Chemical effects in different aqueous solutions induced by plasma with glow discharge electrolysis (GDE) and contact glow discharge electrolysis (CGDE) are described in this paper. The experimental and discharge char...Chemical effects in different aqueous solutions induced by plasma with glow discharge electrolysis (GDE) and contact glow discharge electrolysis (CGDE) are described in this paper. The experimental and discharge characteristics are also reviewed. These are followed by a discussion of their mechanisms of both anodic and cathodic CGDE..展开更多
The amounts of rare earth in the solid solution in steel 16Mn were determined by means of inductive coupling plasma(ICP)spectroscopy.While the RE/S ratio was less than 1.9,the amounts of rare earth in solid solution w...The amounts of rare earth in the solid solution in steel 16Mn were determined by means of inductive coupling plasma(ICP)spectroscopy.While the RE/S ratio was less than 1.9,the amounts of rare earth in solid solution were not more than 8 ppm,which rised slightly with the increase of the rare earth content in the steel.While the RE/S was more than 1.9,MnS disappeared completely in the steel and the amounts of rare earth in solid solution increased rapidly with the increasing of the rare earth content.The solubility of cerium in steel 16 Mn(St 52)is less than 0.011 wt% at room temperature.The results also indicate that rare earth in solid solution can reduce the amount of pearlite and increase that of ferrite and its mierohardness.The rela- tionship between microhardness(Hv)and the amount of rare earth in solid solution can be expressed by the equation of Hv=117+7 RE(ppm).展开更多
Ultrafine particles prepared by evaporating pure Fe in CH4 atmosphere using arc-dischargeheating method, were found to consist of Fe-C solid solution, γ-Fe and Fe3C phases. EfFect of annealing temperature on phase tr...Ultrafine particles prepared by evaporating pure Fe in CH4 atmosphere using arc-dischargeheating method, were found to consist of Fe-C solid solution, γ-Fe and Fe3C phases. EfFect of annealing temperature on phase transformation and hyperfine interactions has been investigated by Mossbauer spectroscopy, X-ray diffraction (XRD), differential thermal analysis and thermogravimetry (DTA-TG), transmission electron microscopy (TEM), oxygen determination and vibrating sample magnetometer (VSM) measurements. It was observed that phase transformation of γ-Fe to α-Fe occurs during annealing in vacuum. The mechanism causing the change of hyperfine interactions with annealing temperature differs for Fe-C solution and interstitial compounds. DifFerence of hyperfine interactions of Fe-C solid solution in the starting sample and its annealed samples is ascribed to the improvement of activation of interstitial carbon atoms. Stress-relieving in structure of annealed Fe3C particle can result in a weak influence on hyperfine interactions. Parameters fitted to the Mossbauer spectra show the existence of superparamagnetism in all the samples. Absorbed and combined oxygen on particle surface of the starting sample were determined.展开更多
The rocks surrounding a roadway exhibit some special and complex phenomena with increasing depth of excavation in underground engineering.Quasi-static analysis cannot adequately explain these engineering problems.The ...The rocks surrounding a roadway exhibit some special and complex phenomena with increasing depth of excavation in underground engineering.Quasi-static analysis cannot adequately explain these engineering problems.The computational model of a circular roadway considering the transient effect of excavation unloading is established for these problems.The time factor makes the solution of the problem difficult.Thus,the computational model is divided into a dynamic model and a static model.The Laplace integral transform and inverse transform are performed to solve the dynamic model and elasticity theory is used to analyze the static model.The results from an example show that circumferential stress increases and radial stress decreases with time.The stress difference becomes large gradually in this progress.The displacement increases with unloading time and decreases with the radial depth of surrounding rocks.It can be seen that the development trend of unloading and displacement is similar by comparing their rates.Finally,the results of ANSYS are used to verify the analytical solution.The contrast indicates that the laws of the two methods are basically in agreement.Thus,the analysis can provide a reference for further study.展开更多
Objective To evaluate the effect of tumescent infiltration solution temperature on core body temperatureafter liposuction.Methods 15 healthy female subjects were randomly divided into 2 groups to receive tumescent inf...Objective To evaluate the effect of tumescent infiltration solution temperature on core body temperatureafter liposuction.Methods 15 healthy female subjects were randomly divided into 2 groups to receive tumescent infiltration展开更多
In the Yangtze river aera,the first crop of indi-ca rice is sown in late Mar to early Apr andtransplanted in early May.Usually,seedlingsperish when abnormal low temperature of 6-10℃ lasted for 3 d or longer.The effec...In the Yangtze river aera,the first crop of indi-ca rice is sown in late Mar to early Apr andtransplanted in early May.Usually,seedlingsperish when abnormal low temperature of 6-10℃ lasted for 3 d or longer.The effect ofsocking seed with urea solution on increasingthe cold tolerance at the seedling stage was展开更多
The diffusion coefficients(Dapp) and the heterogeneous electron-transfer rate constants(ks)for ferrocene and its seven derivatives in MPEG/LiClO4 electrolyte were determined by using steadystate voltammetry. The two p...The diffusion coefficients(Dapp) and the heterogeneous electron-transfer rate constants(ks)for ferrocene and its seven derivatives in MPEG/LiClO4 electrolyte were determined by using steadystate voltammetry. The two parameters increase with increasing temperature, indicating Arrhenius behavior. The effects of the nature of electroactive solute molecules on Dapp, ks, and the half-wave potentials(E1/2) are discussed.展开更多
The calculation equation of large diameter bored pile's effective length is connected with its distribution of pile shaft resistance. Thus, there is a great difference between the calculation results under the differ...The calculation equation of large diameter bored pile's effective length is connected with its distribution of pile shaft resistance. Thus, there is a great difference between the calculation results under the different distributions of pile shaft resistance. Primarily, this paper summarizes the conceptualized mode of pile shaft resistance under the circum- stance that the soil surrounding the piles presents different layer distributions. Secondly, based on Mindlin's displacement solution and in consideration of the effect of pile diam- eter, the calculation equation is optimized with the assumption that the pile shaft resis- tance has a parabolic distribution. The influencing factors are analyzed according to the calculation result of effective pile length. Finally, combined with an engineering example, the calculation equation deduced in this paper is analyzed and verified. The result shows that both the Poisson ratio of soil and pile diameter have impacted the effective pile length. Compared with the Poisson ratio of soil, the effect of pile diameter is more significant. If the pile diameter remains the same, the effect of the Poisson ratio of soil to the effective pile length decreases as the ratio of pile elastic modulus and soil share modulus increases. If the Poisson ratio of soil remains the same, the effect of the pile diameter to the effective pile length increases as the ratio of pile elastic modulus and soil share modulus increases. Thus the optimized calculation result of pile effective length under the consideration of pile diameter effect is more close to the actual situation of engineering and reasonably practicable.展开更多
The aim of the present paper is to study the numerical solutions of the steady MHD two dimensional stagnation point flow of an incompressible nano fluid towards a stretching cylinder.The effects of radiation and conve...The aim of the present paper is to study the numerical solutions of the steady MHD two dimensional stagnation point flow of an incompressible nano fluid towards a stretching cylinder.The effects of radiation and convective boundary condition are also taken into account.The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis.The resulting nonlinear momentum,energy and nano particle equations are simplifed using similarity transformations.Numerical solutions have been obtained for the velocity,temperature and nanoparticle fraction profles.The influence of physical parameters on the velocity,temperature,nanoparticle fraction,rates of heat transfer and nanoparticle fraction are shown graphically.展开更多
文摘Chemical effects in different aqueous solutions induced by plasma with glow discharge electrolysis (GDE) and contact glow discharge electrolysis (CGDE) are described in this paper. The experimental and discharge characteristics are also reviewed. These are followed by a discussion of their mechanisms of both anodic and cathodic CGDE..
文摘The amounts of rare earth in the solid solution in steel 16Mn were determined by means of inductive coupling plasma(ICP)spectroscopy.While the RE/S ratio was less than 1.9,the amounts of rare earth in solid solution were not more than 8 ppm,which rised slightly with the increase of the rare earth content in the steel.While the RE/S was more than 1.9,MnS disappeared completely in the steel and the amounts of rare earth in solid solution increased rapidly with the increasing of the rare earth content.The solubility of cerium in steel 16 Mn(St 52)is less than 0.011 wt% at room temperature.The results also indicate that rare earth in solid solution can reduce the amount of pearlite and increase that of ferrite and its mierohardness.The rela- tionship between microhardness(Hv)and the amount of rare earth in solid solution can be expressed by the equation of Hv=117+7 RE(ppm).
文摘Ultrafine particles prepared by evaporating pure Fe in CH4 atmosphere using arc-dischargeheating method, were found to consist of Fe-C solid solution, γ-Fe and Fe3C phases. EfFect of annealing temperature on phase transformation and hyperfine interactions has been investigated by Mossbauer spectroscopy, X-ray diffraction (XRD), differential thermal analysis and thermogravimetry (DTA-TG), transmission electron microscopy (TEM), oxygen determination and vibrating sample magnetometer (VSM) measurements. It was observed that phase transformation of γ-Fe to α-Fe occurs during annealing in vacuum. The mechanism causing the change of hyperfine interactions with annealing temperature differs for Fe-C solution and interstitial compounds. DifFerence of hyperfine interactions of Fe-C solid solution in the starting sample and its annealed samples is ascribed to the improvement of activation of interstitial carbon atoms. Stress-relieving in structure of annealed Fe3C particle can result in a weak influence on hyperfine interactions. Parameters fitted to the Mossbauer spectra show the existence of superparamagnetism in all the samples. Absorbed and combined oxygen on particle surface of the starting sample were determined.
基金supported by the National Natural Science Foundation of China (Nos.51479108 and 51174196)the National Basic Research Program of China (No.2014CB046300)+1 种基金Shandong University of Science and Technology (No.2012KYTD104)Research Start-up Project of Shandong University of Science and Technology (No.2015RCJJ061)
文摘The rocks surrounding a roadway exhibit some special and complex phenomena with increasing depth of excavation in underground engineering.Quasi-static analysis cannot adequately explain these engineering problems.The computational model of a circular roadway considering the transient effect of excavation unloading is established for these problems.The time factor makes the solution of the problem difficult.Thus,the computational model is divided into a dynamic model and a static model.The Laplace integral transform and inverse transform are performed to solve the dynamic model and elasticity theory is used to analyze the static model.The results from an example show that circumferential stress increases and radial stress decreases with time.The stress difference becomes large gradually in this progress.The displacement increases with unloading time and decreases with the radial depth of surrounding rocks.It can be seen that the development trend of unloading and displacement is similar by comparing their rates.Finally,the results of ANSYS are used to verify the analytical solution.The contrast indicates that the laws of the two methods are basically in agreement.Thus,the analysis can provide a reference for further study.
文摘Objective To evaluate the effect of tumescent infiltration solution temperature on core body temperatureafter liposuction.Methods 15 healthy female subjects were randomly divided into 2 groups to receive tumescent infiltration
文摘In the Yangtze river aera,the first crop of indi-ca rice is sown in late Mar to early Apr andtransplanted in early May.Usually,seedlingsperish when abnormal low temperature of 6-10℃ lasted for 3 d or longer.The effect ofsocking seed with urea solution on increasingthe cold tolerance at the seedling stage was
文摘The diffusion coefficients(Dapp) and the heterogeneous electron-transfer rate constants(ks)for ferrocene and its seven derivatives in MPEG/LiClO4 electrolyte were determined by using steadystate voltammetry. The two parameters increase with increasing temperature, indicating Arrhenius behavior. The effects of the nature of electroactive solute molecules on Dapp, ks, and the half-wave potentials(E1/2) are discussed.
基金supported by the National Natural Science Foundation of China(51208047)
文摘The calculation equation of large diameter bored pile's effective length is connected with its distribution of pile shaft resistance. Thus, there is a great difference between the calculation results under the different distributions of pile shaft resistance. Primarily, this paper summarizes the conceptualized mode of pile shaft resistance under the circum- stance that the soil surrounding the piles presents different layer distributions. Secondly, based on Mindlin's displacement solution and in consideration of the effect of pile diam- eter, the calculation equation is optimized with the assumption that the pile shaft resis- tance has a parabolic distribution. The influencing factors are analyzed according to the calculation result of effective pile length. Finally, combined with an engineering example, the calculation equation deduced in this paper is analyzed and verified. The result shows that both the Poisson ratio of soil and pile diameter have impacted the effective pile length. Compared with the Poisson ratio of soil, the effect of pile diameter is more significant. If the pile diameter remains the same, the effect of the Poisson ratio of soil to the effective pile length decreases as the ratio of pile elastic modulus and soil share modulus increases. If the Poisson ratio of soil remains the same, the effect of the pile diameter to the effective pile length increases as the ratio of pile elastic modulus and soil share modulus increases. Thus the optimized calculation result of pile effective length under the consideration of pile diameter effect is more close to the actual situation of engineering and reasonably practicable.
文摘The aim of the present paper is to study the numerical solutions of the steady MHD two dimensional stagnation point flow of an incompressible nano fluid towards a stretching cylinder.The effects of radiation and convective boundary condition are also taken into account.The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis.The resulting nonlinear momentum,energy and nano particle equations are simplifed using similarity transformations.Numerical solutions have been obtained for the velocity,temperature and nanoparticle fraction profles.The influence of physical parameters on the velocity,temperature,nanoparticle fraction,rates of heat transfer and nanoparticle fraction are shown graphically.