期刊文献+
共找到220篇文章
< 1 2 11 >
每页显示 20 50 100
Thermal conductivity of hydrate and effective thermal conductivity of hydrate-bearing sediment
1
作者 Cunning Wang Xingxun Li +2 位作者 Qingping Li Guangjin Chen Changyu Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期176-188,共13页
The research on the thermal property of the hydrate has recently made great progress,including the understanding of hydrate thermal conductivity and effective thermal conductivity(ETC)of hydratebearing sediment.The th... The research on the thermal property of the hydrate has recently made great progress,including the understanding of hydrate thermal conductivity and effective thermal conductivity(ETC)of hydratebearing sediment.The thermal conductivity of hydrate is of great significance for the hydrate-related field,such as the natural gas hydrate exploitation and prevention of the hydrate plugging in oil or gas pipelines.In order to obtain a comprehensive understanding of the research progress of the hydrate thermal conductivity and the ETC of hydrate-bearing sediment,the literature on the studies of the thermal conductivity of hydrate and the ETC of hydrate-bearing sediment were summarized and reviewed in this study.Firstly,experimental studies of the reported measured values and the temperature dependence of the thermal conductivity of hydrate were discussed and reviewed.Secondly,the studies of the experimental measurements of the ETC of hydrate-bearing sediment and the effects of temperature,porosity,hydrate saturation,water saturation,thermal conductivity of porous medium,phase change,and other factors on the ETC of hydrate-bearing sediment were discussed and reviewed.Thirdly,the research progress of modeling on the ETC of the hydrate-bearing sediment was reviewed.The thermal conductivity determines the heat transfer capacity of the hydrate reservoir and directly affects the hydrate exploitation efficiency.Future efforts need to be devoted to obtain experimental data of the ETC of hydrate reservoirs and establish models to accurately predict the ETC of hydrate-bearing sediment. 展开更多
关键词 HYDRATE thermal conductivity Hydrate-bearing sediment Preparation method effective thermal conductivity MODEL
下载PDF
Theoretical study on the effective thermal conductivity of silica aerogels based on a cross-aligned and cubic pore model
2
作者 郑坤灿 李震东 +2 位作者 曹豫通 刘犇 胡君磊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期28-36,共9页
Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, ma... Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, making them a new type of lightweight and highly efficient nanoscale super-insulating material. However, prediction of their effective thermal conductivity is challenging due to their uneven pore size distribution. To investigate the internal heat transfer mechanism of aerogel nanoporous materials, this study constructed a cross-aligned and cubic pore model(CACPM) based on the actual pore arrangement of SiO_(2) aerogel. Based on the established CACPM, the effective thermal conductivity expression for the aerogel was derived by simultaneously considering gas-phase heat conduction, solid-phase heat conduction, and radiative heat transfer. The derived expression was then compared with available experimental data and the Wei structure model. The results indicate that, according to the model established in this study for the derived thermal conductivity formula of silica aerogel, for powdery silica aerogel under the conditions of T = 298 K, a_(2)= 0.85, D_(1)= 90 μm, ρ = 128 kg/m^(3), within the pressure range of 0–10^(5)Pa, the average deviation between the calculated values and experimental values is 10.51%. In the pressure range of 10^(3)–10^(4)Pa, the deviation between calculated values and experimental values is within 4%. Under these conditions, the model has certain reference value in engineering verification. This study also makes a certain contribution to the research of aerogel thermal conductivity heat transfer models and calculation formulae. 展开更多
关键词 silica aerogel effective thermal conductivity two pore-size structure model porous medium heat transfer
下载PDF
A Prediction Model of Effective Thermal Conductivity for Metal Powder Bed in Additive Manufacturing
3
作者 Yizhen Zhao Hang Zhang +2 位作者 Jianglong Cai Shaokun Ji Dichen Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期67-77,共11页
In current research,many researchers propose analytical expressions for calculating the packing structure of spherical particles such as DN Model,Compact Model and NLS criterion et al.However,there is still a question... In current research,many researchers propose analytical expressions for calculating the packing structure of spherical particles such as DN Model,Compact Model and NLS criterion et al.However,there is still a question that has not been well explained yet.That is:What is the core factors affecting the thermal conductivity of particles?In this paper,based on the coupled discrete element-finite difference(DE-FD)method and spherical aluminum powder,the relationship between the parameters and the thermal conductivity of the powder(ETC_(p))is studied.It is found that the key factor that can described the change trend of ETC_(p) more accurately is not the materials of the powder but the average contact area between particles(a_(ave))which also have a close nonlinear relationship with the average particle size d_(50).Based on this results,the expression for calculating the ETC_(p) of the sphere metal powder is successfully reduced to only one main parameter d_(50)and an efficient calculation model is proposed which can applicate both in room and high temperature and the corresponding error is less than 20.9%in room temperature.Therefore,in this study,based on the core factors analyzation,a fast calculation model of ETC_(p) is proposed,which has a certain guiding significance in the field of thermal field simulation. 展开更多
关键词 POWDER effective thermal conductivity Calculation model thermal field simulation
下载PDF
A Novel Approach for the Effective Thermal Conductivity of Porous Ceramics 被引量:8
4
作者 ZHU Qiang ZHANG Fan-wei +2 位作者 ZHANG Yue ZHANG Da-hai LI Zhong-ping 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期244-247,共4页
A new approach in combination of the effective medium theory with the equivalent unit in numerical simulation was developed to study the effective thermal conductivity of porous ceramics. The finite element method was... A new approach in combination of the effective medium theory with the equivalent unit in numerical simulation was developed to study the effective thermal conductivity of porous ceramics. The finite element method was used to simulate the heat transfer process which enables to acquire accurate results through highly complicated modeling and intensive computation. An alternative approach to mesh the material into small cells was also presented. The effective medium theory accounts for the effective thermal conductivity of cells while the equivalent unit is subsequently applied in numerical simulation to analyze the effective thermal conductivity of the porous ceramics. A new expression for the effective thermal conductivity, allowing for some structure factors such as volume fraction of pores and thermal conductivity, was put forward, and the results of its application was proved to be close to those of the mathematical simulation. 展开更多
关键词 effective thermal conductivity porous ceramics equivalent unit numerical simulation
下载PDF
Random checkerboard based homogenization for estimating effective thermal conductivity of fully saturated soils 被引量:4
5
作者 Dariusz Lydzba Adrian Rózanski +1 位作者 Magdalena Rajczakowska Damian Stefaniuk 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第1期18-28,共11页
This paper proposes homogenization scheme for estimating the effective thermal conductivity of fully saturated soils. This approach is based on the random checkerboard-like microstructure. Two modeling scales and two ... This paper proposes homogenization scheme for estimating the effective thermal conductivity of fully saturated soils. This approach is based on the random checkerboard-like microstructure. Two modeling scales and two modeling approaches are distinguished and used, i.e. microscale and mesoscale and 1-step and 2-step homogenizations, respectively. The 2-step homogenization involves sequential averaging procedure, i.e. first, at microscale, a mineralogical composition of soil skeleton is considered and averaging process results in estimation of the skeleton effective thermal conductivity, and then, at mesoscale, a random spatial packing of solid skeleton and pores via random checkerboard microstructure is modeled and leads to evaluation of the soil overall thermal conductivity. The 1-step homogenization starts directly at the mesoscale and homogenization procedure yields evaluation of the overall soil thermal conductivity. At the mesoscale, the distinct nature of soil skeleton, as composed of soil separates,is considered and random variability of soil is modeled via enriched random checkerboard-like structure.Both approaches, i.e. 1-step and 2-step homogenizations, interrelate mineralogical composition with the soil texture characterized by the volume fractions of soil separates, i.e. sand, silt and clay. The probability density functions(PDFs) of thermal conductivity are assumed for each of the separates. The soil texture PDF of thermal conductivity is derived taking into consideration the aforementioned functions. Whenever the random checkerboard-like structure is used in averaging process, the Monte Carlo procedure is applied for estimation of homogenized thermal conductivity. Finally, the proposed methodology is tested against the laboratory data from our measurements as well as those available from literature. 展开更多
关键词 Soil mechanics MICROMECHANICS effective thermal conductivity
下载PDF
A Fractal Model for the Effective Thermal Conductivity of Granular Flow with Non—uniform Particles 被引量:1
6
作者 ZHANGDuan-Ming LEIYa-Jie 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第2期231-236,共6页
The equipartition of energy applied in binary mixture of granular flow is extended to granular flow withnon-uniform particles. Based on the fractal characteristic of granular flow with non-uniform particles as well as... The equipartition of energy applied in binary mixture of granular flow is extended to granular flow withnon-uniform particles. Based on the fractal characteristic of granular flow with non-uniform particles as well as energyequipartition, a fractal velocity distribution function and a fractal model of effective thermal conductivity are derived.Thermal conduction resulted from motions of particles in the granular flow, as well as the effect of fractal dimension oneffective thermal conductivity, is discussed. 展开更多
关键词 FRACTAL effective thermal conductivity granular flow
下载PDF
A THEORY OF EFFECTIVE THERMAL CONDUCTIVITY FOR MATRIX-INCLUSION-MICROCRACK THREE-PHASE HETEROGENEOUS MATERIALS BASED ON MICROMECHANICS 被引量:1
7
作者 Zhang, QJ Zhai, PC Li, Y 《Acta Mechanica Solida Sinica》 SCIE EI 2000年第2期179-187,共9页
The effective thermal conductivity of matrix-inclusion-microcrack three-phase heterogeneous materials is investigated with a self-consistent micromechanical method (SCM) and a random microstructure finite element meth... The effective thermal conductivity of matrix-inclusion-microcrack three-phase heterogeneous materials is investigated with a self-consistent micromechanical method (SCM) and a random microstructure finite element method(RMFEM). In the SCM, microcracks are assumed to be randomly distributed and penny-shaped and inclusions to be spherical, the crack effect is accounted for by introducing a crack density parameter, the effective thermal conductivity is derived which relates the macroscopic behavior to the crack density parameter. In the RMFEM, the highly irregular microstructure of the heterogeneous media is accurately described, the interaction among the matrix-inclusion-microcracks is exactly treated, the inclusion shape effect and crack size effect are considered. A Ni/ZrO2 particulate composite material containing randomly distributed, penny-shaped cracks is examined as an example. The main results obtained are: (1) the effective thermal conductivity is sensitive to the crack density and exhibits essentially a linear relationship with the density parameter: (2) the inclusion shape has a significant effect on the effective thermal conductivity and a polygon-shaped inclusion is more effective in increasing or decreasing the effective thermal conductivity than a sphere-shaped one; and (3) the SCM and RMFEM are compared and the two methods give the same effective property in the case in which the matrix thermal conductivity A, is greater than the inclusion one lambda(2). In the inverse case of lambda(1) < lambda(2), the two methods as the as the inclusion volume fraction and crack density are low and differ as they are high. A reasonable explanation for the agreement and deviation between the two methods in the case of lambda(1) < lambda(2) is made. 展开更多
关键词 effective thermal conductivity heterogeneous materials MICROCRACKS MICROMECHANICS
下载PDF
Analytical design of effective thermal conductivity for fluid-saturated prismatic cellular metal honeycombs 被引量:3
8
作者 Wenbin Wang Xiaohu Yang +3 位作者 Bin Han Qiancheng Zhang Xiangfei Wang Tianjian Lu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第2期69-75,共7页
A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH,... A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH, a unit cell (UC) for thermal transport analysis was selected to calculate its effective thermal conductivity. Without introducing any empirical coefficient, we modified and extended the analytical model of parallel-series thermal-electric network to a wider porosity range (0.7 ~ 0.98) by considering the effects of two-dimensional local heat conduction in solid ligaments inside each UC. Good agreement was achieved between analytical predictions and numerical simulations based on the method of finite volume. The concept of ligament heat conduction efficiency (LTCE) was proposed to physically explain the mechanisms underlying the effects of ligament configuration on effective thermal conductivity (ETC). Based upon the proposed theory, a construct strategy was developed for designing the ETC by altering the equivalent interaction angle with the direction of heat flow: relatively small average interaction angle for thermal conduction and relatively large one for thermal insulation. 展开更多
关键词 effective thermal conductivityPrismatic cellular metal honeycombLigament heat conduction efficiencyAnalytical designEquivalent interaction angle
下载PDF
Numerical Predictions of the Effective Thermal Conductivity of the Rigid Polyurethane Foam 被引量:2
9
作者 方文振 TANG Yuqing +1 位作者 ZHANG Hu 陶文铨 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期703-708,共6页
A reconstruction method is proposed for the polyurethane foam and then a complete numerical method is developed to predict the effective thermal conductivity of the polyurethane foam. The finite volume method is appli... A reconstruction method is proposed for the polyurethane foam and then a complete numerical method is developed to predict the effective thermal conductivity of the polyurethane foam. The finite volume method is applied to solve the 2D heterogeneous pure conduction. The lattice Boltzmann method is adopted to solve the 1D homogenous radiative transfer equation rather than Rosseland approximation equation. The lattice Boltzmann method is then adopted to solve 1D homogeneous conduction-radiation energy transport equation considering the combined effect of conduction and radiation. To validate the accuracy of the present method, the hot disk method is adopted to measure the effective thermal conductivity of the polyurethane foams at different temperature. The numerical results agree well with the experimental data. Then, the influences of temperature, porosity and cell size on the effective thermal conductivity of the polyurethane foam are investigated. The results show that the effective thermal conductivity of the polyurethane foams increases with temperature; and the effective thermal conductivity of the polyurethane foams decreases with increasing porosity while increases with the cell size. 展开更多
关键词 polyurethane foam effective thermal conductivity lattice Boltzmann method radiation hot disk
下载PDF
Effective Thermal Conductivity with Convection and Radiation in Packed Bed 被引量:1
10
作者 Yusuke Asakuma Tsuyoshi Yamamoto 《Journal of Energy and Power Engineering》 2013年第4期639-646,共8页
Effective thermal conductivity with convection and radiation is analyzed by the homogenization method. This method can precisely represent the microstructure of a packed bed. In this study, the effects of parameters s... Effective thermal conductivity with convection and radiation is analyzed by the homogenization method. This method can precisely represent the microstructure of a packed bed. In this study, the effects of parameters such as the radiation emissivity, temperature, contact area and particle size of the packed bed on the conductivity have been estimated. For example, heat transfer by radiation does not dominate if the material has voids of less than l mm in size. Moreover, the effects of contact area and pressure on effective thermal conductivity are negligible for thermal radiation. By considering the microscopic behavior of a packed bed, the homogenization method is thus a powerful tool for estimating the bed's effective thermal conductivity. 展开更多
关键词 effective thermal conductivity homogenization method multiscale analysis MICROSTRUCTURE thermal radiation.
下载PDF
Effect of residual interface stress on effective thermal expansion coefficient of particle-filled thermoelastic nanocomposite
11
作者 黄汝超 陈永强 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第11期1377-1388,共12页
The surface/interface energy theory based on three configurations proposed by Huang et al. is used to study the effective properties of thermoelastic nanocomposites. The particular emphasis is placed on the discussion... The surface/interface energy theory based on three configurations proposed by Huang et al. is used to study the effective properties of thermoelastic nanocomposites. The particular emphasis is placed on the discussion of the influence of the residual inter- face stress on the thermal expansion coefficient of a thermoelastic composite filled with nanoparticles. First, the thermo-elastic interface constitutive relations expressed in terms of the first Piola-Kirchhoff interface stress and the Lagrangian description of the gen- eralized Young-Laplace equation are presented. Second, the Hashin's composite sphere assemblage (CSA) is taken as the representative volume element (RVE), and the residual elastic field induced by the residual interface stress in this CSA at reference configuration is determined. Elastic deformations in the CSA from the reference configuration to the current configuration are calculated. Prom the above calculations, analytical expressions of the effective bulk modulus and the effective thermal expansion coefficient of thermoelastic composite are derived. It is shown that the residual interface stress has a significant effect on the thermal expansion properties of thermoelastic nanocomposites. 展开更多
关键词 NANOCOMPOSITE thermal elastoplastic effective thermal expansion residualinterface stress SIZE-DEPENDENT
下载PDF
Two-step homogenization for the effective thermal conductivities of twisted multi-filamentary superconducting strand
12
作者 Yongbin WANG Huadong YONG Youhe ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第5期689-708,共20页
For the accurate prediction of the effective thermal conductivities of the twisted multi-filamentary superconducting strand,a two-step homogenization method is adopted.Based on the distribution of filaments,the superc... For the accurate prediction of the effective thermal conductivities of the twisted multi-filamentary superconducting strand,a two-step homogenization method is adopted.Based on the distribution of filaments,the superconducting strand can be decomposed into a set of concentric cylinder layers.Each layer is a two-phase composite composed of the twisted filaments and copper matrix.In the first step of homogenization,the representative volume element(RVE)based finite element(FE)homogenization method with the periodic boundary condition(PBC)is adopted to evaluate the effective thermal conductivities of each layer.In the second step of homogenization,the generalized self-consistent method is used to obtain the effective thermal conductivities of all the concentric cylinder layers.The accuracy of the developed model is validated by comparing with the local and full-field FE simulation.Finally,the effects of the twist pitch on the effective thermal conductivities of twisted multi-filamentary superconducting strand are studied. 展开更多
关键词 superconducting strand multi-filamentary two-step homogenization effective thermal conductivity
下载PDF
Calculating the effective thermal conductivity of gray cast iron by using an interconnected graphite model
13
作者 Guang-hua Wang Yan-xiang Li 《China Foundry》 SCIE 2020年第3期183-189,共7页
A new theoretical model of gray cast iron taking into account a locally interconnected structure of flake graphite was designed,and the corresponding effective thermal conductivity was calculated using the thermal res... A new theoretical model of gray cast iron taking into account a locally interconnected structure of flake graphite was designed,and the corresponding effective thermal conductivity was calculated using the thermal resistance network method.The calculated results are obviously higher than that of the effective medium approximation assuming that graphite is distributed in isolation.It is suggested that the interconnected structure significantly enhances the overall thermal conductivity.Moreover,it is shown that high anisotropy of graphite thermal conductivity,high volume fraction of graphite,and small aspect ratio of flake graphite will cause the connectivity effects of graphite to more obviously improve the overall thermal conductivity.Higher graphite volume fraction,lower aspect ratio and higher matrix thermal conductivity are beneficial to obtain a high thermal conductivity gray cast iron.This work can provide guidance and reference for the development of high thermal conductivity gray cast iron and the design of high thermal conductivity composites with similar locally interconnected structures. 展开更多
关键词 gray cast iron effective thermal conductivity flake graphite interconnected graphite structure
下载PDF
Effective thermal conductivity of wire-woven bulk Kagome sandwich panels
14
作者 Xiaohu Yang Jiaxi Bai +2 位作者 Ki-Ju Kang Tianjian Lu Tongbeum Kim 《Theoretical & Applied Mechanics Letters》 CAS 2014年第5期60-66,共7页
Thermal transport in a highly porous metallic wire-woven bulk Kagome (WBK) is numerically and analytically modeled. Based on topology similarity and upon introducing an elongation parameter in thermal tortuosity, an... Thermal transport in a highly porous metallic wire-woven bulk Kagome (WBK) is numerically and analytically modeled. Based on topology similarity and upon introducing an elongation parameter in thermal tortuosity, an idealized Kagome with non-twisted struts is employed. Special focus is placed upon quanti- fying the effect of topological anisotropy of WBK upon its effective conductivity. It is demonstrated that the effective conductivity reduces linearly as the poros- ity increases, and the extent of the reduction is significantly dependent on the orientation of WBK. The governing physical mechanism of anisotropic thermal transport in WBK is found to be the anisotropic thermal tortuosity caused by the intrinsic anisotropic topology of WBK. 展开更多
关键词 effective thermal conductivity wire-woven bulk Kagome ANISOTROPY analyticalmodel
下载PDF
Achieving thermal magnification by using effective thermal conductivity
15
作者 Qingxiang Ji Guodong Fang Jun Liang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第3期164-170,共7页
thermal magnification device is proposed by using effective thermal conductivity. Different fromtransformation optics method, the magnification design is realized analytically by enforcingequality of effective ther... thermal magnification device is proposed by using effective thermal conductivity. Different fromtransformation optics method, the magnification design is realized analytically by enforcingequality of effective thermal conductivity on the magnification device and the reference case inspecified domains. The validity of theoretical analysis is checked by numerical simulation results,which demonstrates the magnifying effects of the proposed design. The device only needsisotropic and homogeneous materials that are easy to obtain in nature. It is also shown that theobtained magnifying conditions are the same as those derived by separation of variables. But theproposed method proves more flexible for multilayered materials and simpler for non-sphericalobjects under non-uniform thermal fields. It can also be extended to other fields and applicationsgoverned by Laplace equation. 展开更多
关键词 thermal magnification effective thermal conductivity Separation of variables
下载PDF
The Possibilities of Determining the Effective Thermal Conductivity of Steel Rectangular Section Bundles Based on the Selected Literature Models
16
作者 Rafal Wyczolkowski Agnieszka Benduch 《Journal of Physical Science and Application》 2016年第4期48-58,共11页
The article presents the results of calculations of the effective thermal conductivity kef for bundles of steel rectangular sections obtained for a few analytical models. This coefficient expresses the ability of the ... The article presents the results of calculations of the effective thermal conductivity kef for bundles of steel rectangular sections obtained for a few analytical models. This coefficient expresses the ability of the bundles to heat transfer. The knowledge about the values of the kef coefficient of the section bundles is essential to correctly identify the parameters of their heat treatment process. The quality of the Calculation results were verified by the experimental measurement data. These measurements were performed in the guarded hot plate apparatus. It should be noted, that none of the eleven analyzed models of effective thermal conductivity is suitable for evaluation of thermal properties of the section bundles. 展开更多
关键词 effective thermal conductivity steel rectangular sections heat treatment porous charge.
下载PDF
An Effective Thermal Splicing Method to Join Fluoride and Silica Fibers for a High Power Regime
17
作者 郑志坚 欧阳德钦 +4 位作者 赵俊清 阮双琛 余军 郭春雨 王金章 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第11期63-66,共4页
A repeatable and simple thermal splicing method for low loss splice between fluoride and silica fibers is presented. The minimum splicing loss of 0.58 dB is achieved experimentally with this approach, Meanwhile, the p... A repeatable and simple thermal splicing method for low loss splice between fluoride and silica fibers is presented. The minimum splicing loss of 0.58 dB is achieved experimentally with this approach, Meanwhile, the power capacity of this splicing joint is also tested with a high power fiber laser. The maximum input power is up to 15 W, only limited by the available power of the laser source. To the best of our knowledge, this is the first report on thermal splicing between fluoride and silica fibers operating in a high power regime without any complicated ion-assisted deposition process. 展开更多
关键词 An effective thermal Splicing Method to Join Fluoride and Silica Fibers for a High Power Regime
下载PDF
Effective thermal conductivity estimation using a convolutional neural network and its application in topology optimization 被引量:1
18
作者 Andre Adam Huazhen Fang Xianglin Li 《Energy and AI》 EI 2024年第1期236-247,共12页
Topology optimization of heterogeneous structures can find significant use in a wide range of applications,and its fabrication has been made possible by recent advances in additive manufacturing.However,the optimizati... Topology optimization of heterogeneous structures can find significant use in a wide range of applications,and its fabrication has been made possible by recent advances in additive manufacturing.However,the optimization procedure is computationally expensive,as each structural update requires the re-evaluation of the properties.The computational time is the major limiting factor in large-scale and complex structural optimization.In this study,a convolutional neural network(CNN)model for predicting effective thermal conductivity inspired by the VGG networks is proposed.Trained using 130,000 unique binary images,the model achieves high predictive accuracy.Specifically,it shows a mean absolute percent error(MAPE)of 0.35%in testing when the thermal conductivity of the solid is ten times larger than the fluid,and when the thermal conductivities assigned are that of aluminum and water,the MAPE is 2.35%.The prediction time is 15 ms for a single image with 128×128 pixels,which is 3 to 5 orders of magnitude faster than a finite volume simulation.When employed in topology optimization,the CNN retains a MAPE between 0.67%and 11.8%for different cases.The CNN model correctly predicts trends in effective thermal conductivity and improves the structure to close proximity of a theoretical maximum in all cases. 展开更多
关键词 Machine learning effective thermal conductivity Convolutional neural network VGG Numerical heat transfer Topology optimization
原文传递
Efficient activation of the Co/SBA-15catalyst by high-frequency AC-DBD plasma thermal effects for toluene removal
19
作者 李越 姜楠 +5 位作者 刘政妍 秦亮 彭邦发 王荣刚 孙玉荣 李杰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期84-94,共11页
Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated d... Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated during the discharge process leads to energy waste and low energy utilization efficiency.In this work,an innovative DBD thermally-conducted catalysis(DBD-TCC)system,integrating high-frequency AC-DBD plasma and its generated thermal effects to activate the Co/SBA-15 catalyst,was employed for toluene removal.Specifically,Co/SBA-15 catalysts are closely positioned to the ground electrode of the plasma zone and can be heated and activated by the thermal effect when the voltage exceeds 10 k V.At12.4 k V,the temperature in the catalyst zone reached 261℃ in the DBD-TCC system,resulting in an increase in toluene degradation efficiency of 17%,CO_(2)selectivity of 21.2%,and energy efficiency of 27%,respectively,compared to the DBD system alone.In contrast,the DBD thermally-unconducted catalysis(DBD-TUC)system fails to enhance toluene degradation due to insufficient heat absorption and catalytic activation,highlighting the crucial role of AC-DBD generated heat in the activation of the catalyst.Furthermore,the degradation pathway and mechanism of toluene in the DBD-TCC system were hypothesized.This work is expected to provide an energy-efficient approach for high-frequency AC-DBD plasma removal of VOCs. 展开更多
关键词 high-frequency alternating-current power thermal effect dielectric barrier discharge toluene degradation Co/SBA-15 catalysts
下载PDF
Determination of Effective Thermal Conductivity ForReal Porous Media Using Fractal Theory 被引量:8
20
作者 ChenYongping ShiMingheng 《Journal of Thermal Science》 SCIE EI CAS CSCD 1999年第2期102-107,共6页
In this paper, using fractal theory3 the geometric structure of real soil was described with its sectionview and section particle area fractal dimension d of porous media was counted. The volumetric solidcontent and t... In this paper, using fractal theory3 the geometric structure of real soil was described with its sectionview and section particle area fractal dimension d of porous media was counted. The volumetric solidcontent and the relation between volumetric solid content and porous media particle arrangementsas well as measure scale were obtainted. A heat conduction model was established and the effectivethermal conductivity of real soil based on the volumetric solid content was calculated. 展开更多
关键词 effective thermal conductivity porous media FRACTAL
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部