA050602)Science and Technology Support Project of Tianjin (Grant No. 08ZCKFGX03500)+3 种基金National Basic Research Program of China(Grant Nos. 2006CB202602 and 2006CB202603)National Natural Science Foundation of China (Grant No. 60976051)International Cooperation Project between China-Greece Government (Grant Nos. 2006DFA62390 and 2009DFA62580)Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0295)
文摘A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied. It includes the discharge time-accumulating heating effect, discharge power, inter-electrode distance, and total gas flow rate induced heating effect. It is found that the heating effects mentioned above are in some ways quite similar to and in other ways very different from each other. However, all of them will directly or indirectly cause the increase of the substrate surface temperature during the process of depositing microcrystalline silicon thin films, which will affect the properties of the materials with increasing time. This phenomenon is very serious for the high deposition rate of microcrystalline silicon thin films because of the high input power and the relatively small inter-electrode distance needed. Through analysis of the heating effects occurring in the process of depositing microcrystalline silicon, it is proposed that the discharge power and the heating temperature should be as low as possible, and the total gas flow rate and the inter-electrode distance should be suitable so that device-grade high quality deposition rate microcrystalline silicon thin films can be fabricated.
基金funded this research through grant NITT/R&C/SEED GRANT/2021e22/P.14.
文摘Alterations made to the natural ground surface and the anthropogenic activity elevate the surface and air temperature in the urban areas compared with the surrounding rural areas,known as urban heat island effect.Thermal remote sensors measure the radiation emitted by ground objects,which can be used to estimate the land surface temperature and are beneficial for studying urban heat island effects.The present study investigates the spatial and temporal variations in the effects of urban heat island over Tiruchirappalli city in India during the summer and winter seasons.The study also identifies hot spots and cold spots within the study area.In this study,a significant land surface temperature difference was observed between the urban and rural areas,predominantly at night,indicating the presence of urban heat island at night.These diurnal land surface temperature fluctuations are also detected seasonally,with a relatively higher temperature intensity during the summer.The trend line analysis shows that the mean land surface temperature of the study area is increasing at a rate of 0.166 K/decade with p less than 0.01.By using the spatial autocorrelation method with the urban heat island index as the key parameter,hot spots with a 99 percent confidence level and a 95 percent confidence level were found within the urban area.A hot spot with 95 and 90 percent confidence level was identified outside the urban area.This spike in temperature for a particular region in the rural area is due to industry and the associated built-up area.The study also identified cold spots with a 90 percent confidence level within the rural area.However,cold spots with a 95 and 99 percent confidence level were not identified within the study area.
基金Under the auspices of the National Science Foundation of Sichuan Province(No.2022NSFSC1006)Science and Technology Innovation Capability Improvement Plan Project of Chengdu University of Information Technology in 2022(No.KYQN202215)the National Science Foundation of China(No.41505122)。
文摘With the advancement of urbanization,the urban heat island effect and ozone pollution have become hot issues in urban research.The urban heat island effect can impact ozone conversion,but its mechanism of action is unclear.In this study,the effects of the urban heat island effect on ozone concentration in Chengdu City,China,were investigated by comparing the ozone concentration under different heat island levels with ozone data from March 2020 to February 2021 and the temperature and wind field data of ERA5-Land during the same period.The results showed that:1)regarding the distribution characteristics,the ozone concentration in Chengdu presented a‘high in summer and low in winter’distribution.The ozone concentration in summer(189.54µg/m^(3))was nearly twice that in winter(91.99µg/m^(3)),and the ozone diurnal variation presented a‘single peak and single valley’distribution,with a peak at 16:00.2)For the characteristics of the heat island effect,the heat island intensity in Chengdu was obviously higher in spring than in other seasons,and the diurnal variation showed a‘single peak and single valley’distribution,with the peak and trough values appearing at 9:00 and 17:00,respectively.Spatially,the eastern part of Chengdu was a heat island,while the western and northwestern parts were mostly cold island.3)The correlation analysis between heat island intensity and ozone concentration showed a significant positive correlation but with a 7–8 h time lag.Ambient air temperature was not the main factor affecting ozone concentration.The heat island effect impacts the ozone concentration in two ways:changing the local heat budget to promote ozone generation and forming local urban wind,which promotes ozone diffusion or accumulation and forms different areas of low and high ozone values.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA23060703)the National Natural Science Foundation of China(41671068)the State Key Laboratory of Cryospheric Science(SKLCS-ZZ-2023)。
文摘The Qinghai-Tibet Plateau(QTP)possesses the largest areas of permafrost in the midand low latitude regions on the earth and many large lakes in the permafrost area.Based on a comprehensive investigation around certain typical lakes,this study found that although the presence of lakes formed different ranges of unfrozen zones in permafrost,the heating effect of lake water on surrounding permafrost is limited to a small extent.The temperature of permafrost around the lake is closely related to the distance to the lake and the ice content of the permafrost.Around lakes are ice-rich permafrost zones and permafrost temperature in this area is significantly lower than that far away from the lake,which indicates that the existence of lakes in the QTP has special effect on the permafrost distribution.Based on the monitoring results,this study presents the typical distribution pattern of the permafrost around large lakes and discusses the reasons for the distribution pattern.Due to the huge area of lakes and the significant impact of lakes on permafrost distribution,it is suggested to re-estimate the total permafrost area and underground ice storage in the QTP.
基金supported by the National Natural Science Foundation of China (51874281)the Graduate Innovation Program of China University of Mining and Technology (2022WLKXJ006)the Postgraduate Research&Practice Innovation Program of Jiangsu Province (KYCX22_2612).
文摘In the present research,we proposed a scheme to address the issues of severe heat damage,high energy consumption,low cooling system efficiency,and wastage of cold capacity in mines.To elucidate the seasonal variations of environmental temperature through field measurements,we selected a high-temperature working face in a deep mine as our engineering background.To enhance the heat damage control cability of the working face and minimize unnecessary cooling capac-ity loss,we introduced the multi-dimensional heat hazard prevention and control method called"Heat source barrier and cooling equipment".First,we utilize shotcrete and liquid nitrogen injection to eliminate the heat source and implemented pressure equalization ventilation to disrupt the heat transfer path,thereby creating a heat barrier.Second,we establish divi-sional prediction models for airflow temperature based on the variation patterns obtained through numerical simulation.Third,we devise the location and dynamic control strategy for the cooling equipment based on the prediction models.The results of field application show that the heat resistance and cooling linkage method comply with the safety requirement throughout the entire mining cycle while effectively reducing energy consumption.The ambient temperature is maintained below 30℃,resulting in the energy saving of 10%during the high-temperature period and over 50%during the low-temperature period.These findings serve as a valuable reference for managing heat damage in high-temperature working faces.
基金Supported by the Science and Technology Research Project of Shandong Meteorological Bureau(2022SDQN17).
文摘Based on the local climate zoning theory and the observation data of hourly temperature of 22 automatic weather stations from 2012 to 2021, K-means clustering algorithm was used to analyze the daily, monthly, seasonal, annual and spatial variation characteristics of urban heat island effect in Weihai City in the past 10 years. The results showed that in recent 10 years, the average urban heat island intensity was 1.24 ℃, showing a gradual weakening trend of -0.169 3 ℃/10 a;the summer average heat island intensity was 0.86 ℃, showing a gradual weakening trend of -0.047 5 ℃/10 a. The heat island intensity had obvious diurnal variation characteristics, that is, "it was weak in the day and strong at night". In terms of seasonal variation, heat island effect was the weakest in summer, stronger in spring and autumn, and the strongest in winter. The diurnal, seasonal and annual changes of heat island intensity showed a reverse trend to those of temperature. The high-value area of urban heat island was highly consistent with human residential activity areas and industrial and commercial intensive areas, and the extension trend of heat island intensity was the same as the direction of urban development and construction. The "cold island phenomenon" in some offshore areas was related to the geographical location, terrain and the southeast monsoon trend in summer. The adverse effects of urban heat island effect can be reduced by optimizing the types and distribution of vegetation communities, rationally planning and constructing urban water body, promoting green building materials and adjusting shape design, etc.
基金supported by the National Natural Science Foundation of China(Nos.21908105,21971114 and 62288102)the Nanjing Municipal Science and Technology Innovation Project.
文摘Metal nanoparticle@porous material composites have attracted increasing attention due to their excellent synergistic catalytic performance.However,it is a challenge to introduce metal nanoparticles into cavities of porous materials without agglomeration on the exterior.Despite the progress achieved,a universal approach that can integrate different kinds of metal nanoparticles and porous materials is still highly desirable.Here we report a facile and general approach to fabricating metal nanoparticle@porous materials by microwave-triggered selective heating.The microwave can pass through the non-polar solvent and act on the polar solvent in the porous materials,causing the polar solvent to be heated,vaporized,and away from the pores of porous materials.The local void produced by the escape of polar solvent facilitates non-polar solvent containing metallic precursor to be dragged into the narrow pores,followed by further reduction,resulting in the complete encapsulation of nanoparticles.A series of metal nanoparticles@porous materials,ranging from metal-organic frameworks(MOFs)to zeolites,are successfully prepared by this method and show excellent size selectivity in catalytic reactions.
文摘London’s approaches to tackling climate change after the 21st century are multifaceted and relatively systematic.The aim of this research paper is to analyse London’s actions in response to climate change and to draw out what valuable lessons London has for the world in terms of its response to climate change.This paper provides an in-depth analysis of London’s policies and actions on climate mitigation in the areas of“greenhouse gas emissions”and“energy infrastructure”,and climate adaptation actions in the areas of“city green belt and urban afforestation”,“UHI and thermal crisis management”and“water supply infrastructure and sustainable drainage”.It then examines the positive aspects of these actions to determine what London has to say about climate change to the rest of the world and other cities.This paper also discovers that to effectively mitigate and adapt to climate change,London has not only established carbon reduction targets,but also created a large academic research network,represented by the LCCP.At the same time,London has developed a scientific climate change adaptation planning framework(P2R2)that focuses on four key areas:Economic,environmental,health,and infrastructure sectors,and three types of risks:Flooding,heat,and water supply,and emphasizes the dynamics and flexibility of each adaptation strategy.
基金The National Natural Science Foundation of China(No.40902076)the Natural Science Foundation of Jiangsu Province(No.BK20141224)
文摘Considering the coupled heat transfer effect induced by parallel cross-river road tunnels, the long-term soil temperature variations of shallow sections of cross-river tunnels under the river beach are predicted using the finite difference method for numerical simulation. The boundary conditions and the initial values are determined by in situ observations and numerical iterations.The simulation results indicate that the ultimate calculated steady heat transfer time is 68 years, and most of the heat transfer is completed in 20 years.The initial constant temperature soil surrounding the tunnels is transformed to an annually variable one.An obvious temperature-varying region of the surrounding soil is discovered within 5 m from the tunnel exterior, as well as within the entire range of soil between the two tunnels.The maximum temperature increase value reaches 7.14 ℃ and the maximum peak-to-valley value of annual temperature increase reaches 10 ℃.The temperature variation of soils surrounding tunnels below 10 m is completely controlled by the heat transfer from the tunnels.The coupled heat transfer effect is confirmed because the ultimate steady temperature of soil between the two tunnels is higher than the ones along other positions.Moreover, the regression model comprising a series of univariate functions is proposed for the annual soil temperature fluctuation estimation for the locations varied distances around the tunnel.This investigation is beneficial to gain an insight into the long-term variation tendencies of local engineering geological conditions of the river beach above shallow sections of the cross-river road tunnels.
文摘DSOI,bulk Si and SOI MOSFETs are fabricated on the same die successfully using local oxygen implantation process.The thermal properties of the three kinds of devices are described and compared from simulation and measurement.Both simulation and measurement prove that DSOI MOSFETs have the advantage of much lower thermal resistance of substrate and suffer less severe self heating effect than their SOI counterparts. At the same time,the electrical advantages of SOI devices can stay.The thermal resistance of DSOI devices is very close to that of bulk devices and DSOI devices can keep this advantage into deep sub micron realm.
文摘[Objective] The aim was to analyse the variation characteristics of temperature in Anqing City and urban heat island effect.[Method] Based on the observation data of temperature from Anqing Station,other surrounding meteorological stations and local automatic meteorological stations in suburbs,the annual variation of temperature and regional consistency was analysed,then the abrupt change of annual average temperature was tested by Mann-Kendall test,finally the influences of urban heat island effect on temperature variation in Anqing Station were studied.[Result] Affected by station migration and urban construction,the annual average temperature increased significantly in Anqing Station from 1977 to 2009,and the rising was more prominent after the middle of the 1990s.Mann-Kendall test showed that the change of temperature in Anqing Station was obviously abrupt around 1993;because of the development of urbanization,average temperature in Anqing Station was 0.8 ℃ higher than that in suburbs,and the minimum temperature rose more remarkably.In addition,urban heat island effect was the strongest in spring,followed by summer and autumn,while it was the weakest in winter.[Conclusion] The effects of urbanization development on the temperature in Anqing City were understood through this research.
基金supported by the National Natural Science Foundation of China under Grant Nos.40205008 and 401350201.
文摘Considering the main thermal forcing factor, which is critical for the development of synoptic systems, the concept of the moist ageostrophic vector Q is introduced. A formula of the moist ageostrophic Q and the ageostrophic diabatic equation, in which the divergence of the moist ageostrophic Q is taken as a single forcing term, is derived. Meanwhile, the moist ageostrophic Q is applied to diagnose a torrential rain process in North China. The results suggest that the moist ageostrophic Q can clearly reveal the system development during the torrential rain process; the corresponding relationship between the divergence of the moist ageostrophic Q and the rainfall area is better than that of the vertical velocity (w) and the divergence of the dry Q; the 6-h rainfall region can be correctly drawn according to the negative area of the divergence of the moist ageostrophic Q, and its precipitation is positively correlated to the magnitude of the divergence of the moist ageostrophic Q. The research provides valuable information for improving short-term weather forecast.