In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered in...In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.展开更多
The purpose of this paper is to extend some fundamental spectral properties of regular Sturm-Liouville problems to special kind discontinuous boundary value problem, which consist of a Sturm-Liouville equation with pi...The purpose of this paper is to extend some fundamental spectral properties of regular Sturm-Liouville problems to special kind discontinuous boundary value problem, which consist of a Sturm-Liouville equation with piecewise continuous potential together with eigenvalue parameter on the boundary and transmission conditions. The authors suggest their own approach for finding asymptotic approximations formulas for eigenvalues and eigenfunctions of such discontinuous problems.展开更多
In this paper, the classical Ambarzumyan’s theorem for the regular SturmLiouville problem is extended to the case in which the boundary conditions are eigenparameter dependent. Specifically, we show that if the spect...In this paper, the classical Ambarzumyan’s theorem for the regular SturmLiouville problem is extended to the case in which the boundary conditions are eigenparameter dependent. Specifically, we show that if the spectrum of the operator D 2 +q with eigenparameter dependent boundary conditions is the same as the spectrum belonging to the zero potential, then the potential function q is actually zero.展开更多
文摘In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.
文摘The purpose of this paper is to extend some fundamental spectral properties of regular Sturm-Liouville problems to special kind discontinuous boundary value problem, which consist of a Sturm-Liouville equation with piecewise continuous potential together with eigenvalue parameter on the boundary and transmission conditions. The authors suggest their own approach for finding asymptotic approximations formulas for eigenvalues and eigenfunctions of such discontinuous problems.
基金supported by Natural Science Foun- dation of Jiangsu Province of China (BK 2010489)the Outstanding Plan-Zijin Star Foundation of Nanjing University of Science and Technology (AB 41366)+1 种基金NUST Research Funding (AE88787)the National Natural Science Foundation of China (11071119)
文摘In this paper, the classical Ambarzumyan’s theorem for the regular SturmLiouville problem is extended to the case in which the boundary conditions are eigenparameter dependent. Specifically, we show that if the spectrum of the operator D 2 +q with eigenparameter dependent boundary conditions is the same as the spectrum belonging to the zero potential, then the potential function q is actually zero.