The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation s...The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation services.With the expansion of the railway networks,enhancing the efficiency and safety of the comprehensive system has become a crucial issue in the advanced development of railway transportation.In light of the prevailing application of artificial intelligence technologies within railway systems,this study leverages large model technology characterized by robust learning capabilities,efficient associative abilities,and linkage analysis to propose an Artificial-intelligent(AI)-powered railway control and dispatching system.This system is elaborately designed with four core functions,including global optimum unattended dispatching,synergetic transportation in multiple modes,high-speed automatic control,and precise maintenance decision and execution.The deployment pathway and essential tasks of the system are further delineated,alongside the challenges and obstacles encountered.The AI-powered system promises a significant enhancement in the operational efficiency and safety of the composite railway system,ensuring a more effective alignment between transportation services and passenger demands.展开更多
For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmissi...For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.展开更多
PEM (Proton Exchange Membrane) fuel cell is a promising renewable energy source to a wide range of applications for its clean products and high power density. However, controlling its humidity is a challenging probl...PEM (Proton Exchange Membrane) fuel cell is a promising renewable energy source to a wide range of applications for its clean products and high power density. However, controlling its humidity is a challenging problem due to the interdependence of several phenomena contributing in membrane's water content. This work deals with efficiency improvement of PEM fuel cells via humidity control. An innovative strategy of control based on the model of Ref. [1] is proposed. It consists on regulating gas humidification rates according to the power demand so that to minimize power losses. The proposed control takes into consideration constraints related to humidification in order to avoid dry out or flooding of the membrane. Simulations results show that time-phasing between hydrogen and oxygen humidification rates plays an important role in minimizing power losses. The proposed control shows significant improvement in the fuel cell's efficiency up to 20%.展开更多
The conventional P & O (perturb-and-observe) method, which is the most widely used as MPPT (maximum power point tracking) control, has the problem of low efficiency and unstable operation when solar radiation cha...The conventional P & O (perturb-and-observe) method, which is the most widely used as MPPT (maximum power point tracking) control, has the problem of low efficiency and unstable operation when solar radiation changes drastically. Aiming at this problem, this paper improves the conventional P & O method to reduce the bad effect of solar radiation by shortening the sampling interval of PV module's output power while keeping the operating period unchanged. Experiments are conducted to study efficiency gains of improved method when solar radiation changes drastically. The result shows that, by this method, the efficiency of MPPT control can be increased 17% in average when PV module simulator is used and 20% at maximum when actual PV module is used, compared with the conventional P & O method.展开更多
According to data collected from 1935 statistics-worthy Chinese chemical fibre enterprises surveyed by National Bureau of Statistics of China, the total profits reached CNY8.066 billion in Jan. -May, 2010, up 200.08 p...According to data collected from 1935 statistics-worthy Chinese chemical fibre enterprises surveyed by National Bureau of Statistics of China, the total profits reached CNY8.066 billion in Jan. -May, 2010, up 200.08 per cent y/y, 234.78 percentage points higher than the Jan.-May 2009 period. Technology improvement and industrial structural adjustment played a very major role on profi t growth.展开更多
We applied water releasing from rootstocks technique and Juglans sigillata in Yangbi was pruned in the shape of opened-heart or round-heart shape. By bal- anced fertilization, survival rate of grafted walnuts can be i...We applied water releasing from rootstocks technique and Juglans sigillata in Yangbi was pruned in the shape of opened-heart or round-heart shape. By bal- anced fertilization, survival rate of grafted walnuts can be improved. We reviewed technologies to enhance walnut quality and production efficiency in Gongshan Derung and Nu Autonomous County for reference.展开更多
When artificial waterfalls are built in gardens,leaves from trees or vegetation often fall into the water storage pool and block the pipelines,requiring regular cleaning of pipelines.This not only increases the manpow...When artificial waterfalls are built in gardens,leaves from trees or vegetation often fall into the water storage pool and block the pipelines,requiring regular cleaning of pipelines.This not only increases the manpower needed for maintenance but also disrupts the use of the waterfalls.Therefore,it is necessary to design a new type of artificial waterfall that is suitable for gardens.The waterfall should incorporate features that make cleaning easier,including filter plates and water funnels to prevent clogging caused by fallen leaves and debris.展开更多
Internet of Things(IoT)technology is widely used in various fields,and its application in elderly care services has been highlighted in recent years.This study aims to explore how IoT technology can improve the effici...Internet of Things(IoT)technology is widely used in various fields,and its application in elderly care services has been highlighted in recent years.This study aims to explore how IoT technology can improve the efficiency of group-based elderly care services.The concept,characteristics,and current application status of IoT technology in elderly care services were introduced.Secondly,the characteristics and needs of group elderly care services were analyzed,including advantages and challenges,as well as the expectations and needs of the elderly for elderly care services.The evaluation methods and future development directions of IoT technology in improving the efficiency of group elderly care services were discussed,including data collection and analysis methods,selection and measurement of efficiency evaluation indicators,challenges,and development directions.展开更多
According to the technical approach of green production and yield increase pattern,green,pollution-free,quality and efficiency improvement can be achieved by reducing nitrogen,controlling phosphorus and stabilizing po...According to the technical approach of green production and yield increase pattern,green,pollution-free,quality and efficiency improvement can be achieved by reducing nitrogen,controlling phosphorus and stabilizing potassium,replenishing sulfur,zinc,iron,manganese and boron from the aspects of controlling fertilizer,drug and water.The main measures include combination use of organic and inorganic fertilizer,effective control of the amount of nitrogen and phosphate fertilizer,reduction of the application amount of chemical fertilizers and pesticides,and rational crop rotation to reduce the occurrence of diseases and insect pests,which can improve the yield and quality of tomato.展开更多
The study explores how educational digitalization enables the precise development of ideological and political education in colleges and universities.Digital transformation enables colleges and universities to accurat...The study explores how educational digitalization enables the precise development of ideological and political education in colleges and universities.Digital transformation enables colleges and universities to accurately define educational objectives,content strategies,effect evaluation,and process management,and realize the precision and intelligence of ideological and political education.The application of big data technology enhances the data-oriented thinking of teachers and students,promotes the accurate application of data,and improves the efficiency of ideological and political education.The research also prospected a new vision of the digital construction of ideological and political courses and clarified the theoretical and practical path of the implementation and evaluation mode of ideological and political courses under digital empowerment.Education digitalization enables precise ideological and political education,which is a key way to promote the innovative development of ideological and political education in colleges and universities and will strongly support the improvement of the overall quality of higher education and the training of excellent talents.展开更多
As the main equipment of flue gas dedusting in coal fired boiler,electrostatic precipitator(ESP)can meet the requirements of emission standard for air pollutants from coal-fired power plants through improving the effi...As the main equipment of flue gas dedusting in coal fired boiler,electrostatic precipitator(ESP)can meet the requirements of emission standard for air pollutants from coal-fired power plants through improving the efficiency of ESP and combining with desulfurization system while not installing wet ESP(WESP).This paper introduces the modifications of ESP cathode structure to improve the efficiency of dust collection by reducing the secondary dust loss at cathode.The application of cathode dust collection provides a reference for the improvement of ESP dust collection efficiency.展开更多
A two⁃port encapsulated low⁃contrast grating with suppressed zeroth order under normal incidence is described in this paper.Based on such grating configuration,the improved efficiency and spectral bandwidth of the fir...A two⁃port encapsulated low⁃contrast grating with suppressed zeroth order under normal incidence is described in this paper.Based on such grating configuration,the improved efficiency and spectral bandwidth of the first order for TE and TM polarizations with a designed period of 1860 nm can be obtained.On the one hand,some of the accurate grating parameters were numerically optimized utilizing a rigorous coupled⁃wave analysis;on the other hand,the inherent physical mechanism suppressing the zeroth order through an encapsulated fused⁃silica grating was adequately interpreted on account of a simplified modal method.Encapsulated grating with a cover layer cannot be simply considered as adding a coating on it.Compared with reported surface⁃relief grating,all parameters of encapsulated grating should be re⁃optimized and the optimized performances of encapsulated grating were greatly improved.Therefore,the encapsulated grating can be potentially applied in writing fiber Bragg gratings.展开更多
The article describes the possibilities of application of simulation modeling for the analysis of infrastructure and technology of transport services of enterprises. The main technological and possible economic effect...The article describes the possibilities of application of simulation modeling for the analysis of infrastructure and technology of transport services of enterprises. The main technological and possible economic effects for the enterprises arising at performance of modeling of a transport component of their work are resulted.展开更多
ZTE Corporation is China’s largest listedtelecommunications equipment provider spe-cialized in offering a full range of tailor-madesolutions for customers in high-,middle-andlow-end markets.
It is well known that increasing the rotational velocity is an effective way to increase the total pressure ratio. With increasing flow velocity especially under the condition of transonic flow in the supersonic regio...It is well known that increasing the rotational velocity is an effective way to increase the total pressure ratio. With increasing flow velocity especially under the condition of transonic flow in the supersonic region, where exist strong shock waves, the shock wave loss becomes main and important. Simultaneously, there occurs boundary layer separation due to the shock wave / boundary layer interaction. In the present paper the transonic compressor blades were studied and analyzed to find a proper and simple way to reduce the shock wave loss by optimizing the suction surface configuration or controlling the gradient of isentropic Mach number on the suction surface. A Navier-Stokes solver combined with a modified design algorithm was developed and used. The NASA single rotor for transonic flow compressor was served as a numerical example to show the effectiveness of this method. Two cases for both original and modified rotors were analyzed and compared.展开更多
The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal ...The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal combustion engine is identified,which is believed to be one of the important limiting factors of energy efficiency for conventional engines available in the current market.An approach for engine efficiency improvement through optimal matching between mechanics and thermodynamics(OMBMT)is proposed.An ideal matching model is defined and the conflicts due to the constraints among the mapping strokes in a 4-stroke engine are analyzed.A novel mechanical model is built for approaching optimal matching among all 4 individual strokes in a 4-stroke spark-ignition engine,which is composed of non-circular gears(NCG)and integrated with conventional slider crank engine mechanism.By means of digital mechanical model and numerical simulation,the matching gains among all 4 strokes are defined and calculated for quantifying the NCG engine efficiency improvement by comparing with a baseline engine.The potentials with the OMBMT implemented and the enhancements made by NCG mechanism for engines in terms of overall engine efficiency are reported.Based on the results achieved,it is recommended that the feasibility studies and the experimental validations should be conducted to verify the engine matching concept and effectiveness of the NCG mechanism engine model proposed,and the engine performance and NCG design parameters should be further optimized.展开更多
[Objectives]To investigate the application effect of compound microbial fertilizer on crops.[Methods]Livestock and poultry breeding waste,rapeseed cake and peanut straw were fully decomposed,and then added with compou...[Objectives]To investigate the application effect of compound microbial fertilizer on crops.[Methods]Livestock and poultry breeding waste,rapeseed cake and peanut straw were fully decomposed,and then added with compound functional microbial inoculum to produce Aisi Si/TE(active chelated silicon/trace element)compound microbial fertilizer,which was used to conduct 10%nitrogen reduction alternative fertilization experiment on rice.[Results]The yield of rice applied with 225 kg/ha Aisi Si/TE compound bacterial fertilizer was 7203 kg/ha,increased by 5.4%,6.9%and 46.9%,respectively compared to those of rice applied with 225 kg/ha inactivated Aisi Si/TE compound microbial fertilizer,conventional fertilization and blank control(P<0.01).Application of Aisi Si/TE compound microbial fertilizer to rice improved soil organic matter and effective nutrient content and showed obvious effect of saving nitrogen and increasing yield and income.In addition,it provided a good micro-ecological environment,passivated and solidified heavy metals,effectively reduced the biological mobility of heavy metals,and greatly reduced the cadmium content in rice.[Conclusions]Application of Aisi Si/TE compound microbial fertilizer is beneficial to improving the quality of agricultural products.展开更多
Lignite and sub-bituminous coals from western U.S. contain high amounts of moisture (sub-bituminous: 15%-30%, lignites: 25%-40%). German and Australian lignites (brown coals) have even higher moisture content, 5...Lignite and sub-bituminous coals from western U.S. contain high amounts of moisture (sub-bituminous: 15%-30%, lignites: 25%-40%). German and Australian lignites (brown coals) have even higher moisture content, 50% and 60%, respectively. The high moisture content causes a reduction in plant performance and higher emissions, compared to the bituminous (hard) coals. Despite their high-moisture content, lignite and sub-bituminous coals from the western U.S. and worldwide are attractive due to their abundance, low cost, low NOx and SOx emissions, and high reactivity. A novel low-temperature coal drying process employing a fluidized bed dryer and waste heat was developed in the U.S. by a team led by GRE (Great River Energy). Demonstration of the technology was conducted with the U.S. Department of Energy and GRE funding at Coal Creek Station Unit 1. Following the successful demonstration, the low-temperature coal drying technology was commercialized by GRE under the trade name DryFiningTM fuel enhancement process and implemented at both units at Coal Creek Station. The coal drying system at Coal Creek has been in a continuous commercial operation since December 2009. By implementing DryFining at Coal Creek, GRE avoided $366 million in capital expenditures, which would otherwise be needed to comply with emission regulations. Four years of operating experience is described in this paper.展开更多
financed by the Special Program of Super Rice of Ministry of Agriculture, China (02318802013231);the National Public Services Sectors (Agricultural) Research Projects, Ministry of Agriculture, China (201303102);...financed by the Special Program of Super Rice of Ministry of Agriculture, China (02318802013231);the National Public Services Sectors (Agricultural) Research Projects, Ministry of Agriculture, China (201303102);the Great Technology Project of Ningbo, China (2013C11001)展开更多
We investigate the effect of rapid thermal annealing on InGaNAs/GaAs quantum wells. At optimized annealing temperatures and times, the greatest enhancement of the photoluminescence intensity is obtained by a special t...We investigate the effect of rapid thermal annealing on InGaNAs/GaAs quantum wells. At optimized annealing temperatures and times, the greatest enhancement of the photoluminescence intensity is obtained by a special two-step annealing process. To identify the mechanism affecting the material quality during the rapid thermal annealing, differential temperature analysis is applied, and temperature- and power-dependent photoluminescence is carried out on the samples annealed under different conditions. Our experiment reveals that some composition redistribution or other related ordering processes may occur in the quantum-well layer during annealing. Annealing at a lower temperature for a long time primarily can remove defects and dislocations while annealing at a higher temperature for a short time primarily homogenizes the composition in the quantum wells.展开更多
基金supported by the National Key R&D Program of China(2022YFB4300500).
文摘The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation services.With the expansion of the railway networks,enhancing the efficiency and safety of the comprehensive system has become a crucial issue in the advanced development of railway transportation.In light of the prevailing application of artificial intelligence technologies within railway systems,this study leverages large model technology characterized by robust learning capabilities,efficient associative abilities,and linkage analysis to propose an Artificial-intelligent(AI)-powered railway control and dispatching system.This system is elaborately designed with four core functions,including global optimum unattended dispatching,synergetic transportation in multiple modes,high-speed automatic control,and precise maintenance decision and execution.The deployment pathway and essential tasks of the system are further delineated,alongside the challenges and obstacles encountered.The AI-powered system promises a significant enhancement in the operational efficiency and safety of the composite railway system,ensuring a more effective alignment between transportation services and passenger demands.
基金Project(51405010)supported by the National Natural Science Foundation of ChinaProject(2011BAG09B00)supported by the National Science and Technology Support Program of China
文摘For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.
文摘PEM (Proton Exchange Membrane) fuel cell is a promising renewable energy source to a wide range of applications for its clean products and high power density. However, controlling its humidity is a challenging problem due to the interdependence of several phenomena contributing in membrane's water content. This work deals with efficiency improvement of PEM fuel cells via humidity control. An innovative strategy of control based on the model of Ref. [1] is proposed. It consists on regulating gas humidification rates according to the power demand so that to minimize power losses. The proposed control takes into consideration constraints related to humidification in order to avoid dry out or flooding of the membrane. Simulations results show that time-phasing between hydrogen and oxygen humidification rates plays an important role in minimizing power losses. The proposed control shows significant improvement in the fuel cell's efficiency up to 20%.
文摘The conventional P & O (perturb-and-observe) method, which is the most widely used as MPPT (maximum power point tracking) control, has the problem of low efficiency and unstable operation when solar radiation changes drastically. Aiming at this problem, this paper improves the conventional P & O method to reduce the bad effect of solar radiation by shortening the sampling interval of PV module's output power while keeping the operating period unchanged. Experiments are conducted to study efficiency gains of improved method when solar radiation changes drastically. The result shows that, by this method, the efficiency of MPPT control can be increased 17% in average when PV module simulator is used and 20% at maximum when actual PV module is used, compared with the conventional P & O method.
文摘According to data collected from 1935 statistics-worthy Chinese chemical fibre enterprises surveyed by National Bureau of Statistics of China, the total profits reached CNY8.066 billion in Jan. -May, 2010, up 200.08 per cent y/y, 234.78 percentage points higher than the Jan.-May 2009 period. Technology improvement and industrial structural adjustment played a very major role on profi t growth.
基金Supported by National Forestry Science and Technology Key Promotion Program([2014]TZYN01)~~
文摘We applied water releasing from rootstocks technique and Juglans sigillata in Yangbi was pruned in the shape of opened-heart or round-heart shape. By bal- anced fertilization, survival rate of grafted walnuts can be improved. We reviewed technologies to enhance walnut quality and production efficiency in Gongshan Derung and Nu Autonomous County for reference.
文摘When artificial waterfalls are built in gardens,leaves from trees or vegetation often fall into the water storage pool and block the pipelines,requiring regular cleaning of pipelines.This not only increases the manpower needed for maintenance but also disrupts the use of the waterfalls.Therefore,it is necessary to design a new type of artificial waterfall that is suitable for gardens.The waterfall should incorporate features that make cleaning easier,including filter plates and water funnels to prevent clogging caused by fallen leaves and debris.
基金National Innovation and Entrepreneurship Training Project“Time Bay-A Group Elderly Care Service Platform Based on Internet of Things Technology”(S202013836008X)Chongqing Education Commission Science and Technology Research Program Youth Project 2021(KJQN202105501)。
文摘Internet of Things(IoT)technology is widely used in various fields,and its application in elderly care services has been highlighted in recent years.This study aims to explore how IoT technology can improve the efficiency of group-based elderly care services.The concept,characteristics,and current application status of IoT technology in elderly care services were introduced.Secondly,the characteristics and needs of group elderly care services were analyzed,including advantages and challenges,as well as the expectations and needs of the elderly for elderly care services.The evaluation methods and future development directions of IoT technology in improving the efficiency of group elderly care services were discussed,including data collection and analysis methods,selection and measurement of efficiency evaluation indicators,challenges,and development directions.
文摘According to the technical approach of green production and yield increase pattern,green,pollution-free,quality and efficiency improvement can be achieved by reducing nitrogen,controlling phosphorus and stabilizing potassium,replenishing sulfur,zinc,iron,manganese and boron from the aspects of controlling fertilizer,drug and water.The main measures include combination use of organic and inorganic fertilizer,effective control of the amount of nitrogen and phosphate fertilizer,reduction of the application amount of chemical fertilizers and pesticides,and rational crop rotation to reduce the occurrence of diseases and insect pests,which can improve the yield and quality of tomato.
基金2022 University-Level General Project“Empowering Precise Ideological and Political Education in Higher Education with Educational Digitalization”(Project number:jsesd202209)。
文摘The study explores how educational digitalization enables the precise development of ideological and political education in colleges and universities.Digital transformation enables colleges and universities to accurately define educational objectives,content strategies,effect evaluation,and process management,and realize the precision and intelligence of ideological and political education.The application of big data technology enhances the data-oriented thinking of teachers and students,promotes the accurate application of data,and improves the efficiency of ideological and political education.The research also prospected a new vision of the digital construction of ideological and political courses and clarified the theoretical and practical path of the implementation and evaluation mode of ideological and political courses under digital empowerment.Education digitalization enables precise ideological and political education,which is a key way to promote the innovative development of ideological and political education in colleges and universities and will strongly support the improvement of the overall quality of higher education and the training of excellent talents.
文摘As the main equipment of flue gas dedusting in coal fired boiler,electrostatic precipitator(ESP)can meet the requirements of emission standard for air pollutants from coal-fired power plants through improving the efficiency of ESP and combining with desulfurization system while not installing wet ESP(WESP).This paper introduces the modifications of ESP cathode structure to improve the efficiency of dust collection by reducing the secondary dust loss at cathode.The application of cathode dust collection provides a reference for the improvement of ESP dust collection efficiency.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51578247).
文摘A two⁃port encapsulated low⁃contrast grating with suppressed zeroth order under normal incidence is described in this paper.Based on such grating configuration,the improved efficiency and spectral bandwidth of the first order for TE and TM polarizations with a designed period of 1860 nm can be obtained.On the one hand,some of the accurate grating parameters were numerically optimized utilizing a rigorous coupled⁃wave analysis;on the other hand,the inherent physical mechanism suppressing the zeroth order through an encapsulated fused⁃silica grating was adequately interpreted on account of a simplified modal method.Encapsulated grating with a cover layer cannot be simply considered as adding a coating on it.Compared with reported surface⁃relief grating,all parameters of encapsulated grating should be re⁃optimized and the optimized performances of encapsulated grating were greatly improved.Therefore,the encapsulated grating can be potentially applied in writing fiber Bragg gratings.
文摘The article describes the possibilities of application of simulation modeling for the analysis of infrastructure and technology of transport services of enterprises. The main technological and possible economic effects for the enterprises arising at performance of modeling of a transport component of their work are resulted.
文摘ZTE Corporation is China’s largest listedtelecommunications equipment provider spe-cialized in offering a full range of tailor-madesolutions for customers in high-,middle-andlow-end markets.
基金supported by the National Natural Science Foundation of China, project No. 50906080National Basic Research Program of China No. 2007CB210103
文摘It is well known that increasing the rotational velocity is an effective way to increase the total pressure ratio. With increasing flow velocity especially under the condition of transonic flow in the supersonic region, where exist strong shock waves, the shock wave loss becomes main and important. Simultaneously, there occurs boundary layer separation due to the shock wave / boundary layer interaction. In the present paper the transonic compressor blades were studied and analyzed to find a proper and simple way to reduce the shock wave loss by optimizing the suction surface configuration or controlling the gradient of isentropic Mach number on the suction surface. A Navier-Stokes solver combined with a modified design algorithm was developed and used. The NASA single rotor for transonic flow compressor was served as a numerical example to show the effectiveness of this method. Two cases for both original and modified rotors were analyzed and compared.
文摘The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal combustion engine is identified,which is believed to be one of the important limiting factors of energy efficiency for conventional engines available in the current market.An approach for engine efficiency improvement through optimal matching between mechanics and thermodynamics(OMBMT)is proposed.An ideal matching model is defined and the conflicts due to the constraints among the mapping strokes in a 4-stroke engine are analyzed.A novel mechanical model is built for approaching optimal matching among all 4 individual strokes in a 4-stroke spark-ignition engine,which is composed of non-circular gears(NCG)and integrated with conventional slider crank engine mechanism.By means of digital mechanical model and numerical simulation,the matching gains among all 4 strokes are defined and calculated for quantifying the NCG engine efficiency improvement by comparing with a baseline engine.The potentials with the OMBMT implemented and the enhancements made by NCG mechanism for engines in terms of overall engine efficiency are reported.Based on the results achieved,it is recommended that the feasibility studies and the experimental validations should be conducted to verify the engine matching concept and effectiveness of the NCG mechanism engine model proposed,and the engine performance and NCG design parameters should be further optimized.
文摘[Objectives]To investigate the application effect of compound microbial fertilizer on crops.[Methods]Livestock and poultry breeding waste,rapeseed cake and peanut straw were fully decomposed,and then added with compound functional microbial inoculum to produce Aisi Si/TE(active chelated silicon/trace element)compound microbial fertilizer,which was used to conduct 10%nitrogen reduction alternative fertilization experiment on rice.[Results]The yield of rice applied with 225 kg/ha Aisi Si/TE compound bacterial fertilizer was 7203 kg/ha,increased by 5.4%,6.9%and 46.9%,respectively compared to those of rice applied with 225 kg/ha inactivated Aisi Si/TE compound microbial fertilizer,conventional fertilization and blank control(P<0.01).Application of Aisi Si/TE compound microbial fertilizer to rice improved soil organic matter and effective nutrient content and showed obvious effect of saving nitrogen and increasing yield and income.In addition,it provided a good micro-ecological environment,passivated and solidified heavy metals,effectively reduced the biological mobility of heavy metals,and greatly reduced the cadmium content in rice.[Conclusions]Application of Aisi Si/TE compound microbial fertilizer is beneficial to improving the quality of agricultural products.
文摘Lignite and sub-bituminous coals from western U.S. contain high amounts of moisture (sub-bituminous: 15%-30%, lignites: 25%-40%). German and Australian lignites (brown coals) have even higher moisture content, 50% and 60%, respectively. The high moisture content causes a reduction in plant performance and higher emissions, compared to the bituminous (hard) coals. Despite their high-moisture content, lignite and sub-bituminous coals from the western U.S. and worldwide are attractive due to their abundance, low cost, low NOx and SOx emissions, and high reactivity. A novel low-temperature coal drying process employing a fluidized bed dryer and waste heat was developed in the U.S. by a team led by GRE (Great River Energy). Demonstration of the technology was conducted with the U.S. Department of Energy and GRE funding at Coal Creek Station Unit 1. Following the successful demonstration, the low-temperature coal drying technology was commercialized by GRE under the trade name DryFiningTM fuel enhancement process and implemented at both units at Coal Creek Station. The coal drying system at Coal Creek has been in a continuous commercial operation since December 2009. By implementing DryFining at Coal Creek, GRE avoided $366 million in capital expenditures, which would otherwise be needed to comply with emission regulations. Four years of operating experience is described in this paper.
基金financed by the Special Program of Super Rice of Ministry of Agriculture, China (02318802013231)the National Public Services Sectors (Agricultural) Research Projects, Ministry of Agriculture, China (201303102)the Great Technology Project of Ningbo, China (2013C11001)
文摘financed by the Special Program of Super Rice of Ministry of Agriculture, China (02318802013231);the National Public Services Sectors (Agricultural) Research Projects, Ministry of Agriculture, China (201303102);the Great Technology Project of Ningbo, China (2013C11001)
基金Supported by the National Natural Science Foundation of China under Grant No 90201026, the National High Technology Research and Development Programme of China, the Special Funds for Major State Basic Research Project, and Post-doctoral Science Foundation of China.
文摘We investigate the effect of rapid thermal annealing on InGaNAs/GaAs quantum wells. At optimized annealing temperatures and times, the greatest enhancement of the photoluminescence intensity is obtained by a special two-step annealing process. To identify the mechanism affecting the material quality during the rapid thermal annealing, differential temperature analysis is applied, and temperature- and power-dependent photoluminescence is carried out on the samples annealed under different conditions. Our experiment reveals that some composition redistribution or other related ordering processes may occur in the quantum-well layer during annealing. Annealing at a lower temperature for a long time primarily can remove defects and dislocations while annealing at a higher temperature for a short time primarily homogenizes the composition in the quantum wells.