Anomalous warming occurred in the equatorial central-eastern Pacific in early May 2014, attracting much attention to the possible occurrence of an extreme E1 Nifio event that year because of its similarity to the situ...Anomalous warming occurred in the equatorial central-eastern Pacific in early May 2014, attracting much attention to the possible occurrence of an extreme E1 Nifio event that year because of its similarity to the situation in early 1997. However, the subsequent variation in sea surface temperature anomalies (SSTAs) during summer 2014 in the tropical Pacific was evidently different to that in 1997, but somewhat similar to the situation of the 1990 aborted E1 Nifio event. Based on NCEP (National Centers for Environmental Prediction) oceanic and atmospheric reanalysis data, the physical processes responsible for the strength of E1 Nifio events are examined by comparing the dominant factors in 2014 in terms of the preceding instability of the coupled ocean-atmosphere system and westerly wind bursts (WWBs) with those in 1997 and 1990, separately. Although the unstable ocean-atmosphere system formed over the tropical Pacific in the preceding winter of 2014, the strength of the preceding instability was relatively weak. Weak oceanic eastward-propagating downwelling Kelvin waves were forced by the weak WWBs over the equatorial western Pacific in March 2014, as in February 1990. The consequent positive upper-oceanic heat content anomalies in the spring of 2014 induced only weak positive SSTAs in the central-eastern Pacific-unfavorable for the subsequent generation of summertime WWB sequences. Moreover, the equatorial western Pacific was not cooled, indicating the absence of positive Bjerknes feedback in early summer 2014. Therefore, the development of E1 Nifio was suspended in summer 2014.展开更多
-Using the COADS data set of sea surface temperature in the Equatorial Eastern Pacific, thirty one El Nino events and twenty four anti -El Nino events were identified for the period from 1854 to 1987. The results were...-Using the COADS data set of sea surface temperature in the Equatorial Eastern Pacific, thirty one El Nino events and twenty four anti -El Nino events were identified for the period from 1854 to 1987. The results were compared with those of the other authors. The El Nino events (or anti -El Nino events ) are classified into two groups according to the timing of occrrence of the events: one starts at the first half of a year, another begins at the second half of a year. Both 1982-1983 and 1986-1987 events fall into the second group, which are characterized by the eastward migration of the positive anomaly of the sea surface temperature and the significant increasing of the anomaly in September or October.展开更多
El Nio-Southern Oscillation(ENSO)is an abnormal sea surface warming or cooling phenomenon over the tropical Pacific,which also has severe global impact.
A super El Niño event occurred in the equatorial Pacific during 2015-2016,accompanied by considerable regional eco-hydro-climatic variations within the Mindanao Dome(MD)upwelling system in the tropical western Pa...A super El Niño event occurred in the equatorial Pacific during 2015-2016,accompanied by considerable regional eco-hydro-climatic variations within the Mindanao Dome(MD)upwelling system in the tropical western Pacific.Using timeseries of various oceanic data from 2013 to 2017,the variability of eco-hydro-climatic conditions response to the 2015/2016 super El Niño in the upper 300 m of the MD region are analyzed in this paper.Results showed that during the 2015/2016 super El Niño event,the upwelling in the MD region was greatly enhanced compared to those before and after this El Niño event.Upwelling Rossby waves and the massive loss of surface water in the western Pacific were suggested to be the main reasons for this enhanced upwelling.De-creased precipitation caused by changes in large-scale air-sea interaction led to the increased surface salinities.Changes in the struc-tures of the thermohaline and nutrient distribution in deep waters contributed to the increased surface chlorophyll a,suggesting a po-sitive effect of El Niño on surface carbon storage in the MD region.Based on the above analysis,the synopsis mechanism illustrating the eco-hydro-climatic changing processes over the MD upwelling system responding to the El Niño event was proposed.It high-lights the prospect for the role played by El Niño in local eco-hydro-climatic effects,which has further profound implications for understanding the influence of the global climate changes on the ocean carbon cycle.展开更多
Statistic and typical-year composition methods are used to study the northwest Pacific typhoon activities in relation with the El Nino and La Nifia events. The result indicates that the typhoon tends to be inactive in...Statistic and typical-year composition methods are used to study the northwest Pacific typhoon activities in relation with the El Nino and La Nifia events. The result indicates that the typhoon tends to be inactive in the El Nifio years and active in the La Nina years and it is also dependent on the onset and ending time and intensity of the events and areas of genesis of typhoons. With statistic features of the frequency of typhoon activity in the El Nifio and La Nina years and the time-lag correlation between the frequency and sea surface temperature (SST). useful information is provided for the prediction of typhoon occurrence. In addition, the singular values disassemble (SVD) method is applied to study the correlation between the geopotential field and SST field. The result shows that the air-sea coupling in the El Nino years is unfavorable for the typhoon to develop, which take place with a smaller number. Opposite situations are found with the La Nina years.展开更多
Based on the El Nino event data sequence from 1854 to 1993, the nature of sequences was de-termined by using statistical normal and independent tests, etc. With the Markov random process and first order auto-regressio...Based on the El Nino event data sequence from 1854 to 1993, the nature of sequences was de-termined by using statistical normal and independent tests, etc. With the Markov random process and first order auto-regression predictive model, we set up the prognostication mode and give the time limit of the occurrence of next El Nino event, which probably occurs around 2002.The occurring probability for 2001 is 44 %, and it is 61 % for 2002.展开更多
-In this paper, monthly mean SST data in a large area are used. After the spacial average of the data is carried out and the secular monthly means are substracted, a time series (Jan. 1951-Dec. 1985) of SST anomalies ...-In this paper, monthly mean SST data in a large area are used. After the spacial average of the data is carried out and the secular monthly means are substracted, a time series (Jan. 1951-Dec. 1985) of SST anomalies of the cold tongue water area in the eastern tropical Pacific Ocean is obtained. On the basis of the time series, an autoregression model, a self-exciting threshold autoregression model and an open loop autoregression model are developed respectively. The interannual variations are simulated by means of those models. The simulation results show that all the three models have made very good hindcasting for the nine El Nino events since 1951. In order to test the reliability of the open loop threshold model, extrapolated forecast was made for the period of Jan. 1986-Feb. 1987. It can be seen from the forecasting that the model could forecast well the beginning and strengthening stages of the recent El Nino event (1986-1987). Correlation coefficients of the estimations to observations are respectively 0. 84, 0. 88 and 0. 89. It is obvious that all the models work well and the open loop threshold one is the best. So the open loop threshold autoregression model is a useful tool for monitoring the SSTinterannual variation of the cold tongue water area in the Eastern Equatorial Pacific Ocean and for estimating the El Nino strength.展开更多
In this paper,by using the ECMWF objective analysed data as well as CAC and NOAA grid point data of 1981 and 1983,the sensible and latent heat fluxes at the air and sea boundary surface within the range of 45°E-7...In this paper,by using the ECMWF objective analysed data as well as CAC and NOAA grid point data of 1981 and 1983,the sensible and latent heat fluxes at the air and sea boundary surface within the range of 45°E-75°W, 35°N-35°S over the Pacific and the Indian Ocean are calculated. The purpose is to analyse the different revealing features during the mature stage and at the end of the 1982 -1983 El Nino event and to compare the difference of the features between thd El Nino and the normal. The result shows that the air and sea heat exchange west of the dateline over the central tropical Pacific during the EJ Nino period is more intense than that of the normal. However,the fluxes of the sensible and latent heat on the sea surface with strong warming of SSTneat by and on the south side of the equator east of 170°W are low and even negative,and the patterns of the sensible and latent heat fluxes over the Indian Ocean during the year of 1983 are similer to that of normal. Spatial patterns of the sensible heat ,the latent heat,SST,OLR and the wind speed exhibit large anomalies during the El Nino event. The corresponding relationships of the spatial distribution of the streng exchange of heat fluxes with regions of high SST and action convection or negative anomalies of OLR are relatively complicated. But the region of maximum air and sea heat exchange is in good coincidence with that of high value of the Vs. The strong heat exchange is weakened with the declining and the finishing of the El Nino event in the central tropical Pacific.展开更多
The 2015/2016 El Nino event reached the threshold of super El Nino event,and was comparable to the super events in 1982/1983 and 1997/1998.Interestingly,the tropical cyclones(TCs)were found to have very late onsets in...The 2015/2016 El Nino event reached the threshold of super El Nino event,and was comparable to the super events in 1982/1983 and 1997/1998.Interestingly,the tropical cyclones(TCs)were found to have very late onsets in the decaying years of the super El Nino events.This study discusses the causes of late TC onsets related with atmospheric circulation,disturbance sources and trigger mechanisms.The analysis shows that the western North Pacific subtropical high(WNPSH)from January–June during the decaying years of the super El Nino events were stronger than the climatic mean,which resulted in a relatively stable atmospheric state by inhibiting deep convection.As a disturbance source,the April–June intertropical convergence zone(ITCZ)during the decaying years of the super El Nino events were significantly weaker than its climatic mean.The cross-equatorial flow and monsoon trough,as important TC generation triggers,were weaker from April–June during the decaying years of the super El Nino events,which further reduced the probability of TC generation.As for the late TC onsets,the role of atmospheric circulation anomalies(i.e.,subtropical-high,the ITCZ,cross-equatorial flow,and monsoon trough)were more important.The cross-equatorial flow may take as predictor of TC onsets in the decaying years of the super El Nino events.展开更多
This paper focuses on the effects of two types of El Nino events on tropical cyclone activity. We classified El Nino events from 1961 to 2015 according to their sea surface temperature (SST) anomalies into an easter...This paper focuses on the effects of two types of El Nino events on tropical cyclone activity. We classified El Nino events from 1961 to 2015 according to their sea surface temperature (SST) anomalies into an eastern type and a central type. Then we selected strong tropical cyclones to statistically analyze the tropical cyclone characteristics during different events and their effects, as well as to study the possible mechanisms related to thermodynamic and dynamic factors. The tropical cyclone generation areas were found to be very similar during the two kinds of events. The average number of tropical cyclone in the eastern event is more than that in central event, and the hurricane in northeastern Pacific (HNP) has more energy than the typhoon in northwestern Pacific (TNP) in all cases. The seasonal distribution of the TNP high-incidence centers during central El Nifio events is opposite to that of the HNP. The TNP accumulated cyclone energy (ACE) intensity is similar in the fall and summer, and the HNP ACE intensity in the summer is greater than that in the fall. The SSTs are consistent with the TNP and HNP movement trends. The Walker circulation intensity was strongly affected by the eastern events, but it quickly returned to its normal state, while the intensity was slightly reduced in the central events, and it slowly returned to its normal state. The vertical velocity distributions in the Pacific are different at different stages of both events, and the distributions of vertical velocity anomalies for typhoons and hurricanes are consistent.展开更多
Using the air-sea data set of January, 1983 (the mature phase of the 1982/83 El Nino event), the net radiation on the sea surface, the fluxes of the latent and the sensible heat from ocean to the atmosphere and the ne...Using the air-sea data set of January, 1983 (the mature phase of the 1982/83 El Nino event), the net radiation on the sea surface, the fluxes of the latent and the sensible heat from ocean to the atmosphere and the net heat gain of the sea surface are calculated over the Indian and the Pacific Oceans for the domain of 35°N-35°S and 45°E-75°W. The results indicate that the upward transfer of the latent and the sensible heat fluxes over the winter hemisphere is larger than that over the summer hemisphere. The sensible heat over the tropical mid Pacific in the Southern Hemisphere is transported from the atmosphere to the ocean, though its magnitude is rather small. The latent heat flux gained by the air over the eastern Pacific is less than the mean value of the normal year. The net radiation, on which the cloud amount has considerable impact, is essentially zonally distributed. Moreover, the sea surface temperature (SST) has a very good correlation with the net radiation, the region of warm SST coinciding with that of the low net radiation. The net radiation obtained by the mid Pacific Ocean is reduced by the SST anomaly during the El Nino event, whereas the atmosphere over there get more latent heat flux, and this results in the diminution of the net heat gain of the ocean. The overview of the heat budget is that the ocean over the winter hemisphere is the energy source of the atmosphere, and that over the summer hemisphere its energy sink.展开更多
On the basis of time series measurements of winds, currents, temperature and salinity from equatorial current meter mooring and acoustic Doppler current profiler during the PRC/USA joint air-sea interaction studies in...On the basis of time series measurements of winds, currents, temperature and salinity from equatorial current meter mooring and acoustic Doppler current profiler during the PRC/USA joint air-sea interaction studies in the western tropical Pacifc Ocean and sea level data provided by Prof. Wyrtki, analyses are made of the physical process and mechanism for the exceptionally inverse phenomenon (westward) of the Equatorial Undercurrent (EUC) in the western tropical Pacific after entering the mature stage of 1986/1987 ENSO event, and the numerical simulation is also conducted by 'cross section' model. The results indicate that the inversion of the EUC is related to that of pressure gradient force near the equator under the influence of non-local permanent westerlies.展开更多
基金supported by the National Basic Research Program of China (Grant Nos.2014CB953902,2011CB403505,and 2012CB417203)the Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDA11010402 and XDA01020302)the National Natural Science Foundation of China (Grant Nos.41175059 and 41375087)
文摘Anomalous warming occurred in the equatorial central-eastern Pacific in early May 2014, attracting much attention to the possible occurrence of an extreme E1 Nifio event that year because of its similarity to the situation in early 1997. However, the subsequent variation in sea surface temperature anomalies (SSTAs) during summer 2014 in the tropical Pacific was evidently different to that in 1997, but somewhat similar to the situation of the 1990 aborted E1 Nifio event. Based on NCEP (National Centers for Environmental Prediction) oceanic and atmospheric reanalysis data, the physical processes responsible for the strength of E1 Nifio events are examined by comparing the dominant factors in 2014 in terms of the preceding instability of the coupled ocean-atmosphere system and westerly wind bursts (WWBs) with those in 1997 and 1990, separately. Although the unstable ocean-atmosphere system formed over the tropical Pacific in the preceding winter of 2014, the strength of the preceding instability was relatively weak. Weak oceanic eastward-propagating downwelling Kelvin waves were forced by the weak WWBs over the equatorial western Pacific in March 2014, as in February 1990. The consequent positive upper-oceanic heat content anomalies in the spring of 2014 induced only weak positive SSTAs in the central-eastern Pacific-unfavorable for the subsequent generation of summertime WWB sequences. Moreover, the equatorial western Pacific was not cooled, indicating the absence of positive Bjerknes feedback in early summer 2014. Therefore, the development of E1 Nifio was suspended in summer 2014.
文摘-Using the COADS data set of sea surface temperature in the Equatorial Eastern Pacific, thirty one El Nino events and twenty four anti -El Nino events were identified for the period from 1854 to 1987. The results were compared with those of the other authors. The El Nino events (or anti -El Nino events ) are classified into two groups according to the timing of occrrence of the events: one starts at the first half of a year, another begins at the second half of a year. Both 1982-1983 and 1986-1987 events fall into the second group, which are characterized by the eastward migration of the positive anomaly of the sea surface temperature and the significant increasing of the anomaly in September or October.
基金supported by the Basic Science Research Program of the National Research Foundation of Korea (Grant No.NRF-2017K1A3A7A03087790)
文摘El Nio-Southern Oscillation(ENSO)is an abnormal sea surface warming or cooling phenomenon over the tropical Pacific,which also has severe global impact.
基金supported by the Strategic Prio-rity Research Program of the Chinese Academy of Sciences(Nos.XDB42010203,XDA19060401)the Science&Te-chnology Basic Resources Investigation Program of China(No.2017FY100802)+1 种基金the Open fund for Key Laboratory of Marine Geology and Environment,Chinese Academy of Sciences(No.MGE2019KG03)Post-Doctoral Program in Qingdao in 2019(No.Y9KY161).
文摘A super El Niño event occurred in the equatorial Pacific during 2015-2016,accompanied by considerable regional eco-hydro-climatic variations within the Mindanao Dome(MD)upwelling system in the tropical western Pacific.Using timeseries of various oceanic data from 2013 to 2017,the variability of eco-hydro-climatic conditions response to the 2015/2016 super El Niño in the upper 300 m of the MD region are analyzed in this paper.Results showed that during the 2015/2016 super El Niño event,the upwelling in the MD region was greatly enhanced compared to those before and after this El Niño event.Upwelling Rossby waves and the massive loss of surface water in the western Pacific were suggested to be the main reasons for this enhanced upwelling.De-creased precipitation caused by changes in large-scale air-sea interaction led to the increased surface salinities.Changes in the struc-tures of the thermohaline and nutrient distribution in deep waters contributed to the increased surface chlorophyll a,suggesting a po-sitive effect of El Niño on surface carbon storage in the MD region.Based on the above analysis,the synopsis mechanism illustrating the eco-hydro-climatic changing processes over the MD upwelling system responding to the El Niño event was proposed.It high-lights the prospect for the role played by El Niño in local eco-hydro-climatic effects,which has further profound implications for understanding the influence of the global climate changes on the ocean carbon cycle.
文摘Statistic and typical-year composition methods are used to study the northwest Pacific typhoon activities in relation with the El Nino and La Nifia events. The result indicates that the typhoon tends to be inactive in the El Nifio years and active in the La Nina years and it is also dependent on the onset and ending time and intensity of the events and areas of genesis of typhoons. With statistic features of the frequency of typhoon activity in the El Nifio and La Nina years and the time-lag correlation between the frequency and sea surface temperature (SST). useful information is provided for the prediction of typhoon occurrence. In addition, the singular values disassemble (SVD) method is applied to study the correlation between the geopotential field and SST field. The result shows that the air-sea coupling in the El Nino years is unfavorable for the typhoon to develop, which take place with a smaller number. Opposite situations are found with the La Nina years.
基金Research project of meteorological science and technology in China (96-908-05-03)
文摘Based on the El Nino event data sequence from 1854 to 1993, the nature of sequences was de-termined by using statistical normal and independent tests, etc. With the Markov random process and first order auto-regression predictive model, we set up the prognostication mode and give the time limit of the occurrence of next El Nino event, which probably occurs around 2002.The occurring probability for 2001 is 44 %, and it is 61 % for 2002.
文摘-In this paper, monthly mean SST data in a large area are used. After the spacial average of the data is carried out and the secular monthly means are substracted, a time series (Jan. 1951-Dec. 1985) of SST anomalies of the cold tongue water area in the eastern tropical Pacific Ocean is obtained. On the basis of the time series, an autoregression model, a self-exciting threshold autoregression model and an open loop autoregression model are developed respectively. The interannual variations are simulated by means of those models. The simulation results show that all the three models have made very good hindcasting for the nine El Nino events since 1951. In order to test the reliability of the open loop threshold model, extrapolated forecast was made for the period of Jan. 1986-Feb. 1987. It can be seen from the forecasting that the model could forecast well the beginning and strengthening stages of the recent El Nino event (1986-1987). Correlation coefficients of the estimations to observations are respectively 0. 84, 0. 88 and 0. 89. It is obvious that all the models work well and the open loop threshold one is the best. So the open loop threshold autoregression model is a useful tool for monitoring the SSTinterannual variation of the cold tongue water area in the Eastern Equatorial Pacific Ocean and for estimating the El Nino strength.
文摘In this paper,by using the ECMWF objective analysed data as well as CAC and NOAA grid point data of 1981 and 1983,the sensible and latent heat fluxes at the air and sea boundary surface within the range of 45°E-75°W, 35°N-35°S over the Pacific and the Indian Ocean are calculated. The purpose is to analyse the different revealing features during the mature stage and at the end of the 1982 -1983 El Nino event and to compare the difference of the features between thd El Nino and the normal. The result shows that the air and sea heat exchange west of the dateline over the central tropical Pacific during the EJ Nino period is more intense than that of the normal. However,the fluxes of the sensible and latent heat on the sea surface with strong warming of SSTneat by and on the south side of the equator east of 170°W are low and even negative,and the patterns of the sensible and latent heat fluxes over the Indian Ocean during the year of 1983 are similer to that of normal. Spatial patterns of the sensible heat ,the latent heat,SST,OLR and the wind speed exhibit large anomalies during the El Nino event. The corresponding relationships of the spatial distribution of the streng exchange of heat fluxes with regions of high SST and action convection or negative anomalies of OLR are relatively complicated. But the region of maximum air and sea heat exchange is in good coincidence with that of high value of the Vs. The strong heat exchange is weakened with the declining and the finishing of the El Nino event in the central tropical Pacific.
基金The National Key Research and Development Program for Developing Basic Sciences under contract No.2016YFC1401601the National Natural Science Foundation of China under contract No.41576026
文摘The 2015/2016 El Nino event reached the threshold of super El Nino event,and was comparable to the super events in 1982/1983 and 1997/1998.Interestingly,the tropical cyclones(TCs)were found to have very late onsets in the decaying years of the super El Nino events.This study discusses the causes of late TC onsets related with atmospheric circulation,disturbance sources and trigger mechanisms.The analysis shows that the western North Pacific subtropical high(WNPSH)from January–June during the decaying years of the super El Nino events were stronger than the climatic mean,which resulted in a relatively stable atmospheric state by inhibiting deep convection.As a disturbance source,the April–June intertropical convergence zone(ITCZ)during the decaying years of the super El Nino events were significantly weaker than its climatic mean.The cross-equatorial flow and monsoon trough,as important TC generation triggers,were weaker from April–June during the decaying years of the super El Nino events,which further reduced the probability of TC generation.As for the late TC onsets,the role of atmospheric circulation anomalies(i.e.,subtropical-high,the ITCZ,cross-equatorial flow,and monsoon trough)were more important.The cross-equatorial flow may take as predictor of TC onsets in the decaying years of the super El Nino events.
基金supported by the National Natural Science Foundation of China(No.41067003)
文摘This paper focuses on the effects of two types of El Nino events on tropical cyclone activity. We classified El Nino events from 1961 to 2015 according to their sea surface temperature (SST) anomalies into an eastern type and a central type. Then we selected strong tropical cyclones to statistically analyze the tropical cyclone characteristics during different events and their effects, as well as to study the possible mechanisms related to thermodynamic and dynamic factors. The tropical cyclone generation areas were found to be very similar during the two kinds of events. The average number of tropical cyclone in the eastern event is more than that in central event, and the hurricane in northeastern Pacific (HNP) has more energy than the typhoon in northwestern Pacific (TNP) in all cases. The seasonal distribution of the TNP high-incidence centers during central El Nifio events is opposite to that of the HNP. The TNP accumulated cyclone energy (ACE) intensity is similar in the fall and summer, and the HNP ACE intensity in the summer is greater than that in the fall. The SSTs are consistent with the TNP and HNP movement trends. The Walker circulation intensity was strongly affected by the eastern events, but it quickly returned to its normal state, while the intensity was slightly reduced in the central events, and it slowly returned to its normal state. The vertical velocity distributions in the Pacific are different at different stages of both events, and the distributions of vertical velocity anomalies for typhoons and hurricanes are consistent.
文摘Using the air-sea data set of January, 1983 (the mature phase of the 1982/83 El Nino event), the net radiation on the sea surface, the fluxes of the latent and the sensible heat from ocean to the atmosphere and the net heat gain of the sea surface are calculated over the Indian and the Pacific Oceans for the domain of 35°N-35°S and 45°E-75°W. The results indicate that the upward transfer of the latent and the sensible heat fluxes over the winter hemisphere is larger than that over the summer hemisphere. The sensible heat over the tropical mid Pacific in the Southern Hemisphere is transported from the atmosphere to the ocean, though its magnitude is rather small. The latent heat flux gained by the air over the eastern Pacific is less than the mean value of the normal year. The net radiation, on which the cloud amount has considerable impact, is essentially zonally distributed. Moreover, the sea surface temperature (SST) has a very good correlation with the net radiation, the region of warm SST coinciding with that of the low net radiation. The net radiation obtained by the mid Pacific Ocean is reduced by the SST anomaly during the El Nino event, whereas the atmosphere over there get more latent heat flux, and this results in the diminution of the net heat gain of the ocean. The overview of the heat budget is that the ocean over the winter hemisphere is the energy source of the atmosphere, and that over the summer hemisphere its energy sink.
文摘On the basis of time series measurements of winds, currents, temperature and salinity from equatorial current meter mooring and acoustic Doppler current profiler during the PRC/USA joint air-sea interaction studies in the western tropical Pacifc Ocean and sea level data provided by Prof. Wyrtki, analyses are made of the physical process and mechanism for the exceptionally inverse phenomenon (westward) of the Equatorial Undercurrent (EUC) in the western tropical Pacific after entering the mature stage of 1986/1987 ENSO event, and the numerical simulation is also conducted by 'cross section' model. The results indicate that the inversion of the EUC is related to that of pressure gradient force near the equator under the influence of non-local permanent westerlies.