I present a new protocol for three-party quantum secure direct communication (QSDC) with a set of ordered M Einstein-Podolsky-Rosen (EPR) pairs. In the scheme, by performing two unitary operations and Bell state m...I present a new protocol for three-party quantum secure direct communication (QSDC) with a set of ordered M Einstein-Podolsky-Rosen (EPR) pairs. In the scheme, by performing two unitary operations and Bell state measurements, it is shown that the three legitimate parties can exchange their respective secret message simultaneously. Then I modify it for an experimentally feasible and secure quantum sealed-bid auction (QSBD) protocol. Furthermore, I also analyze th^ecurity of the protocol, and the scheme is proven to be secure against the intercept-and-resend attack, the disturbancb attack and the entangled-and-measure attack.展开更多
Novel schemes are put forward to execute the joint remote preparation of an arbitrary two-qubit state with a pas- sive receiver via EPR pairs as the entangled channel. Compared with the previous protocols, the require...Novel schemes are put forward to execute the joint remote preparation of an arbitrary two-qubit state with a pas- sive receiver via EPR pairs as the entangled channel. Compared with the previous protocols, the required multi-particle measurement is simplified and the classical communication cost is reduced. When the number of senders increases, the advantage is more evident. It means that the proposed schemes are more efficient in practice.展开更多
Quantum key distribution (QKD) is used in quantum cryptographic systems to exchange secret key between parties who need to communicate secretly. According to the structure of European Secoqc QKD network, a QKD proto...Quantum key distribution (QKD) is used in quantum cryptographic systems to exchange secret key between parties who need to communicate secretly. According to the structure of European Secoqc QKD network, a QKD protocol is proposed. Entanglement swapping between Einstein-Podolsky-Rosen (EPR) pairs can be used to exchange message bits in two remote places. Based on this idea, n + 1 EPR pairs are used as logical quan- tum channel (for n nodes per routing), while measurements of Bell operator are transmitted by classical channel. Random space quantum channel selection is exploited in our protocol to improve the probability of revealing Eve. Compared with traditional EPR protocol, the proposed protocol exhibits many features, which are minutely described.展开更多
A new protocol for quantum secure communication with authentication is proposed. The proposed protocol has a higher capacity as each EPR pair can carry four classical bits by the XOR operation and an auxiliary photon....A new protocol for quantum secure communication with authentication is proposed. The proposed protocol has a higher capacity as each EPR pair can carry four classical bits by the XOR operation and an auxiliary photon. Tile security and efficiency are analyzed in detail and the major advantage of this protocol is that it is more efficient without losing security.展开更多
Our primary purpose of this work is to explicitly construct the general multiparite Einstein-Podolsky- Rosen (EPR) entangled state in multi-mode Fock space for a system with different masses of particles, which make...Our primary purpose of this work is to explicitly construct the general multiparite Einstein-Podolsky- Rosen (EPR) entangled state in multi-mode Fock space for a system with different masses of particles, which makes up a new quantum mechanical representation owing to completeness relation and orthogonal property. Its entanglement can be seen more clearly by analyzing its standard Schmidt decomposition. In addition, some applications of the multipartite entanglement are proposed including deriving the generalized Wigner operator and squeezing operator.展开更多
In this letter the study of Li-doped zinc oxide by electron paramagnetic resonance method is described.A signal observed at g_=2.013,g_=1.955 on the degassed sample at 923K was designated to F_s^+ centers(surface oxyg...In this letter the study of Li-doped zinc oxide by electron paramagnetic resonance method is described.A signal observed at g_=2.013,g_=1.955 on the degassed sample at 923K was designated to F_s^+ centers(surface oxygen ion vacancies with a single trapped electron).When the sample was quenched from 1003K into liquid oxygen at 77K under 24 KPa O_2,[Li^+O^-] ion pairs valued at g_=2.026 and g=2.003 with superhyperfine constant a=2.0G,which resulted from ~7Li nucleus,formed at Li^+-substitutional site in ZnO lattice.A probable mechanism of [Li^+O^-]ion pair formation was proposed.展开更多
We present a theoretical scheme for perfect teleportation of an unknown multipartite two-level state by a single EPR (Einstein-Podolsky-Rosen) pair, and then generalize it to multilevel, i.e., an N-quNit state can b...We present a theoretical scheme for perfect teleportation of an unknown multipartite two-level state by a single EPR (Einstein-Podolsky-Rosen) pair, and then generalize it to multilevel, i.e., an N-quNit state can be teleported by a single quNit entangled pair, with additional local unitary operations. The feature of the scheme is that teleporting a multipartite state with a reduced amount of entanglement costs less classical bits.展开更多
Abstract A simple scheme for teleporting an unknown M-qubit cat-like state is proposed. The steps of this scheme can be summarized simply: disentangle-teleport-reconstruct entanglement. If proper unitary operations a...Abstract A simple scheme for teleporting an unknown M-qubit cat-like state is proposed. The steps of this scheme can be summarized simply: disentangle-teleport-reconstruct entanglement. If proper unitary operations and measurements from senders are given, the teleportation of an unknown M-qubit cat-like state can be converted into single qubit teleportation. In the meantime, the receiver should also carry out right unitary operations with the introduction of appropriate ancillary qubits to confirm the successful teleportation of the demanded entangled state. The present scheme can be generalized to teleport an unknown M-quNit state, i.e., an M-quNit state can be teleported by a single quNit entangled pair.展开更多
基金Supported by the 211 Project of Anhui University under Grant No.2009QN028B
文摘I present a new protocol for three-party quantum secure direct communication (QSDC) with a set of ordered M Einstein-Podolsky-Rosen (EPR) pairs. In the scheme, by performing two unitary operations and Bell state measurements, it is shown that the three legitimate parties can exchange their respective secret message simultaneously. Then I modify it for an experimentally feasible and secure quantum sealed-bid auction (QSBD) protocol. Furthermore, I also analyze th^ecurity of the protocol, and the scheme is proven to be secure against the intercept-and-resend attack, the disturbancb attack and the entangled-and-measure attack.
基金supported by the National Natural Science Foundation of China(Grant Nos.61201253,61303039,61572246,and 61502147)the Fundamental Research Fund for the Central Universities of China(Grant No.2682014CX095)
文摘Novel schemes are put forward to execute the joint remote preparation of an arbitrary two-qubit state with a pas- sive receiver via EPR pairs as the entangled channel. Compared with the previous protocols, the required multi-particle measurement is simplified and the classical communication cost is reduced. When the number of senders increases, the advantage is more evident. It means that the proposed schemes are more efficient in practice.
文摘Quantum key distribution (QKD) is used in quantum cryptographic systems to exchange secret key between parties who need to communicate secretly. According to the structure of European Secoqc QKD network, a QKD protocol is proposed. Entanglement swapping between Einstein-Podolsky-Rosen (EPR) pairs can be used to exchange message bits in two remote places. Based on this idea, n + 1 EPR pairs are used as logical quan- tum channel (for n nodes per routing), while measurements of Bell operator are transmitted by classical channel. Random space quantum channel selection is exploited in our protocol to improve the probability of revealing Eve. Compared with traditional EPR protocol, the proposed protocol exhibits many features, which are minutely described.
基金Supported by the Chongqing Research Program of Application Foundation and Advanced Technology under Grant No cstc2014jcyjA40028
文摘A new protocol for quantum secure communication with authentication is proposed. The proposed protocol has a higher capacity as each EPR pair can carry four classical bits by the XOR operation and an auxiliary photon. Tile security and efficiency are analyzed in detail and the major advantage of this protocol is that it is more efficient without losing security.
基金National Natural Science Foundation of China under Grant No.10675108the Natural Science Foundation of the Education Department of Anhui Province under Grant No.KJ2007B377ZCthe Young University Teachers' Fund of Anhui Province under Grant No.2007jql155
文摘Our primary purpose of this work is to explicitly construct the general multiparite Einstein-Podolsky- Rosen (EPR) entangled state in multi-mode Fock space for a system with different masses of particles, which makes up a new quantum mechanical representation owing to completeness relation and orthogonal property. Its entanglement can be seen more clearly by analyzing its standard Schmidt decomposition. In addition, some applications of the multipartite entanglement are proposed including deriving the generalized Wigner operator and squeezing operator.
基金Supported by Chinese National Scientific Foundation
文摘In this letter the study of Li-doped zinc oxide by electron paramagnetic resonance method is described.A signal observed at g_=2.013,g_=1.955 on the degassed sample at 923K was designated to F_s^+ centers(surface oxygen ion vacancies with a single trapped electron).When the sample was quenched from 1003K into liquid oxygen at 77K under 24 KPa O_2,[Li^+O^-] ion pairs valued at g_=2.026 and g=2.003 with superhyperfine constant a=2.0G,which resulted from ~7Li nucleus,formed at Li^+-substitutional site in ZnO lattice.A probable mechanism of [Li^+O^-]ion pair formation was proposed.
基金The project supported by the Fund from Hunan University of Science and Engineering
文摘We present a theoretical scheme for perfect teleportation of an unknown multipartite two-level state by a single EPR (Einstein-Podolsky-Rosen) pair, and then generalize it to multilevel, i.e., an N-quNit state can be teleported by a single quNit entangled pair, with additional local unitary operations. The feature of the scheme is that teleporting a multipartite state with a reduced amount of entanglement costs less classical bits.
基金supported by National Natural Science Foundation of China under Grant No.10574060
文摘Abstract A simple scheme for teleporting an unknown M-qubit cat-like state is proposed. The steps of this scheme can be summarized simply: disentangle-teleport-reconstruct entanglement. If proper unitary operations and measurements from senders are given, the teleportation of an unknown M-qubit cat-like state can be converted into single qubit teleportation. In the meantime, the receiver should also carry out right unitary operations with the introduction of appropriate ancillary qubits to confirm the successful teleportation of the demanded entangled state. The present scheme can be generalized to teleport an unknown M-quNit state, i.e., an M-quNit state can be teleported by a single quNit entangled pair.