Variable selection plays an important role in high-dimensional data analysis.But the high-dimensional data often induces the strongly correlated variables problem,which should be properly handled.In this paper,we prop...Variable selection plays an important role in high-dimensional data analysis.But the high-dimensional data often induces the strongly correlated variables problem,which should be properly handled.In this paper,we propose Elastic Net procedure for partially linear models and prove the group effect of its estimate.A simulation study shows that the Elastic Net procedure deals with the strongly correlated variables problem better than the Lasso,ALasso and the Ridge do.Based on the real world data study,we can get that the Elastic Net procedure is particularly useful when the number of predictors pffis much bigger than the sample size n.展开更多
基金The National Natural Science Foundation of China(11361007)the Natural Science Foundation of Guangxi(2012GXNSFBA053010+1 种基金2014GXNSFCA118001)the Project for Fostering Distininguished Youth Scholars of Shandong University of Finance and Economics
基金Supported by National Natural Science Foundation of China(No.71462002)the Project for Teaching Reform of Guangxi(GXZZJG2017B084)the Project for Fostering Distinguished Youth Scholars of Guangxi(2020KY50012)。
文摘Variable selection plays an important role in high-dimensional data analysis.But the high-dimensional data often induces the strongly correlated variables problem,which should be properly handled.In this paper,we propose Elastic Net procedure for partially linear models and prove the group effect of its estimate.A simulation study shows that the Elastic Net procedure deals with the strongly correlated variables problem better than the Lasso,ALasso and the Ridge do.Based on the real world data study,we can get that the Elastic Net procedure is particularly useful when the number of predictors pffis much bigger than the sample size n.