We formulate a macroscopic particle modeling analysis of metallic materials (aluminum and copper, etc.) based on theoretical energy and atomic geome<span>tries derivable from their interatomic potential. In fact...We formulate a macroscopic particle modeling analysis of metallic materials (aluminum and copper, etc.) based on theoretical energy and atomic geome<span>tries derivable from their interatomic potential. In fact, particles in thi</span>s framework are presenting a large mass composed of huge collection of atoms and are interacting with each other. We can start from cohesive energy of metallic atoms and basic crystalline unit (e.g. face-centered cubic). Then, we can reach to interparticle (macroscopic) potential function which is presented by the analytical equation with terms of exponent of inter-particle distance, like a Lennard-Jones potential usually used in molecular dynamics simulation. Equation of motion for these macroscopic particles has dissipative term and fluctuation term, as well as the conservative term above, in order to express finite temperature condition. First, we determine the parameters needed in macroscopic potential function and check the reproduction of mechanical behavior in elastic regime. By using the present framework, we are able to carry out uniaxial loading simulation of aluminum rod. The method can also reproduce Young’s modulus and Poisson’s ratio as elastic behavior, though the result shows the dependency on division number of particles. Then, we proceed to try to include plasticity in this multi-scale framework. As a result, a realistic curve of stress-strain relation can be obtained for tensile and compressive loading and this new and simple framework of materials modeling has been confirmed to have certain effectiveness to be used in materials simulations. We also assess the effect of the order of loadings in opposite directions including yield and plastic states and find that an irreversible behavior depends on different response of the particle system between tensile and compressive loadings.展开更多
A new elastic-plastic impact-contact model is proposed in this paper. By adopting the principle of minimum acceleration for elastic-plastic continue at finite deformation, and with the aid of finite difference method,...A new elastic-plastic impact-contact model is proposed in this paper. By adopting the principle of minimum acceleration for elastic-plastic continue at finite deformation, and with the aid of finite difference method, the proposed model is applied in the problem of dynamic response of a clamped thin circular plate subjected to a projectile impact centrally. The impact force history and response characteristics of the target plate is studied in detail. The theoretical predictions of the impact force and plate deflection are in good agreements with those of LDA experimental data. Linear expressions of the maximum impact force/transverse deflection versus impact velocity are given on the basis of the theoretical results.展开更多
A Harten-Lax-van Leer-contact (HLLC) approximate Riemann solver is built with elastic waves (HLLCE) for one-dimensional elastic-plastic flows with a hypo- elastic constitutive model and the von Mises' yielding cr...A Harten-Lax-van Leer-contact (HLLC) approximate Riemann solver is built with elastic waves (HLLCE) for one-dimensional elastic-plastic flows with a hypo- elastic constitutive model and the von Mises' yielding criterion. Based on the HLLCE, a third-order cell-centered Lagrangian scheme is built for one-dimensional elastic-plastic problems. A number of numerical experiments are carried out. The numerical results show that the proposed third-order scheme achieves the desired order of accuracy. The third-order scheme is used to the numerical solution of the problems with elastic shock waves and elastic rarefaction waves. The numerical results are compared with a reference solution and the results obtained by other authors. The comparison shows that the pre- sented high-order scheme is convergent, stable, and essentially non-oscillatory. Moreover, the HLLCE is more efficient than the two-rarefaction Riemann solver with elastic waves (TRRSE)展开更多
In this paper, a systematic approach is proposed to obtain the macroscopic elastic-plastic constitutive relation of particle reinforced composites (PRC). The strain energy density of PRC is analyzed based on the cell ...In this paper, a systematic approach is proposed to obtain the macroscopic elastic-plastic constitutive relation of particle reinforced composites (PRC). The strain energy density of PRC is analyzed based on the cell model, and the analytical formula for the macro-constitutive relation of PRC is obtained. The strength effects of volume fraction of the particle and the strain hardening exponent of matrix material on the macro-constitutive relation are investigated, the relation curve of strain versus stress of PRC is calculated in detail. The present results are consistent with the results given in the existing references.展开更多
Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. ...Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.展开更多
For a homogeneous,continuous,and isotropic material whose constitutive relationships meets with the Ramberg-Osgood law(R-O law),the energy in the elastoplastic indentation with a ball indenter was theoretically analyz...For a homogeneous,continuous,and isotropic material whose constitutive relationships meets with the Ramberg-Osgood law(R-O law),the energy in the elastoplastic indentation with a ball indenter was theoretically analyzed,and the proportional superposition of energy in pure elasticity and pure plasticity during indentation was considered based on the equivalence of energy density.Subsequently,a Proportional Superposition-based Elasto Plastic Model(PS-EPM)was developed to describe the relationships between the displacement and the load during the ball indentation.Furthermore,a new test method of Ball Indentation based on Elastoplastic Proportional Superposition(BI-EPS)was developed to obtain the constitutive relationships of R-O law materials.The load–displacement curves predicted using the PS-EPM model were found to agree closely with the Finite Element Analysis(FEA)results.Moreover,the stress vs.strain curves predicted using the BI-EPS method were in better agreement with those obtained by FEA.Additionally,ball indentation was performed on eleven types of metal materials including five types of aluminum alloys and six types of steel.The test results showed that the stress vs.strain relationships and the tensile strength values predicted using the proposed BI-EPS method agreed well with the results obtained using conventional uniaxial tensile tests.展开更多
Phase transformations in steels play a major role on the generation of residual stresses and distortions during thermal processes such as welding and heat treatments. In this paper, we focus on the influence of phase ...Phase transformations in steels play a major role on the generation of residual stresses and distortions during thermal processes such as welding and heat treatments. In this paper, we focus on the influence of phase transformations on the plastic behaviour of a low-alloy steel. It is now well known that the plastic strain rate can then be decomposed as the sum of two terms. The first one corresponds to classical plasticity while the second one is due to the evolution of the transformation and is usually referred to as corresponding to transformation induced plasticity. A theoretical approach of the problem has been achieved ([1][2][3]] and a macroscopic model has been proposed in the case of ideal-plastic phases. The theoretical approach has been assessed and completed using micromechanical numerical simulations but these were based on rather coarse 3D meshes due to limited computer capabilities in the 80’s. This paper presents new finite element micromechanical calculations using refined meshes to analyse the classical plastic behaviour and transformation induced plasticity. The results of the computations are discussed and compared with the calculations initially performed. Finally improvements of the macroscopic model are proposed.展开更多
Research on the elasticity and plasticity dynamics of the Earth multi-body system, including the Earth multi-body system stratum-block's equivalent inertia force system and generalized inertia force, the Earth mul...Research on the elasticity and plasticity dynamics of the Earth multi-body system, including the Earth multi-body system stratum-block's equivalent inertia force system and generalized inertia force, the Earth multi-body system stratum-block's equivalent inertia force system expressed with partial velocity and partial palstance, and Earth multi-body system generalized inertia force expressed with partial velocity and partial palstance. This research provides a theoretical foundation for further investigation of Earth multi-body dynamics.展开更多
The RMB-150B rock mechanics test system was employed to obtain the complete stress-strain test curves under confining pressures of 0-30MPa for marble samples from Ya'an ,Sichuan province. On the basis of former st...The RMB-150B rock mechanics test system was employed to obtain the complete stress-strain test curves under confining pressures of 0-30MPa for marble samples from Ya'an ,Sichuan province. On the basis of former study and the convention triaxial pressure test results ,the complete procedures curves which described the relationships between yielding strength、 peak strength、 residual strength and confining pressure was obtained. Taking the strain softening of rock into account, the bilinear elastic-linear softening-residual perfect plasticity four-linear model was put forward in this paper on the basis of the test results and theory of plasticity. This model was adopted to describe the behaviors of marble in different phases under triaxial compression with the constitutive equation of strain softening phase as focus. The results indicated that the theoretic model fitted in well with the test results.展开更多
The land subsidence due to groundwater exploitation has an obvious hysteretic nature with respect to the decrease of the under groundwater level, and the uneven settlement often causes ground fissures. To study these ...The land subsidence due to groundwater exploitation has an obvious hysteretic nature with respect to the decrease of the under groundwater level, and the uneven settlement often causes ground fissures. To study these important features, a visco-elasticplastic constitutive relationship with consideration of the coupling of seepage and soil deformation is proposed, and a finite element model with variable coefficients based on the Biot's consolidation theory is built. With the groundwater exploitation and the land subsidence control in Cangzhou City, Hebei Province as an example, the variations of the under groundwater level and the deve- lopment of the land subsidence due to the groundwater exploitation are simulated and ground fissures are predicted by the horizontal displacement calculation. The results show that the lag time between the land subsidence and the under groundwater level descent is about a month, and the simulated results of fissures agree well with the observed data. The model can well reveal the characterization of the interaction between the land subsidence and the groundwater exploitation.展开更多
文摘We formulate a macroscopic particle modeling analysis of metallic materials (aluminum and copper, etc.) based on theoretical energy and atomic geome<span>tries derivable from their interatomic potential. In fact, particles in thi</span>s framework are presenting a large mass composed of huge collection of atoms and are interacting with each other. We can start from cohesive energy of metallic atoms and basic crystalline unit (e.g. face-centered cubic). Then, we can reach to interparticle (macroscopic) potential function which is presented by the analytical equation with terms of exponent of inter-particle distance, like a Lennard-Jones potential usually used in molecular dynamics simulation. Equation of motion for these macroscopic particles has dissipative term and fluctuation term, as well as the conservative term above, in order to express finite temperature condition. First, we determine the parameters needed in macroscopic potential function and check the reproduction of mechanical behavior in elastic regime. By using the present framework, we are able to carry out uniaxial loading simulation of aluminum rod. The method can also reproduce Young’s modulus and Poisson’s ratio as elastic behavior, though the result shows the dependency on division number of particles. Then, we proceed to try to include plasticity in this multi-scale framework. As a result, a realistic curve of stress-strain relation can be obtained for tensile and compressive loading and this new and simple framework of materials modeling has been confirmed to have certain effectiveness to be used in materials simulations. We also assess the effect of the order of loadings in opposite directions including yield and plastic states and find that an irreversible behavior depends on different response of the particle system between tensile and compressive loadings.
基金The project supported by the National Natural Science Foundation of China(10532020)
文摘A new elastic-plastic impact-contact model is proposed in this paper. By adopting the principle of minimum acceleration for elastic-plastic continue at finite deformation, and with the aid of finite difference method, the proposed model is applied in the problem of dynamic response of a clamped thin circular plate subjected to a projectile impact centrally. The impact force history and response characteristics of the target plate is studied in detail. The theoretical predictions of the impact force and plate deflection are in good agreements with those of LDA experimental data. Linear expressions of the maximum impact force/transverse deflection versus impact velocity are given on the basis of the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Nos.11172050 and11672047)the Science and Technology Foundation of China Academy of Engineering Physics(No.2013A0202011)
文摘A Harten-Lax-van Leer-contact (HLLC) approximate Riemann solver is built with elastic waves (HLLCE) for one-dimensional elastic-plastic flows with a hypo- elastic constitutive model and the von Mises' yielding criterion. Based on the HLLCE, a third-order cell-centered Lagrangian scheme is built for one-dimensional elastic-plastic problems. A number of numerical experiments are carried out. The numerical results show that the proposed third-order scheme achieves the desired order of accuracy. The third-order scheme is used to the numerical solution of the problems with elastic shock waves and elastic rarefaction waves. The numerical results are compared with a reference solution and the results obtained by other authors. The comparison shows that the pre- sented high-order scheme is convergent, stable, and essentially non-oscillatory. Moreover, the HLLCE is more efficient than the two-rarefaction Riemann solver with elastic waves (TRRSE)
基金The project supported by the National Natural Science Foundation of China (No. 19704100) National Science Foundation of Chinese Academy of Sciences (Project KJ951-1-20)
文摘In this paper, a systematic approach is proposed to obtain the macroscopic elastic-plastic constitutive relation of particle reinforced composites (PRC). The strain energy density of PRC is analyzed based on the cell model, and the analytical formula for the macro-constitutive relation of PRC is obtained. The strength effects of volume fraction of the particle and the strain hardening exponent of matrix material on the macro-constitutive relation are investigated, the relation curve of strain versus stress of PRC is calculated in detail. The present results are consistent with the results given in the existing references.
文摘Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.
基金co-supported by the National Natural Science Foundation of China(Nos.11872320 and 12072294)。
文摘For a homogeneous,continuous,and isotropic material whose constitutive relationships meets with the Ramberg-Osgood law(R-O law),the energy in the elastoplastic indentation with a ball indenter was theoretically analyzed,and the proportional superposition of energy in pure elasticity and pure plasticity during indentation was considered based on the equivalence of energy density.Subsequently,a Proportional Superposition-based Elasto Plastic Model(PS-EPM)was developed to describe the relationships between the displacement and the load during the ball indentation.Furthermore,a new test method of Ball Indentation based on Elastoplastic Proportional Superposition(BI-EPS)was developed to obtain the constitutive relationships of R-O law materials.The load–displacement curves predicted using the PS-EPM model were found to agree closely with the Finite Element Analysis(FEA)results.Moreover,the stress vs.strain curves predicted using the BI-EPS method were in better agreement with those obtained by FEA.Additionally,ball indentation was performed on eleven types of metal materials including five types of aluminum alloys and six types of steel.The test results showed that the stress vs.strain relationships and the tensile strength values predicted using the proposed BI-EPS method agreed well with the results obtained using conventional uniaxial tensile tests.
文摘Phase transformations in steels play a major role on the generation of residual stresses and distortions during thermal processes such as welding and heat treatments. In this paper, we focus on the influence of phase transformations on the plastic behaviour of a low-alloy steel. It is now well known that the plastic strain rate can then be decomposed as the sum of two terms. The first one corresponds to classical plasticity while the second one is due to the evolution of the transformation and is usually referred to as corresponding to transformation induced plasticity. A theoretical approach of the problem has been achieved ([1][2][3]] and a macroscopic model has been proposed in the case of ideal-plastic phases. The theoretical approach has been assessed and completed using micromechanical numerical simulations but these were based on rather coarse 3D meshes due to limited computer capabilities in the 80’s. This paper presents new finite element micromechanical calculations using refined meshes to analyse the classical plastic behaviour and transformation induced plasticity. The results of the computations are discussed and compared with the calculations initially performed. Finally improvements of the macroscopic model are proposed.
基金supported by the International Projects cooperated with China,America,German and Canada(INDEPTH)(Grant No.9501207)the National Natural Science Foundation of China(Grant No.49732100)+1 种基金the Knowledge Innovation Project of Chinese Academy of Sciences(Grant No.CX000018)the Chinese Sciences Foundation Postdoctoral Level Funded Project(Grant No.9 Chinese Postdoctoral Funded(1998)).
文摘Research on the elasticity and plasticity dynamics of the Earth multi-body system, including the Earth multi-body system stratum-block's equivalent inertia force system and generalized inertia force, the Earth multi-body system stratum-block's equivalent inertia force system expressed with partial velocity and partial palstance, and Earth multi-body system generalized inertia force expressed with partial velocity and partial palstance. This research provides a theoretical foundation for further investigation of Earth multi-body dynamics.
文摘The RMB-150B rock mechanics test system was employed to obtain the complete stress-strain test curves under confining pressures of 0-30MPa for marble samples from Ya'an ,Sichuan province. On the basis of former study and the convention triaxial pressure test results ,the complete procedures curves which described the relationships between yielding strength、 peak strength、 residual strength and confining pressure was obtained. Taking the strain softening of rock into account, the bilinear elastic-linear softening-residual perfect plasticity four-linear model was put forward in this paper on the basis of the test results and theory of plasticity. This model was adopted to describe the behaviors of marble in different phases under triaxial compression with the constitutive equation of strain softening phase as focus. The results indicated that the theoretic model fitted in well with the test results.
文摘The land subsidence due to groundwater exploitation has an obvious hysteretic nature with respect to the decrease of the under groundwater level, and the uneven settlement often causes ground fissures. To study these important features, a visco-elasticplastic constitutive relationship with consideration of the coupling of seepage and soil deformation is proposed, and a finite element model with variable coefficients based on the Biot's consolidation theory is built. With the groundwater exploitation and the land subsidence control in Cangzhou City, Hebei Province as an example, the variations of the under groundwater level and the deve- lopment of the land subsidence due to the groundwater exploitation are simulated and ground fissures are predicted by the horizontal displacement calculation. The results show that the lag time between the land subsidence and the under groundwater level descent is about a month, and the simulated results of fissures agree well with the observed data. The model can well reveal the characterization of the interaction between the land subsidence and the groundwater exploitation.