An ejector of low NO~ burner was designed for a gas instantaneous water heater in this work. The flowing and mixing process of the ejector was investigated by computational fluid dynamics (CFD) approach. A comprehen...An ejector of low NO~ burner was designed for a gas instantaneous water heater in this work. The flowing and mixing process of the ejector was investigated by computational fluid dynamics (CFD) approach. A comprehensive study was conducted to understand the effects of the geometrical parameters on the static pressure of air and methane, and mole fraction uniformity of methane at the outlet of ejector. The distribution chamber was applied to balance the pressure and improve the mixing process of methane and air in front of the fire hole. A distribution orifice plate with seven distribution orifices was introduced at the outlet of the ejector to improve the flow organization. It is found that the nozzle exit position of 5 mm and nozzle diameter d 〉1.3 mm should be used to improve the flow organization and realize the well premixed combustion for this designed ejector.展开更多
The pressure matching and recovery performances of the second-throat supersonic-supersonic ejector have been performed experimentally and numerically in the current study.Schlieren pictures of flow structure in former...The pressure matching and recovery performances of the second-throat supersonic-supersonic ejector have been performed experimentally and numerically in the current study.Schlieren pictures of flow structure in former part of the mixing chamber with varied stagnation pressure ratio of the primary and secondary flows have been taken,and the maximum compression ratios have been obtained.Additionally,the relevant numerical simulations have been performed.The obtained results show that the pressure matching performance of the second-throat supersonic-supersonic ejector is weaker than that of the constant area one,and the pressure recovery performance of the former is better than that of the latter.For the ejectors tested in this paper,the stagnation pressure ratios of the second-throat supersonic-supersonic ejector at the limiting condition are approximately 10% lower than those of the constant area one when the contraction angle of the mixing chamber is 4°,and the maximum compression ratio is 12%-30% higher.When the contraction angle of the mixing chamber is 6°,the pressure matching performance of the second-throat supersonic-supersonic ejector declines sharply,and the pressure recovery performance remains almost the same.When the contraction angle of the mixing chamber is 8°,the supersonic-supersonic ejection phenomenon does not take place any longer.展开更多
Ignition within gas burner ejectors can lead to off design conditions and has significant influence on the burner behavior.Thus ignition in the ejector should be prevented.In the present study the influence of combust...Ignition within gas burner ejectors can lead to off design conditions and has significant influence on the burner behavior.Thus ignition in the ejector should be prevented.In the present study the influence of combustion reactions on the performance of gas burner injectors is investigated.To investigate if ignition is possible,simulated ignition delay times,using a detailed reaction mechanism,are compared to predicted mean residence times of the gas in the ejector.Gas burner ejectors are designed using one dimensional analytic equations,based on energy and momentum conservation equations and conventional isentropic equations.1D results are compared to 2D computational fluid dynamics(CFD)simulations,to take into account non-ideal mixing effects along the ejector.Results are validated with experiments with air at room temperature.1D results show very good agreement not only with CFD simulations for the case of non-reactive flows,but also with performed experiments.It is shown that the assumption of ideal mixing along the ejector and thus the comparison of the ignition delay time to the gas mean residence time,to predict ignition in the ejector,is not valid.Ignition in the ejector is possible,even if the ignition delay time is more than thirty times higher than the mean residence time.In addition to that,it is shown,that ignition and the choice of reaction mechanism have significant influence on the predicted gas burner ejector performance.Thus,the accurate prediction of ignition delay time and the use of a detailed reaction kinetic are mandatory to correctly predict the burner ejector behavior.展开更多
Ejectors are used in high altitude testing of rocket engines to create vacuum for simulat-ing the engine test in vacuum conditions.The performance of an ejector plays a vital role in creating vacuum at the exit of the...Ejectors are used in high altitude testing of rocket engines to create vacuum for simulat-ing the engine test in vacuum conditions.The performance of an ejector plays a vital role in creating vacuum at the exit of the engine nozzle and the nozzle design exit pressure at the time of ignition.Consequently,the performance of ejectors has to be improved to reduce the consumption of active fluid.In this investigation,the performance of an ejector has been improved by changing the exit shear plane of the nozzle.Conventionally,conical nozzles are used for creating the required momentum.Lobes of 4 no’s,6 no’s and 8 numbers for an equivalent area ratio=5.88 are used to increase the shear area.The influence of shear plane variation in the suction pressure is studied by a detailed CFD analysis.展开更多
A novel dual-pressure organic Rankine cycle system(DPORC)with a dual-stage ejector(DE-DPORC)is proposed.The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the highpressu...A novel dual-pressure organic Rankine cycle system(DPORC)with a dual-stage ejector(DE-DPORC)is proposed.The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the highpressure expander to pressurize a large quantity of exhaust gas to performwork for the low-pressure expander.This innovative approach addresses condensing pressure limitations,reduces power consumption during pressurization,minimizes heat loss,and enhances the utilization efficiency of waste heat steam.A thermodynamic model is developed with net output work,thermal efficiency,and exergy efficiency(W_(net,ηt,ηex))as evaluation criteria,an economicmodel is established with levelized energy cost(LEC)as evaluation index,anenvironmentalmodel is created with annual equivalent carbon dioxide emission reduction(AER)as evaluation parameter.A comprehensive analysis is conducted on the impact of heat source temperature(T_(S,in)),evaporation temperature(T_(2)),entrainment ratio(E_(r1),E_(r2)),and working fluid pressure(P_(5),P_(6))on system performance.It compares the comprehensive performance of the DE-DPORC system with that of the DPORC system at TS,in of 433.15 K and T2 of 378.15 K.Furthermore,multi-objective optimization using the dragonfly algorithm is performed to determine optimal working conditions for the DE-DPORC system through the TOPSIS method.The findings indicate that the DEDPORC system exhibits a 5.34%increase inWnet andηex,a 58.06%increase inηt,a 5.61%increase in AER,and a reduction of 47.67%and 13.51%in the heat dissipation of the condenser andLEC,compared to theDPORCsystem,highlighting the advantages of this enhanced system.The optimal operating conditions are TS,in=426.74 K,T_(2)=389.37 K,E_(r1)=1.33,E_(r2)=3.17,P_(5)=0.39 MPa,P_(6)=1.32 MPa,which offer valuable technical support for engineering applications;however,they are approaching the peak thermodynamic and environmental performance while falling short of the highest economic performance.展开更多
Three-dimensional numerical computation of the flow fields and pumping performances for the lobed mixer-ejector are conducted using full Navier-Stokes equations. In the computation, the inlet of the primary flow uses ...Three-dimensional numerical computation of the flow fields and pumping performances for the lobed mixer-ejector are conducted using full Navier-Stokes equations. In the computation, the inlet of the primary flow uses the mass flowrate boundary condition. The inlet of the second flow and the outlet of the mixing flow use the pressure boundary condition. Compared with the relative experimental resuits, it is shown that the present calculation is reasonable. And a series of numerical studies is performed to obtain the effects of area ratio and length-to-diameter ratio of mixing duct on pumping coefficient and thermal mixing efficiency of a lobed mixer-ejector.展开更多
A novel ε-type solenoid actuator is proposed to improve the dynamic response of electro-pneumatic ejector valves by reducing moving mass weight. A finite element analysis (FEA) model has been developed to describe th...A novel ε-type solenoid actuator is proposed to improve the dynamic response of electro-pneumatic ejector valves by reducing moving mass weight. A finite element analysis (FEA) model has been developed to describe the static and dynamic operations of the valves. Compared with a conventional E-type actuator, the proposed ε-type actuator reduced the moving mass weight by almost 65% without significant loss of solenoid force, and reduced the response time (RT) typically by 20%. Prototype valves were designed and fabricated based on the proposed ε-type actuator model. An experimental setup was also established to investigate the dynamic characteristics of valves. The experimental results of the dynamics of valves agreed well with simulations, indicating the validity of the FEA model.展开更多
A novel vacuum ice slurry producing system with jet-pumps was proposed to deal with the problems of high energy consumption and ice blockage.In this novel system,one steam driven by a jet-pump was used to create vacuu...A novel vacuum ice slurry producing system with jet-pumps was proposed to deal with the problems of high energy consumption and ice blockage.In this novel system,one steam driven by a jet-pump was used to create vacuum in a hermetic vessel where water was sprayed through a nozzle to produce ice slurry,while the other steam was used to provide enough cold energy to make the left vapor in the hermetic vessel condense.Mathematical models of this novel system were established and theoretical simulation on the performance characteristics was also implemented based on the MATLAB program.Results show that the novel system is feasible and practicable,and the system performance is affected by many factors,such as the temperature of the generators,condensing temperature,evaporation temperature,and the cooling load of the refrigerator sub-system.The findings are helpful to improve the performance of ice slurry producing system.展开更多
High-speed airflow in wind tunnel tests usually causes dramatic vibration of ejector structure,which may lead to fatigue and even destruction of the wind tunnel.Therefore,analyzing and solving the flow-induced vibrati...High-speed airflow in wind tunnel tests usually causes dramatic vibration of ejector structure,which may lead to fatigue and even destruction of the wind tunnel.Therefore,analyzing and solving the flow-induced vibration problem is a tough and indispensable part of the wind tunnel security design.In this paper,taking a kind of two-stage ejector as the study object,multiple numerical simulation methods are adopted in order to carry out research on the analysis technique of the flow-induced vibration characteristics of ejector structure.Firstly,the structural dynamics characteristic is analyzed by using the ejector structural dynamics numerical model,which is built on the basis of finite element method.Secondly,the complex flow phenomenon is explored applying numerical fluid-dynamics model of the inner flow field of the ejector,which is constructed on the basis of finite volume method.Finally,based on the two numerical models above,the vibration response of the ejector structure induced by the high-speed airflow is computed via the fluid-solid coupling technique.The comparison of the simulation results with the actual vibration test indicates that these numerical simulation methods can accurately figure out the rule of flow-induced vibration of ejectors.展开更多
The vacuum sanitation is the safe and sound disposal approach of human excreta under the specific environments like flights, high speed trains and submarines. However, the propulsive force of current systems is not ad...The vacuum sanitation is the safe and sound disposal approach of human excreta under the specific environments like flights, high speed trains and submarines. However, the propulsive force of current systems is not adjustable and the energy consumption does not adapt to the real time sewerage requirement. Therefore, it is important to study the sewerage force adjustment to improve the energy efficiency. This paper proposes an energy conservation design in vacuum sanitation systems with pneumatic ejector circuits. The sewerage force is controlled by changing the systematic vacuum degree according to the amount of the excreta. In particular, the amount of the excreta is tested by liquid level sensor and mass sensor. According to the amount of the excreta, the relationship between the excreta amount and the sewerage force is studied to provide proper propulsive force. In the other aspect, to provide variable vacuum degrees for different sanitation requirements, the suction and discharge system is designed with pneumatic vacuum ejector. On the basis of the static flow-rate characteristics and the vacuum generation model, the pressure response in the ejector circuit is studied by using the static flow rate characteristics of the ejector and air status equation. The relationship is obtained between supplied compressed air and systematic vacuum degree. When the compressed air is supplied to the ejector continuously, the systematic vacuum degree increases until the vacuum degree reaches the extreme value. Therefore, the variable systematic vacuum degree is obtained by controlling the compressed air supply of the ejector. To verify the effect of energy conservation, experiments are carried out in the artificial excreta collection, and the variable vacuum-degree design saves more than 30% of the energy supply. The energy conservation is realized effectively in the new vacuum sanitation systems with good application prospect. The proposed technology provides technological support for the energy conservation of vacuum sanitation systems.展开更多
The flow and the temperature in the threestream mixing flow of the lobed nozzle mixer-ejector with double-wall diffuser are numerically investigated. The domain of computation is divided into sub-domalns according to ...The flow and the temperature in the threestream mixing flow of the lobed nozzle mixer-ejector with double-wall diffuser are numerically investigated. The domain of computation is divided into sub-domalns according to the shapes of the double-plate and lobed nozzle. The three-dimensional body-fitted coordinated grids are generated respectively in these sub-domains by solving Lapalace's equations. Grids are dense on the boundaries and orthogonal at the lobe. The grids of all sub-domains compose the whole grid of the domain. In order to avoid the divergence of the computation as the serious non-orthogonality of the grid from the lobe, the co-located grid, SIMPLEC and Chen-Kim modified k-εturbulence model are applied. The great viscosity, the linear and simultaneous cooperation under-relaxation factors are used to solve the coupling of the fluid and solid. Results show that the air is ejected into the double wall section to form the cooling flow. The wall temperature of the double-wall diffuser is lower than that of the single-wall diffuser. The average wall temperature goes down as the diffuser angle increases at the range of 0~5°,otherwise, the result at the range of 5~10°is opposite.展开更多
A theoretical investigation is presented about a double evaporator ejector refrigeration cycle(DEERC).Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by...A theoretical investigation is presented about a double evaporator ejector refrigeration cycle(DEERC).Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by an internal heat exchanger(IHX).The ejector is introduced into the baseline cycle in order to mitigate the throttling process losses and increase the compressor suction pressure.Moreover,the IHX has the structure of a concentric counter-flow type heat exchanger and is intentionally used to ensure that the fluid at the compressor inlet is vapor.To assess accurately the influence of the IHX on the DEERC performance,a mathematical model is derived in the frame of the dominant one-dimensional theory for ejectors.The model also accounts for the friction effect in the ejector mixing section.The equations of this model are solved using an Engineering Equation Solver(EES)for different fluids.These are:R134a as baseline fluid and other environment friendly refrigerants used for comparison,namely,R1234yf,R1234ze,R600,R600a,R290,R717 and R1270.The simulation results show that the DEERC with an IHX can achieve COP(the coefficient of performance)improvements from 5.2 until 10%.展开更多
The so-called organic Rankine cycle(ORC)is an effective technology allowing heat recovery from lower temperature sources.In the present study,to improve its thermal efficiency,a preheated ejector using exhaust steam c...The so-called organic Rankine cycle(ORC)is an effective technology allowing heat recovery from lower temperature sources.In the present study,to improve its thermal efficiency,a preheated ejector using exhaust steam coming from the expander is integrated in the cycle(EPORC).Considering net power output,pump power,and thermal efficiency,the proposed system is compared with the basic ORC.The influence of the ejector ratio(ER)of the preheated ejector on the system performances is also investigated.Results show that the net power output of the EPORC is higher than that of the basic ORC due to the decreasing pump power.Under given working conditions,the average thermal efficiency of EPORC is 29%higher than that of ORC.The ER has a great impact on the performance of EPORC by adjusting the working fluid fed to the pump,leading to significant variations of the pump work Moreover,the ER has a remarkable effect on the working fluid temperature lift(TL)at the evaporator inlet,thus reducing the evaporator heat load.According to the results,the thermal efficiency of EPORC increases by 30%,when the ER increases from 0.05 to 0.4.展开更多
In the present work,a novel Organic Rankine Cycle(ORC)configuration is used for a low-grade heat source cogeneration plant.An investigation is conducted accordingly into the simultaneous production of electricity and ...In the present work,a novel Organic Rankine Cycle(ORC)configuration is used for a low-grade heat source cogeneration plant.An investigation is conducted accordingly into the simultaneous production of electricity and cold.The proposed configuration relies on concentrated solar power(as heat source)and ambient air(for cooling).Furthermore,two gas ejectors are added to the system in order to optimize the thermodynamic efficiency of the organic Rankine cycle.The results show that the thermodynamic and geometric parameters related to these ejectors have an important effect on the overall system performances.In order to account for the related environmental impact,the following working fluids are considered:HCFC-124,HFC-236fa,HFO-1234yf and HFO-1234ze.As shown by the numerical simulations,the fluid R1234yf presents the minimal heat consumption and therefore provides an optimal thermal efficiency for the ORC cycle(which is around 29%).However,the refrigerant R236fa displays the highest refrigeration performances with a performance coefficient reaching a value as high as 0.38.展开更多
Chlorofluorocarbons(CFCs) or hydrochlorofluorocarbons(HCFCs) are as main refrigerants used in traditional refrigeration systems driven by electricity from burning fossil fuels, which is regarded as one of the major re...Chlorofluorocarbons(CFCs) or hydrochlorofluorocarbons(HCFCs) are as main refrigerants used in traditional refrigeration systems driven by electricity from burning fossil fuels, which is regarded as one of the major reasons for ozone depletion (man-made refrigerants emission) and global warming (CO 2 emission). So people pay more and more attention to natural refrigerants and energy saving technologies. An innovative system combining CO 2 transcritical cycle with ejector cycle is proposed in this paper. The CO 2 compression sub-cycle is powered by electricity with the characteristics of relatively high temperature in the gas cooler (defined as an intercooler by the proposed system). In order to recover the waste heat, an ejector sub-cycle operating with the natural refrigerants (NH 3, H 2O) is employed. The two sub-cycles are connected by an intercooler. This combined cycle joins the advantages of the two cycles together and eliminates the disadvantages. The influences of the evaporation temperature in CO 2 compression sub-cycle, the evaporation temperature in the ejector sub-cycle, the temperature in the intercooler and the condensation temperature in the proposed system performance are discussed theoretically in this study. In addition, some unique features of the system are presented.展开更多
Now there were different aspects of heat exchangers of ejectors who could work in broad range of speed regulation characteristics, and with the different cores and auxiliary substance flows. For affirming of estimated...Now there were different aspects of heat exchangers of ejectors who could work in broad range of speed regulation characteristics, and with the different cores and auxiliary substance flows. For affirming of estimated performances the bench had been project, allowing to change speed regulation characteristics of a main stream and to regulate metering characteristics of an auxiliary fluid flow. For affirming of estimated performances of a heat exchanger of an ejector the imitative bench and with a view of accident prevention had been project, cooled air and the prepare water actuation mediums. The bench had been positioned in an insulated cooled room. For putting off gauging the multifunctional measuring complex of TESTO 400, was taken the temperature a surrounding medium, and a water rate does regulate by us. The high speed photo cameras were applied to bracing of formation of drips. Strain-gauge balances apply to determination of mass of water on the shield. The air flow was shape, and moving in an ejector heat exchanger by means of the axial multiple-speed fan. The purpose of projection of a heat interchanger of an ejector is maintaining of airspeeds by means of the ventilator in the mixing chamber 10 to 80 meters per second. The temperature of given air was a stationary value, equal to -20℃. Temperature of injection water was varying from 4 to 20℃.展开更多
This paper was designed to determine the performance of the R 141 b ejector includes analysis in economics. The first step is to determine the operating condition and ejector geometry through computer calculation prog...This paper was designed to determine the performance of the R 141 b ejector includes analysis in economics. The first step is to determine the operating condition and ejector geometry through computer calculation program. That found at the generator temperature 84 ℃ and evaporator temperature 8 ℃, diameter of nozzle throat is 2 mm, diameter of nozzle exit is 8 mm, diameter of mixing chamber inlet is 25 mm, diameter of constant area section is 8 mm. Area of evacuated solar collector is 10 m2, thermal storage tank size is 0.33 m3, cold thermal storage size is 2.3 m3. The entrainment ratio and COP (coefficient of performance) of computer calculation program are 0.295 and 0.235, respectively. The second step ejector is fabricated and equipped to solar ejector refrigeration system, it is found that, average COP is 0.265. The economics analysis of solar ejector cooling system are invested in the investment cost was 158,158 baht. When calculating payback period was 7.73 years, the return value on a NPV (net present value) was 60,872.63 baht of lifetime of the system throughout a period of 15 years, and IRR (internal rate of return) is 13.57%.展开更多
A system of energy storage for solar thermal air conditioning combined with ejector cooling system for residential is determined in this paper. The purpose of this study is to design the energy storage system for heat...A system of energy storage for solar thermal air conditioning combined with ejector cooling system for residential is determined in this paper. The purpose of this study is to design the energy storage system for heating the water in a storage tank to reach the required temperature for exchanging heat with the refrigerant of cooling system. The design from calculation of thermal energy storage system that proper with the solar flat plate collector area results are 70 m2, and the hot water temperature is over than 80 ℃. A cooling system is selected for refrigerant of R141b from the solar air conditioning system of 10.5 kW, and the energy source is solar thermal energy from the collector that there is an efficiency of 0.46 approximately. This storage system for the electric solar cooling system can be reduced the problem of the intermittent of energy source with the constant generating temperature to run the cooling system continuously.展开更多
基金Project(NR2013K04) supported by Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering,ChinaProject(20130909) supported by the Higher School Science and Technology Development Fund of Tianjin,China
文摘An ejector of low NO~ burner was designed for a gas instantaneous water heater in this work. The flowing and mixing process of the ejector was investigated by computational fluid dynamics (CFD) approach. A comprehensive study was conducted to understand the effects of the geometrical parameters on the static pressure of air and methane, and mole fraction uniformity of methane at the outlet of ejector. The distribution chamber was applied to balance the pressure and improve the mixing process of methane and air in front of the fire hole. A distribution orifice plate with seven distribution orifices was introduced at the outlet of the ejector to improve the flow organization. It is found that the nozzle exit position of 5 mm and nozzle diameter d 〉1.3 mm should be used to improve the flow organization and realize the well premixed combustion for this designed ejector.
基金supported by the National Natural Science Foundation of China (Grant No. 11172324)
文摘The pressure matching and recovery performances of the second-throat supersonic-supersonic ejector have been performed experimentally and numerically in the current study.Schlieren pictures of flow structure in former part of the mixing chamber with varied stagnation pressure ratio of the primary and secondary flows have been taken,and the maximum compression ratios have been obtained.Additionally,the relevant numerical simulations have been performed.The obtained results show that the pressure matching performance of the second-throat supersonic-supersonic ejector is weaker than that of the constant area one,and the pressure recovery performance of the former is better than that of the latter.For the ejectors tested in this paper,the stagnation pressure ratios of the second-throat supersonic-supersonic ejector at the limiting condition are approximately 10% lower than those of the constant area one when the contraction angle of the mixing chamber is 4°,and the maximum compression ratio is 12%-30% higher.When the contraction angle of the mixing chamber is 6°,the pressure matching performance of the second-throat supersonic-supersonic ejector declines sharply,and the pressure recovery performance remains almost the same.When the contraction angle of the mixing chamber is 8°,the supersonic-supersonic ejection phenomenon does not take place any longer.
基金Financial support was provided by the Austrian research funding association(FFG)within the research project“Entwicklung eines innovativen Tunnelofen-Energiekonzeptes mit Reingasbrennern und Energieeffizienter Prozesstechnik(TOREtech)”(FFG project#865020).
文摘Ignition within gas burner ejectors can lead to off design conditions and has significant influence on the burner behavior.Thus ignition in the ejector should be prevented.In the present study the influence of combustion reactions on the performance of gas burner injectors is investigated.To investigate if ignition is possible,simulated ignition delay times,using a detailed reaction mechanism,are compared to predicted mean residence times of the gas in the ejector.Gas burner ejectors are designed using one dimensional analytic equations,based on energy and momentum conservation equations and conventional isentropic equations.1D results are compared to 2D computational fluid dynamics(CFD)simulations,to take into account non-ideal mixing effects along the ejector.Results are validated with experiments with air at room temperature.1D results show very good agreement not only with CFD simulations for the case of non-reactive flows,but also with performed experiments.It is shown that the assumption of ideal mixing along the ejector and thus the comparison of the ignition delay time to the gas mean residence time,to predict ignition in the ejector,is not valid.Ignition in the ejector is possible,even if the ignition delay time is more than thirty times higher than the mean residence time.In addition to that,it is shown,that ignition and the choice of reaction mechanism have significant influence on the predicted gas burner ejector performance.Thus,the accurate prediction of ignition delay time and the use of a detailed reaction kinetic are mandatory to correctly predict the burner ejector behavior.
文摘Ejectors are used in high altitude testing of rocket engines to create vacuum for simulat-ing the engine test in vacuum conditions.The performance of an ejector plays a vital role in creating vacuum at the exit of the engine nozzle and the nozzle design exit pressure at the time of ignition.Consequently,the performance of ejectors has to be improved to reduce the consumption of active fluid.In this investigation,the performance of an ejector has been improved by changing the exit shear plane of the nozzle.Conventionally,conical nozzles are used for creating the required momentum.Lobes of 4 no’s,6 no’s and 8 numbers for an equivalent area ratio=5.88 are used to increase the shear area.The influence of shear plane variation in the suction pressure is studied by a detailed CFD analysis.
基金supported by the Foundation of Liaoning Provincial Key Laboratory of Energy Storage and Utilization(Grant Nos.CNWK202304 and CNNK202315)the Introduction of TalentResearch Start-Up Funding Projects ofYingkou Institute of Technology(Grant No.YJRC202107).
文摘A novel dual-pressure organic Rankine cycle system(DPORC)with a dual-stage ejector(DE-DPORC)is proposed.The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the highpressure expander to pressurize a large quantity of exhaust gas to performwork for the low-pressure expander.This innovative approach addresses condensing pressure limitations,reduces power consumption during pressurization,minimizes heat loss,and enhances the utilization efficiency of waste heat steam.A thermodynamic model is developed with net output work,thermal efficiency,and exergy efficiency(W_(net,ηt,ηex))as evaluation criteria,an economicmodel is established with levelized energy cost(LEC)as evaluation index,anenvironmentalmodel is created with annual equivalent carbon dioxide emission reduction(AER)as evaluation parameter.A comprehensive analysis is conducted on the impact of heat source temperature(T_(S,in)),evaporation temperature(T_(2)),entrainment ratio(E_(r1),E_(r2)),and working fluid pressure(P_(5),P_(6))on system performance.It compares the comprehensive performance of the DE-DPORC system with that of the DPORC system at TS,in of 433.15 K and T2 of 378.15 K.Furthermore,multi-objective optimization using the dragonfly algorithm is performed to determine optimal working conditions for the DE-DPORC system through the TOPSIS method.The findings indicate that the DEDPORC system exhibits a 5.34%increase inWnet andηex,a 58.06%increase inηt,a 5.61%increase in AER,and a reduction of 47.67%and 13.51%in the heat dissipation of the condenser andLEC,compared to theDPORCsystem,highlighting the advantages of this enhanced system.The optimal operating conditions are TS,in=426.74 K,T_(2)=389.37 K,E_(r1)=1.33,E_(r2)=3.17,P_(5)=0.39 MPa,P_(6)=1.32 MPa,which offer valuable technical support for engineering applications;however,they are approaching the peak thermodynamic and environmental performance while falling short of the highest economic performance.
文摘Three-dimensional numerical computation of the flow fields and pumping performances for the lobed mixer-ejector are conducted using full Navier-Stokes equations. In the computation, the inlet of the primary flow uses the mass flowrate boundary condition. The inlet of the second flow and the outlet of the mixing flow use the pressure boundary condition. Compared with the relative experimental resuits, it is shown that the present calculation is reasonable. And a series of numerical studies is performed to obtain the effects of area ratio and length-to-diameter ratio of mixing duct on pumping coefficient and thermal mixing efficiency of a lobed mixer-ejector.
基金Project supported by the Doctoral Fund of Ministry of Education of China (No. 20070335133)the Educational Commission of Zhejiang Province (No. 20070057), China
文摘A novel ε-type solenoid actuator is proposed to improve the dynamic response of electro-pneumatic ejector valves by reducing moving mass weight. A finite element analysis (FEA) model has been developed to describe the static and dynamic operations of the valves. Compared with a conventional E-type actuator, the proposed ε-type actuator reduced the moving mass weight by almost 65% without significant loss of solenoid force, and reduced the response time (RT) typically by 20%. Prototype valves were designed and fabricated based on the proposed ε-type actuator model. An experimental setup was also established to investigate the dynamic characteristics of valves. The experimental results of the dynamics of valves agreed well with simulations, indicating the validity of the FEA model.
基金Project(51376198)supported by the National Natural Science Foundation of ChinaProject(11JJ22029)supported by the Hunan Provincial Natural Science Foundation of China
文摘A novel vacuum ice slurry producing system with jet-pumps was proposed to deal with the problems of high energy consumption and ice blockage.In this novel system,one steam driven by a jet-pump was used to create vacuum in a hermetic vessel where water was sprayed through a nozzle to produce ice slurry,while the other steam was used to provide enough cold energy to make the left vapor in the hermetic vessel condense.Mathematical models of this novel system were established and theoretical simulation on the performance characteristics was also implemented based on the MATLAB program.Results show that the novel system is feasible and practicable,and the system performance is affected by many factors,such as the temperature of the generators,condensing temperature,evaporation temperature,and the cooling load of the refrigerator sub-system.The findings are helpful to improve the performance of ice slurry producing system.
基金supported in part by the National Natural Science Foundation of China (Nos.51806234, 51805530)
文摘High-speed airflow in wind tunnel tests usually causes dramatic vibration of ejector structure,which may lead to fatigue and even destruction of the wind tunnel.Therefore,analyzing and solving the flow-induced vibration problem is a tough and indispensable part of the wind tunnel security design.In this paper,taking a kind of two-stage ejector as the study object,multiple numerical simulation methods are adopted in order to carry out research on the analysis technique of the flow-induced vibration characteristics of ejector structure.Firstly,the structural dynamics characteristic is analyzed by using the ejector structural dynamics numerical model,which is built on the basis of finite element method.Secondly,the complex flow phenomenon is explored applying numerical fluid-dynamics model of the inner flow field of the ejector,which is constructed on the basis of finite volume method.Finally,based on the two numerical models above,the vibration response of the ejector structure induced by the high-speed airflow is computed via the fluid-solid coupling technique.The comparison of the simulation results with the actual vibration test indicates that these numerical simulation methods can accurately figure out the rule of flow-induced vibration of ejectors.
基金supported by Doctor Innovation Fund of Nanjing University of Science and Technology of China(Grant No. 20080407)Joint-PhD Program of China Scholarship Council(Grant No.2008104777)
文摘The vacuum sanitation is the safe and sound disposal approach of human excreta under the specific environments like flights, high speed trains and submarines. However, the propulsive force of current systems is not adjustable and the energy consumption does not adapt to the real time sewerage requirement. Therefore, it is important to study the sewerage force adjustment to improve the energy efficiency. This paper proposes an energy conservation design in vacuum sanitation systems with pneumatic ejector circuits. The sewerage force is controlled by changing the systematic vacuum degree according to the amount of the excreta. In particular, the amount of the excreta is tested by liquid level sensor and mass sensor. According to the amount of the excreta, the relationship between the excreta amount and the sewerage force is studied to provide proper propulsive force. In the other aspect, to provide variable vacuum degrees for different sanitation requirements, the suction and discharge system is designed with pneumatic vacuum ejector. On the basis of the static flow-rate characteristics and the vacuum generation model, the pressure response in the ejector circuit is studied by using the static flow rate characteristics of the ejector and air status equation. The relationship is obtained between supplied compressed air and systematic vacuum degree. When the compressed air is supplied to the ejector continuously, the systematic vacuum degree increases until the vacuum degree reaches the extreme value. Therefore, the variable systematic vacuum degree is obtained by controlling the compressed air supply of the ejector. To verify the effect of energy conservation, experiments are carried out in the artificial excreta collection, and the variable vacuum-degree design saves more than 30% of the energy supply. The energy conservation is realized effectively in the new vacuum sanitation systems with good application prospect. The proposed technology provides technological support for the energy conservation of vacuum sanitation systems.
文摘The flow and the temperature in the threestream mixing flow of the lobed nozzle mixer-ejector with double-wall diffuser are numerically investigated. The domain of computation is divided into sub-domalns according to the shapes of the double-plate and lobed nozzle. The three-dimensional body-fitted coordinated grids are generated respectively in these sub-domains by solving Lapalace's equations. Grids are dense on the boundaries and orthogonal at the lobe. The grids of all sub-domains compose the whole grid of the domain. In order to avoid the divergence of the computation as the serious non-orthogonality of the grid from the lobe, the co-located grid, SIMPLEC and Chen-Kim modified k-εturbulence model are applied. The great viscosity, the linear and simultaneous cooperation under-relaxation factors are used to solve the coupling of the fluid and solid. Results show that the air is ejected into the double wall section to form the cooling flow. The wall temperature of the double-wall diffuser is lower than that of the single-wall diffuser. The average wall temperature goes down as the diffuser angle increases at the range of 0~5°,otherwise, the result at the range of 5~10°is opposite.
文摘A theoretical investigation is presented about a double evaporator ejector refrigeration cycle(DEERC).Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by an internal heat exchanger(IHX).The ejector is introduced into the baseline cycle in order to mitigate the throttling process losses and increase the compressor suction pressure.Moreover,the IHX has the structure of a concentric counter-flow type heat exchanger and is intentionally used to ensure that the fluid at the compressor inlet is vapor.To assess accurately the influence of the IHX on the DEERC performance,a mathematical model is derived in the frame of the dominant one-dimensional theory for ejectors.The model also accounts for the friction effect in the ejector mixing section.The equations of this model are solved using an Engineering Equation Solver(EES)for different fluids.These are:R134a as baseline fluid and other environment friendly refrigerants used for comparison,namely,R1234yf,R1234ze,R600,R600a,R290,R717 and R1270.The simulation results show that the DEERC with an IHX can achieve COP(the coefficient of performance)improvements from 5.2 until 10%.
基金This work was supported by the National Risk Assessment Laboratory of Agroproducts Processing Quality and Safety,Ministry of Agriculture and Rural Affairs(S2020KFKT-06).
文摘The so-called organic Rankine cycle(ORC)is an effective technology allowing heat recovery from lower temperature sources.In the present study,to improve its thermal efficiency,a preheated ejector using exhaust steam coming from the expander is integrated in the cycle(EPORC).Considering net power output,pump power,and thermal efficiency,the proposed system is compared with the basic ORC.The influence of the ejector ratio(ER)of the preheated ejector on the system performances is also investigated.Results show that the net power output of the EPORC is higher than that of the basic ORC due to the decreasing pump power.Under given working conditions,the average thermal efficiency of EPORC is 29%higher than that of ORC.The ER has a great impact on the performance of EPORC by adjusting the working fluid fed to the pump,leading to significant variations of the pump work Moreover,the ER has a remarkable effect on the working fluid temperature lift(TL)at the evaporator inlet,thus reducing the evaporator heat load.According to the results,the thermal efficiency of EPORC increases by 30%,when the ER increases from 0.05 to 0.4.
文摘In the present work,a novel Organic Rankine Cycle(ORC)configuration is used for a low-grade heat source cogeneration plant.An investigation is conducted accordingly into the simultaneous production of electricity and cold.The proposed configuration relies on concentrated solar power(as heat source)and ambient air(for cooling).Furthermore,two gas ejectors are added to the system in order to optimize the thermodynamic efficiency of the organic Rankine cycle.The results show that the thermodynamic and geometric parameters related to these ejectors have an important effect on the overall system performances.In order to account for the related environmental impact,the following working fluids are considered:HCFC-124,HFC-236fa,HFO-1234yf and HFO-1234ze.As shown by the numerical simulations,the fluid R1234yf presents the minimal heat consumption and therefore provides an optimal thermal efficiency for the ORC cycle(which is around 29%).However,the refrigerant R236fa displays the highest refrigeration performances with a performance coefficient reaching a value as high as 0.38.
文摘Chlorofluorocarbons(CFCs) or hydrochlorofluorocarbons(HCFCs) are as main refrigerants used in traditional refrigeration systems driven by electricity from burning fossil fuels, which is regarded as one of the major reasons for ozone depletion (man-made refrigerants emission) and global warming (CO 2 emission). So people pay more and more attention to natural refrigerants and energy saving technologies. An innovative system combining CO 2 transcritical cycle with ejector cycle is proposed in this paper. The CO 2 compression sub-cycle is powered by electricity with the characteristics of relatively high temperature in the gas cooler (defined as an intercooler by the proposed system). In order to recover the waste heat, an ejector sub-cycle operating with the natural refrigerants (NH 3, H 2O) is employed. The two sub-cycles are connected by an intercooler. This combined cycle joins the advantages of the two cycles together and eliminates the disadvantages. The influences of the evaporation temperature in CO 2 compression sub-cycle, the evaporation temperature in the ejector sub-cycle, the temperature in the intercooler and the condensation temperature in the proposed system performance are discussed theoretically in this study. In addition, some unique features of the system are presented.
文摘Now there were different aspects of heat exchangers of ejectors who could work in broad range of speed regulation characteristics, and with the different cores and auxiliary substance flows. For affirming of estimated performances the bench had been project, allowing to change speed regulation characteristics of a main stream and to regulate metering characteristics of an auxiliary fluid flow. For affirming of estimated performances of a heat exchanger of an ejector the imitative bench and with a view of accident prevention had been project, cooled air and the prepare water actuation mediums. The bench had been positioned in an insulated cooled room. For putting off gauging the multifunctional measuring complex of TESTO 400, was taken the temperature a surrounding medium, and a water rate does regulate by us. The high speed photo cameras were applied to bracing of formation of drips. Strain-gauge balances apply to determination of mass of water on the shield. The air flow was shape, and moving in an ejector heat exchanger by means of the axial multiple-speed fan. The purpose of projection of a heat interchanger of an ejector is maintaining of airspeeds by means of the ventilator in the mixing chamber 10 to 80 meters per second. The temperature of given air was a stationary value, equal to -20℃. Temperature of injection water was varying from 4 to 20℃.
文摘This paper was designed to determine the performance of the R 141 b ejector includes analysis in economics. The first step is to determine the operating condition and ejector geometry through computer calculation program. That found at the generator temperature 84 ℃ and evaporator temperature 8 ℃, diameter of nozzle throat is 2 mm, diameter of nozzle exit is 8 mm, diameter of mixing chamber inlet is 25 mm, diameter of constant area section is 8 mm. Area of evacuated solar collector is 10 m2, thermal storage tank size is 0.33 m3, cold thermal storage size is 2.3 m3. The entrainment ratio and COP (coefficient of performance) of computer calculation program are 0.295 and 0.235, respectively. The second step ejector is fabricated and equipped to solar ejector refrigeration system, it is found that, average COP is 0.265. The economics analysis of solar ejector cooling system are invested in the investment cost was 158,158 baht. When calculating payback period was 7.73 years, the return value on a NPV (net present value) was 60,872.63 baht of lifetime of the system throughout a period of 15 years, and IRR (internal rate of return) is 13.57%.
文摘A system of energy storage for solar thermal air conditioning combined with ejector cooling system for residential is determined in this paper. The purpose of this study is to design the energy storage system for heating the water in a storage tank to reach the required temperature for exchanging heat with the refrigerant of cooling system. The design from calculation of thermal energy storage system that proper with the solar flat plate collector area results are 70 m2, and the hot water temperature is over than 80 ℃. A cooling system is selected for refrigerant of R141b from the solar air conditioning system of 10.5 kW, and the energy source is solar thermal energy from the collector that there is an efficiency of 0.46 approximately. This storage system for the electric solar cooling system can be reduced the problem of the intermittent of energy source with the constant generating temperature to run the cooling system continuously.