Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investiga...Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investigate the correlation between rainfall anomalies in Rwanda during the months of September to December (SOND) with the occurrences of Indian Ocean Dipole (IOD) and El Nino Southern Oscillation (ENSO) events. The study is useful for early warning and forecasting of negative effects associated with extreme rainfall anomalies across the country, using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), the National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research (NCAR) reanalysis sea surface temperature and ERA5 reanalysis datasets, during the period of 1983-2021. Both empirical orthogonal function (EOF), correlation analysis and composite analysis were used to delineate variability, relationship and the related atmospheric circulation between Rwanda seasonal rainfall September to December (SOND) with Indian Ocean Dipole (IOD) and El-Nino Southern Oscillation (ENSO). The results for Empirical Orthogonal Function (EOF) for the reconstructed rainfall data set showed three modes. EOF-1, EOF-2 and EOF-3 with their total variance of 63.6%, 16.5% and 4.8%, Indian ocean dipole (IOD) events resulted to a strong positive correlation of rainfall anomalies and Dipole model index (DMI) (r = 0.42, p value = 0.001, DF = 37) significant at 95% confidence level. The composite analysis for the reanalysis dataset was carried out to show the circulation patterns during four different events correlated with September to December seasonal rainfall in Rwanda using T-test at 95% confidence level. Wind anomaly revealed that there was a convergence of south westerly winds and easterly wind over the study area during positive Indian Ocean Diploe (PIOD) and PIOD with El Nino concurrence event years. The finding of this study will contribute to the enhancement of SOND seasonal rainfall forecasting and the reduction of vulnerability during IOD (ENSO) event years.展开更多
This investigation aims to study the El-Niño-Southern Oscillation (ENSO) events in these three phases: El Niño, La Niña, and neutral. Warm and cold events relate to the Spring/Summer seasons. This paper...This investigation aims to study the El-Niño-Southern Oscillation (ENSO) events in these three phases: El Niño, La Niña, and neutral. Warm and cold events relate to the Spring/Summer seasons. This paper will search for connections between the ENSO events and climate anomalies worldwide. There is some speculation that those events would be necessary for the climate anomalies observed worldwide. After analyzing the data from the reports to the ENSO, it shows almost periodicity from 1950-2023. We emphasized the occurrence of El Niño two years, when it was most prominent, and the climate anomalies (following NOAA maps), 2015 and 2023. The results indicated that the observed climate anomalies couldn’t be linked to the abnormal events observed. The worldwide temperatures in those years enhanced mostly in 2023. It shows an abnormal behavior compared with all the years scrutinized and analyzed since the records began. Therefore, there must be unknown factors beyond ENSO that rule the worldwide temperatures and the climate anomalies observed.展开更多
This paper aims to demonstrate the relationships between ENSO and rice production of Jiangxi province in order to identify the reason that ENSO might have little effect on Chinese rice production. Using a data set wit...This paper aims to demonstrate the relationships between ENSO and rice production of Jiangxi province in order to identify the reason that ENSO might have little effect on Chinese rice production. Using a data set with measures of Jiangxi's climate and rice production, we find the reason that during 1985 and 2004 ENSO's well correlated with rainfall did not promote Chinese rice production. First, the largest effects of ENSO mostly occur in the months when there is no rice in the field. Second, there is almost no temperature effect. Finally, the monthly distribution of rainfall is almost the same in ENSO and neutral years because the largest effects are during months when there is the least rain. In addition, due to the high irrigation share and reliable and effective irrigation facilities of cultivated land, China's rice production is less climate-sensitive.展开更多
A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO mode...A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behaviour of solution for corresponding problem is considered.展开更多
Objective:To explore the relationship between climate variables and enteric fever in the city of Ahmedabad and report preliminary findings regarding the influence of El Nino Southern Oscillations and Indian Ocean Dipo...Objective:To explore the relationship between climate variables and enteric fever in the city of Ahmedabad and report preliminary findings regarding the influence of El Nino Southern Oscillations and Indian Ocean Dipole over enteric fever incidence.Method:A total of 29808 Widal positive enteric fever cases reported by the Ahmedabad Municipal Corporation and local climate data in 1985-2017 from Ahmedabad Meteorology Department were analysed.El Nino,La Nina,neutral and Indian Ocean Dipole years as reported by the National Oceanic and Atmospheric Administration for the same period were compared for the incidence of enteric fever.Results:Population-normalized average monthly enteric fever case rates were the highest for El Nino years(25.5),lower for La Nina years(20.5)and lowest for neutral years(17.6).A repeated measures ANOVA analysis showed no significant difference in case rates during the three yearly El Nino Southern Oscillations categories.However,visual profile plot of estimated marginal monthly means showed two distinct characteristics:an early rise and peaking of cases in the El Nino and La Nina years,and a much more restrained rise without conspicuous peaks in neutral years.Further analysis based on monthly El Nino Southern Oscillations categories was conducted to detect differences in median monthly case rates.Median case rates in strong and moderate El Nino months and strong La Nina months were significantly dissimilar from that during neutral months(P<0.001).Conclusions:El Nino Southern Oscillations events influence the incidence of enteric fever cases in Ahmedabad,and further investigation from more cities and towns is required.展开更多
The data analyses indicated that the occurrence of D Nino event is closely related to intraseasonal oscillation (ISO) in the tropical atmosphere : The intraseasonal oscillation is very strong in tile tropics (particul...The data analyses indicated that the occurrence of D Nino event is closely related to intraseasonal oscillation (ISO) in the tropical atmosphere : The intraseasonal oscillation is very strong in tile tropics (particularly over the equatorial western Pacific) prior to the occurrence of El Nino; But the ISO is evidently reduced and the quasistationary system is enhanced after the outbreak of El Nino. A simple air-sea coupled model study shows that the periodical self-excited oscillation can be produced in the air-sea-coupled system, but the pattern is different from the observed ENSO mode. When there is external (atmospheric) forcing with interannual time scale, a coupled mode, which looks like the ENSO mode, will be excited in the air-sea system. Synthesizing the results in data analyses and the theoretical investigation. the mechanism of ISO in the tropical atmosphere exciting the EI Nino event can be suggested : The interannual anomalies (variations) of the tropical ISO play an important role in the exciting EI Nino event through the air-sea interaction.展开更多
This paper analyzed the time evolution of the global 1000 hPa height anomalies related to the sea surface temperature (SST) in the eastern equatorial Pacific by using ECMWF data in the period 1979-1988, in which two P...This paper analyzed the time evolution of the global 1000 hPa height anomalies related to the sea surface temperature (SST) in the eastern equatorial Pacific by using ECMWF data in the period 1979-1988, in which two Pacific warm events, 1982/83 and 1986/787, are included. It is found that there are distinct evidences of eastward propagation of alternate positive / negative height anomalies not only in the tropical South Pacific but also in the tropical North Pacific. The former is associated with the Southern Oscillation (SO) and the latter is associated with the so-called Northern Oscillation (NO).It is noteworthy that the alternate positive / negative anomaly centers associated with SO and NO can be traced back to the middle and higher latitudes of the South Indian Ocean and the East Asian continent respectively, which may be significant for the understanding of the causes and mechanism of SO and NO and for the monitoring of ENSO.Furthermore, these evolution processes have a strong symmetry about the Northern and the Southern Hemisphere. The whole SO/ NO cycle takes about 3.5 years from extreme positive to negative index pattern and again from extreme negative to positive index pattern. It is suggested that the anomalous cold air activities over East Asia and Australia and the polar vortex activities over the northern and the southern Pacific seem to have dominant role on the SO / NO cycle.展开更多
The EI Nimo and Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific sea-air interactions. In this paper, an asymptotic method of solving nonlinear equations for the ENSO model i...The EI Nimo and Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific sea-air interactions. In this paper, an asymptotic method of solving nonlinear equations for the ENSO model is proposed. And based on a class of oscillator of the ENSO model and by employing the method of homotopic mapping, the approximate solution of equations for the corresponding ENSO model is studied. It is proved from the results that homotopic method can be used for analysing the sea surface temperature anomaly in the equatorial Pacific of the sea-air oscillator for the ENSO model.展开更多
A sea-air oscillator model is studied using the time delay theory. The aim is to find an asymptotic solving method for the El Nino-southern oscillation (ENSO) model. Employing the perturbed method, an asymptotic sol...A sea-air oscillator model is studied using the time delay theory. The aim is to find an asymptotic solving method for the El Nino-southern oscillation (ENSO) model. Employing the perturbed method, an asymptotic solution of the corresponding problem is obtained. Thus we can obtain the prognoses of the sea surface temperature (SST) anomaly and the related physical quantities.展开更多
This study uses the Climate Forecast System Reanalysis(CFSR) to investigate the responses of the Southern Hemisphere(SH) extratropical climate to two types of El Nino–Southern Oscillation(ENSO)-the eastern Pacific(EP...This study uses the Climate Forecast System Reanalysis(CFSR) to investigate the responses of the Southern Hemisphere(SH) extratropical climate to two types of El Nino–Southern Oscillation(ENSO)-the eastern Pacific(EP) type and the central Pacific(CP) type in different seasons. The responses are denoted by the anomalies of climate variables associated with one-standard-deviation increase in the Nino3 or Nino4 index. The results show that in austral spring the differences in the ENSO-related anomaly(ERA) patterns of atmospheric circulation between the EP ENSO period(1979–1998) and CP ENSO period(1999–2010) are mainly associated with the change in the ENSO-PSA2 relationship. Such differences affect the ERA fields of surface air temperature and mixed layer temperature, and finally result in significant differences in sea-ice concentration anomalies in the Atlantic sector. In austral summer, significant correlation exists between the variations of SAM and both of the variations of Nino3 and Nino4 in 1979–1998, while the correlation between SAM and Nino4 disappears in 1999–2010. For all seasons, the strength of the climate ERAs depend on if there are close relationship between ENSO and the major climate variation modes of the SH extratropics. For the climate variables, the ERA patterns of surface air temperature are generally controlled by surface wind anomalies and mirrored by the mixed layer temperature anomalies. The mixed layer depth anomalies are primarily modulated by surface heat flux anomalies and occasionally by anomalous wind. There are strikingly strong anomalies of surface heat flux in the autumn of 1979–1998 related to the Nino3 variation, the period when there is only significant correlation between ENSO and PSA2. There are no evidence that the SH extratropical climate variability induced by Nino3 variations are stronger in the EP-ENSO period, and that variability induced by Nino4 variations are stronger in the CP-ENSO period.展开更多
利用河南省19个气象站点的逐日气温数据,并辅以海表温度距平指数(Sea Surface Temperature Anomaly,SSTA)和南方涛动指数,运用多项式拟合、相关性分析等方法,分析了1970—2019年河南省气温变化特征及其与厄尔尼诺-南方涛动(ENSO)的关系...利用河南省19个气象站点的逐日气温数据,并辅以海表温度距平指数(Sea Surface Temperature Anomaly,SSTA)和南方涛动指数,运用多项式拟合、相关性分析等方法,分析了1970—2019年河南省气温变化特征及其与厄尔尼诺-南方涛动(ENSO)的关系。结果表明:(1)1970—2019年河南省年、季节气温均呈明显的波动上升趋势,其中年均温以0.24℃/10a的速率递增,且春季气温增温速率最大,冬季气温增温速率最小。(2)过去50年,河南省的气温变化与ENSO事件的强度存在一定的相关关系,20世纪90年代以来,随着厄尔尼诺(El Nino)事件的增多和强度的加大,对应的河南省气温也显著增加。(3)在ENSO事件发生年份,河南省气温变化与SSTA值呈现比较明显的相关关系,且存在一定的滞后性。因此,河南省在强ENSO事件发生的当年或次年易发生极端灾害事件,需要提高警惕,加强防范。展开更多
The system of equation discussed in this paper is a model that describes the phenomena of El Nino and Southern Oscillation (ENSO). The stability of this model is studied with the method of stratification theory. A n...The system of equation discussed in this paper is a model that describes the phenomena of El Nino and Southern Oscillation (ENSO). The stability of this model is studied with the method of stratification theory. A necessary and sufficient condition to justify whether an initial (boundary) problem is well posed or not is also obtained.展开更多
The simulation and prediction of the climatology and interannual variability of the East Asia winter monsoon(EAWM),as well as the associated atmospheric circulation,was investigated using the hindcast data from Global...The simulation and prediction of the climatology and interannual variability of the East Asia winter monsoon(EAWM),as well as the associated atmospheric circulation,was investigated using the hindcast data from Global Seasonal Forecast System version 5(GloSea5),with a focus on the evolution of model bias among different forecast lead times.While GloSea5 reproduces the climatological means of large-scale circulation systems related to the EAWM well,systematic biases exist,including a cold bias for most of China’s mainland,especially for North and Northeast China.GloSea5 shows robust skill in predicting the EAWM intensity index two months ahead,which can be attributed to the performance in representing the leading modes of surface air temperature and associated background circulation.GloSea5 realistically reproduces the synergistic effect of El Niño–Southern Oscillation(ENSO)and the Arctic Oscillation(AO)on the EAWM,especially for the western North Pacific anticyclone(WNPAC).Compared with the North Pacific and North America,the representation of circulation anomalies over Eurasia is poor,especially for sea level pressure(SLP),which limits the prediction skill for surface air temperature over East Asia.The representation of SLP anomalies might be associated with the model performance in simulating the interaction between atmospheric circulations and underlying surface conditions.展开更多
文摘Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investigate the correlation between rainfall anomalies in Rwanda during the months of September to December (SOND) with the occurrences of Indian Ocean Dipole (IOD) and El Nino Southern Oscillation (ENSO) events. The study is useful for early warning and forecasting of negative effects associated with extreme rainfall anomalies across the country, using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), the National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research (NCAR) reanalysis sea surface temperature and ERA5 reanalysis datasets, during the period of 1983-2021. Both empirical orthogonal function (EOF), correlation analysis and composite analysis were used to delineate variability, relationship and the related atmospheric circulation between Rwanda seasonal rainfall September to December (SOND) with Indian Ocean Dipole (IOD) and El-Nino Southern Oscillation (ENSO). The results for Empirical Orthogonal Function (EOF) for the reconstructed rainfall data set showed three modes. EOF-1, EOF-2 and EOF-3 with their total variance of 63.6%, 16.5% and 4.8%, Indian ocean dipole (IOD) events resulted to a strong positive correlation of rainfall anomalies and Dipole model index (DMI) (r = 0.42, p value = 0.001, DF = 37) significant at 95% confidence level. The composite analysis for the reanalysis dataset was carried out to show the circulation patterns during four different events correlated with September to December seasonal rainfall in Rwanda using T-test at 95% confidence level. Wind anomaly revealed that there was a convergence of south westerly winds and easterly wind over the study area during positive Indian Ocean Diploe (PIOD) and PIOD with El Nino concurrence event years. The finding of this study will contribute to the enhancement of SOND seasonal rainfall forecasting and the reduction of vulnerability during IOD (ENSO) event years.
文摘This investigation aims to study the El-Niño-Southern Oscillation (ENSO) events in these three phases: El Niño, La Niña, and neutral. Warm and cold events relate to the Spring/Summer seasons. This paper will search for connections between the ENSO events and climate anomalies worldwide. There is some speculation that those events would be necessary for the climate anomalies observed worldwide. After analyzing the data from the reports to the ENSO, it shows almost periodicity from 1950-2023. We emphasized the occurrence of El Niño two years, when it was most prominent, and the climate anomalies (following NOAA maps), 2015 and 2023. The results indicated that the observed climate anomalies couldn’t be linked to the abnormal events observed. The worldwide temperatures in those years enhanced mostly in 2023. It shows an abnormal behavior compared with all the years scrutinized and analyzed since the records began. Therefore, there must be unknown factors beyond ENSO that rule the worldwide temperatures and the climate anomalies observed.
基金US National Natural Science Foundation, No.0624359 Knowledge Innovation Program of the CAS, No.KSCX1-YW-09+5 种基金 No.KZCX2-YW-305-2 National Key Technology R&D Program of China, No.2006BAC08B06 No.2008BAK50B06 No.2008BAK47B02 No.2008BAC44B04 China State Major Project for Water Pollution Control and Management, No.2009ZX07106-001 Acknowledgement We are grateful to FANG Yu and YAN Bangyou from the Mountain, River and Lake Office of Jiangxi and WANG Xiaohong, Deputy Director General of the Department of Science and Technology of Jiangxi Provincial Government for their assistance on this project.
文摘This paper aims to demonstrate the relationships between ENSO and rice production of Jiangxi province in order to identify the reason that ENSO might have little effect on Chinese rice production. Using a data set with measures of Jiangxi's climate and rice production, we find the reason that during 1985 and 2004 ENSO's well correlated with rainfall did not promote Chinese rice production. First, the largest effects of ENSO mostly occur in the months when there is no rice in the field. Second, there is almost no temperature effect. Finally, the monthly distribution of rainfall is almost the same in ENSO and neutral years because the largest effects are during months when there is the least rain. In addition, due to the high irrigation share and reliable and effective irrigation facilities of cultivated land, China's rice production is less climate-sensitive.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90111011 and 10471039), the National Key Basic Research Special Foundation of China (Grant Nos 2003CB415101-03 and 2004CB418304), the Key Basic Research Foundation of the Chinese Academy of Sciences (Grant No KZCX3-SW-221) and in part by E-Institutes of Shanghai Municipal Education Commission (Grant No N.E03004).
文摘A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behaviour of solution for corresponding problem is considered.
基金funded by Public Health Research Initiative(PHRI)Research grant awarded by PHFI with the financial support of Department of Science and Technology(No.PHRI LN0019).
文摘Objective:To explore the relationship between climate variables and enteric fever in the city of Ahmedabad and report preliminary findings regarding the influence of El Nino Southern Oscillations and Indian Ocean Dipole over enteric fever incidence.Method:A total of 29808 Widal positive enteric fever cases reported by the Ahmedabad Municipal Corporation and local climate data in 1985-2017 from Ahmedabad Meteorology Department were analysed.El Nino,La Nina,neutral and Indian Ocean Dipole years as reported by the National Oceanic and Atmospheric Administration for the same period were compared for the incidence of enteric fever.Results:Population-normalized average monthly enteric fever case rates were the highest for El Nino years(25.5),lower for La Nina years(20.5)and lowest for neutral years(17.6).A repeated measures ANOVA analysis showed no significant difference in case rates during the three yearly El Nino Southern Oscillations categories.However,visual profile plot of estimated marginal monthly means showed two distinct characteristics:an early rise and peaking of cases in the El Nino and La Nina years,and a much more restrained rise without conspicuous peaks in neutral years.Further analysis based on monthly El Nino Southern Oscillations categories was conducted to detect differences in median monthly case rates.Median case rates in strong and moderate El Nino months and strong La Nina months were significantly dissimilar from that during neutral months(P<0.001).Conclusions:El Nino Southern Oscillations events influence the incidence of enteric fever cases in Ahmedabad,and further investigation from more cities and towns is required.
文摘The data analyses indicated that the occurrence of D Nino event is closely related to intraseasonal oscillation (ISO) in the tropical atmosphere : The intraseasonal oscillation is very strong in tile tropics (particularly over the equatorial western Pacific) prior to the occurrence of El Nino; But the ISO is evidently reduced and the quasistationary system is enhanced after the outbreak of El Nino. A simple air-sea coupled model study shows that the periodical self-excited oscillation can be produced in the air-sea-coupled system, but the pattern is different from the observed ENSO mode. When there is external (atmospheric) forcing with interannual time scale, a coupled mode, which looks like the ENSO mode, will be excited in the air-sea system. Synthesizing the results in data analyses and the theoretical investigation. the mechanism of ISO in the tropical atmosphere exciting the EI Nino event can be suggested : The interannual anomalies (variations) of the tropical ISO play an important role in the exciting EI Nino event through the air-sea interaction.
基金This project is supported by National Natural Science Foundation of ChinaChinese Academy of Sciences.
文摘This paper analyzed the time evolution of the global 1000 hPa height anomalies related to the sea surface temperature (SST) in the eastern equatorial Pacific by using ECMWF data in the period 1979-1988, in which two Pacific warm events, 1982/83 and 1986/787, are included. It is found that there are distinct evidences of eastward propagation of alternate positive / negative height anomalies not only in the tropical South Pacific but also in the tropical North Pacific. The former is associated with the Southern Oscillation (SO) and the latter is associated with the so-called Northern Oscillation (NO).It is noteworthy that the alternate positive / negative anomaly centers associated with SO and NO can be traced back to the middle and higher latitudes of the South Indian Ocean and the East Asian continent respectively, which may be significant for the understanding of the causes and mechanism of SO and NO and for the monitoring of ENSO.Furthermore, these evolution processes have a strong symmetry about the Northern and the Southern Hemisphere. The whole SO/ NO cycle takes about 3.5 years from extreme positive to negative index pattern and again from extreme negative to positive index pattern. It is suggested that the anomalous cold air activities over East Asia and Australia and the polar vortex activities over the northern and the southern Pacific seem to have dominant role on the SO / NO cycle.
基金Project supported by the National Natural Science Foundation of China(Grant Nos40679016 and 10471039)the State Key Program for Basic Research of China(Grant Nos2003CB415101-03 and 2004CB418304)+2 种基金the Key Basic Research Foundation ofthe Chinese Academy of Sciences,China(Grant No KZCX3-SW-221)partially by E-Institutes of Shanghai Municipal Education Commission of China(Grant No N.E03004)the Natural Science Foundation of Zhejiang Province,China(Grant No Y60628)
文摘The EI Nimo and Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific sea-air interactions. In this paper, an asymptotic method of solving nonlinear equations for the ENSO model is proposed. And based on a class of oscillator of the ENSO model and by employing the method of homotopic mapping, the approximate solution of equations for the corresponding ENSO model is studied. It is proved from the results that homotopic method can be used for analysing the sea surface temperature anomaly in the equatorial Pacific of the sea-air oscillator for the ENSO model.
基金Project supported by the National Natural Science Foundation of China (Grant No.40876010)the Natural Science Foundation of Zhejiang Province of China (Grant No.Y6110502)+2 种基金the Natural Science Foundation of the Education Bureau of Anhui Province of China (Grant Nos.KJ2011A135 and KJ2011Z003)the LASG State Key Laboratory Special Fund of Chinathe Foundation of E-Institutes of Shanghai Municipal Education Commission,China (Grant No.E03004)
文摘A sea-air oscillator model is studied using the time delay theory. The aim is to find an asymptotic solving method for the El Nino-southern oscillation (ENSO) model. Employing the perturbed method, an asymptotic solution of the corresponding problem is obtained. Thus we can obtain the prognoses of the sea surface temperature (SST) anomaly and the related physical quantities.
基金The General Program of the National Natural Science Foundation of China under contract Nos 41876221 and 41861134040
文摘This study uses the Climate Forecast System Reanalysis(CFSR) to investigate the responses of the Southern Hemisphere(SH) extratropical climate to two types of El Nino–Southern Oscillation(ENSO)-the eastern Pacific(EP) type and the central Pacific(CP) type in different seasons. The responses are denoted by the anomalies of climate variables associated with one-standard-deviation increase in the Nino3 or Nino4 index. The results show that in austral spring the differences in the ENSO-related anomaly(ERA) patterns of atmospheric circulation between the EP ENSO period(1979–1998) and CP ENSO period(1999–2010) are mainly associated with the change in the ENSO-PSA2 relationship. Such differences affect the ERA fields of surface air temperature and mixed layer temperature, and finally result in significant differences in sea-ice concentration anomalies in the Atlantic sector. In austral summer, significant correlation exists between the variations of SAM and both of the variations of Nino3 and Nino4 in 1979–1998, while the correlation between SAM and Nino4 disappears in 1999–2010. For all seasons, the strength of the climate ERAs depend on if there are close relationship between ENSO and the major climate variation modes of the SH extratropics. For the climate variables, the ERA patterns of surface air temperature are generally controlled by surface wind anomalies and mirrored by the mixed layer temperature anomalies. The mixed layer depth anomalies are primarily modulated by surface heat flux anomalies and occasionally by anomalous wind. There are strikingly strong anomalies of surface heat flux in the autumn of 1979–1998 related to the Nino3 variation, the period when there is only significant correlation between ENSO and PSA2. There are no evidence that the SH extratropical climate variability induced by Nino3 variations are stronger in the EP-ENSO period, and that variability induced by Nino4 variations are stronger in the CP-ENSO period.
文摘利用河南省19个气象站点的逐日气温数据,并辅以海表温度距平指数(Sea Surface Temperature Anomaly,SSTA)和南方涛动指数,运用多项式拟合、相关性分析等方法,分析了1970—2019年河南省气温变化特征及其与厄尔尼诺-南方涛动(ENSO)的关系。结果表明:(1)1970—2019年河南省年、季节气温均呈明显的波动上升趋势,其中年均温以0.24℃/10a的速率递增,且春季气温增温速率最大,冬季气温增温速率最小。(2)过去50年,河南省的气温变化与ENSO事件的强度存在一定的相关关系,20世纪90年代以来,随着厄尔尼诺(El Nino)事件的增多和强度的加大,对应的河南省气温也显著增加。(3)在ENSO事件发生年份,河南省气温变化与SSTA值呈现比较明显的相关关系,且存在一定的滞后性。因此,河南省在强ENSO事件发生的当年或次年易发生极端灾害事件,需要提高警惕,加强防范。
基金supported by the National Natural Science Foundation of China (Grant No.90411006)
文摘The system of equation discussed in this paper is a model that describes the phenomena of El Nino and Southern Oscillation (ENSO). The stability of this model is studied with the method of stratification theory. A necessary and sufficient condition to justify whether an initial (boundary) problem is well posed or not is also obtained.
基金supported by the State Key Program of the National Natural Science of China(Grant No.41730964)the National Key Research and Development Program on Monitoring,Early Warning and Prevention of Major Natural Disaster(2018YFC1506000)+2 种基金the National Natural Science Foundation of China(Grant Nos.41975091 and 42175047)National Basic Research Program of China(2015CB453203)UK-China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund.
文摘The simulation and prediction of the climatology and interannual variability of the East Asia winter monsoon(EAWM),as well as the associated atmospheric circulation,was investigated using the hindcast data from Global Seasonal Forecast System version 5(GloSea5),with a focus on the evolution of model bias among different forecast lead times.While GloSea5 reproduces the climatological means of large-scale circulation systems related to the EAWM well,systematic biases exist,including a cold bias for most of China’s mainland,especially for North and Northeast China.GloSea5 shows robust skill in predicting the EAWM intensity index two months ahead,which can be attributed to the performance in representing the leading modes of surface air temperature and associated background circulation.GloSea5 realistically reproduces the synergistic effect of El Niño–Southern Oscillation(ENSO)and the Arctic Oscillation(AO)on the EAWM,especially for the western North Pacific anticyclone(WNPAC).Compared with the North Pacific and North America,the representation of circulation anomalies over Eurasia is poor,especially for sea level pressure(SLP),which limits the prediction skill for surface air temperature over East Asia.The representation of SLP anomalies might be associated with the model performance in simulating the interaction between atmospheric circulations and underlying surface conditions.