According to the closed-orbit theory, we study the influence of elastic interface on the photodetachment of H- near a metallic sphere surface. First, we give a clear physical description of the detached electron movem...According to the closed-orbit theory, we study the influence of elastic interface on the photodetachment of H- near a metallic sphere surface. First, we give a clear physical description of the detached electron movement between the elastic interface and the metallic sphere surface. Then we put forward an analytical formula for calculating the photodetachment cross section of this system. Our study suggests that the photodetachment cross section of H is changed with the distance between the elastic interface and H^-. Compared with the photodetachment cross section of H^- near a metallic sphere surface without the elastic interface, the cross section of our system oscillates and its oscillation is strengthened with the decrease of the distance from the elastic interface to H^-. In additon, our calcuation results suggest that the influence of the elastic interface becomes much more significant when it is located in the lower half space rather than in the upper half space. Therefore, we can control the photodetachment of H^- near a metallic sphere surface by changing the position of the elastic interface. We hope that our work is conducive to the understanding of the photodetachment process of negative ions near interfaces, cavities and ion traps.展开更多
In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body...In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence.展开更多
When the size of an inclusion shrinks to nanometers, interface energy plays an important role in the deformation around it. In the present paper, we consider the effect of interface energy on the elastic fields near a...When the size of an inclusion shrinks to nanometers, interface energy plays an important role in the deformation around it. In the present paper, we consider the effect of interface energy on the elastic fields near a spheroidal nanoinclusion embedded in an elastic medium on the basis of surface elasticity theory. Using Boussinesq-Sadowsky potential function method, we obtain the deformation field near the inclusion subjected to a uniformly uniaxial loading at infinity. The results show that the elastic fields near the nano-inclusion depend strongly on the interface properties, the size and shape of inclusion. These new characteristics may be helpful to understand various relevant mechanical performances of nanosized inhomogeneities.展开更多
Interface dislocations may dramatically change the electric properties, such as polarization, of the piezoelectric crystals. In this paper, we study the linear interactions of two interface dislocation loops with arbi...Interface dislocations may dramatically change the electric properties, such as polarization, of the piezoelectric crystals. In this paper, we study the linear interactions of two interface dislocation loops with arbitrary shape in generally anisotropic piezoelectric bi-crystals. A simple formula for calculating the interaction energy of the interface dislocation loops is derived and given by a double line integral along two closed dislocation curves. Particularly, interactions between two straight segments of the interface dislocations are solved analytically, which can be applied to approximate any curved loop so that an analytical solution can be also achieved. Numerical results show the influence of the bi-crystal interface as well as the material orientation on the interaction of interface dislocation loops.展开更多
In this paper, we propose adaptive finite element methods with error control for solving elasticity problems with discontinuous coefficients. The meshes in the methods do not need to fit the interfaces. We establish a...In this paper, we propose adaptive finite element methods with error control for solving elasticity problems with discontinuous coefficients. The meshes in the methods do not need to fit the interfaces. We establish a residual-based a posteriori error estimate which is λ- independent multiplicative constants; the Lame constant λ steers the incompressibility. The error estimators are then implemented and tested with promising numerical results which will show the competitive behavior of the adaptive algorithm.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11074104 and 11374133)the Shandong Provincial Higher Educational Science and Technology Program,China (Grant No.J13LJ04)
文摘According to the closed-orbit theory, we study the influence of elastic interface on the photodetachment of H- near a metallic sphere surface. First, we give a clear physical description of the detached electron movement between the elastic interface and the metallic sphere surface. Then we put forward an analytical formula for calculating the photodetachment cross section of this system. Our study suggests that the photodetachment cross section of H is changed with the distance between the elastic interface and H^-. Compared with the photodetachment cross section of H^- near a metallic sphere surface without the elastic interface, the cross section of our system oscillates and its oscillation is strengthened with the decrease of the distance from the elastic interface to H^-. In additon, our calcuation results suggest that the influence of the elastic interface becomes much more significant when it is located in the lower half space rather than in the upper half space. Therefore, we can control the photodetachment of H^- near a metallic sphere surface by changing the position of the elastic interface. We hope that our work is conducive to the understanding of the photodetachment process of negative ions near interfaces, cavities and ion traps.
基金supported by the US ARO grants 49308-MA and 56349-MAthe US AFSOR grant FA9550-06-1-024+1 种基金he US NSF grant DMS-0911434the State Key Laboratory of Scientific and Engineering Computing of Chinese Academy of Sciences during a visit by Z.Li between July-August,2008.
文摘In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence.
基金supported by the National Natural Science Foundation of China (10672129 and 10602042)973 program (2007CB707702)NCET program of MOE.
文摘When the size of an inclusion shrinks to nanometers, interface energy plays an important role in the deformation around it. In the present paper, we consider the effect of interface energy on the elastic fields near a spheroidal nanoinclusion embedded in an elastic medium on the basis of surface elasticity theory. Using Boussinesq-Sadowsky potential function method, we obtain the deformation field near the inclusion subjected to a uniformly uniaxial loading at infinity. The results show that the elastic fields near the nano-inclusion depend strongly on the interface properties, the size and shape of inclusion. These new characteristics may be helpful to understand various relevant mechanical performances of nanosized inhomogeneities.
基金supports from the National Natural Science Foundation of China(11402133 and 11502128)
文摘Interface dislocations may dramatically change the electric properties, such as polarization, of the piezoelectric crystals. In this paper, we study the linear interactions of two interface dislocation loops with arbitrary shape in generally anisotropic piezoelectric bi-crystals. A simple formula for calculating the interaction energy of the interface dislocation loops is derived and given by a double line integral along two closed dislocation curves. Particularly, interactions between two straight segments of the interface dislocations are solved analytically, which can be applied to approximate any curved loop so that an analytical solution can be also achieved. Numerical results show the influence of the bi-crystal interface as well as the material orientation on the interaction of interface dislocation loops.
文摘In this paper, we propose adaptive finite element methods with error control for solving elasticity problems with discontinuous coefficients. The meshes in the methods do not need to fit the interfaces. We establish a residual-based a posteriori error estimate which is λ- independent multiplicative constants; the Lame constant λ steers the incompressibility. The error estimators are then implemented and tested with promising numerical results which will show the competitive behavior of the adaptive algorithm.