The construction of dams for intercepting and storing water has altered surface water distributions, landsea water exchanges, and the load response of the solid Earth. The lack of accurate estimation of reservoir prop...The construction of dams for intercepting and storing water has altered surface water distributions, landsea water exchanges, and the load response of the solid Earth. The lack of accurate estimation of reservoir properties through the land surface and hydrological models can lead to water storage simulation and extraction errors. This impact is particularly evident in many artificial reservoirs in China. The study aims to comprehensively assess the spatiotemporal distribution and trends of water storage in medium and large reservoirs(MLRs) in Chinese mainland during 1950-2016, and to investigate the gravity,displacement, and strain effects induced by the reservoir mass concentration using the load elasticity theory. In addition, the impoundment contributions of MLRs to the relative sea level changes were assessed using a sea-level equation. The results show impoundment increases in the MLRs during1950-2016, particularly in the Yangtze River(Changjiang) and southern basins, causing significant elastic load effects in the surrounding areas of the reservoirs and increasing the relative sea level in China's offshore. However, long-term groundwater estimation trends are overestimated and underestimated in the Yangtze River and southwestern basins, respectively, due to the neglect of the MLRs impacts or the uncertainty of the hydrological model's output(e.g., soil moisture, etc.). The construction of MLRs may reduce the water mass input from land to the ocean, thus slowing global sea level rise. The results of the impact of human activities on the regional water cycle provide important references and data support for improving the integration of hydrological models, evaluating Earth's viscoelastic responses under longterm reservoir storage, enhancing in-situ and satellite geodetic measurements, and identifying the main factors driving sea level changes.展开更多
To understand and develop new nanostructure materials with specific mechanical properties, a good knowledge of the elastic strain response is mandatory. Here we investigate the linear elasticity response in the modifi...To understand and develop new nanostructure materials with specific mechanical properties, a good knowledge of the elastic strain response is mandatory. Here we investigate the linear elasticity response in the modified phase-field-crystal(MPFC) model. The results show that two different propagation modes control the elastic interaction length and time, which determine whether the density waves can propagate or not. By quantitatively calculating the strain field, we find that the strain distribution is indeed extremely uniform in case of elasticity. Further, we present a detailed theoretical analysis for the orientation dependence and temperature dependence of shear modulus. The simulation results show that the shear modulus reveals strong anisotropy and the one-mode analysis provides a good guideline for determining elastic shear constants until the system temperature falls below a certain value.展开更多
A moving rigid-body and an unrestrained Timoshenko beam, which is subjected to the transverse impact of the rigid-body, are treated as a contact-impact system. The generalized Fourier-series method was used to derive ...A moving rigid-body and an unrestrained Timoshenko beam, which is subjected to the transverse impact of the rigid-body, are treated as a contact-impact system. The generalized Fourier-series method was used to derive the characteristic equation and the characteristic function of the system. The analytical solutions of the impact responses for the system were presented. The responses can be divided into two parts: elastic responses and rigid responses. The momentum sum of elastic responses of the contact-impact system is demonstrated to be zero, which makes the rigid responses of the system easy to evaluate according to the principle of momentum conservation.展开更多
We investigated the mixed alkali effect on the thermal properties and elastic response to temperature in the borosilicate glasses system with the composition of 70.65Si O_(2)·21.09B_(2)O_(3)·1.88Al_(2)O_(3)&...We investigated the mixed alkali effect on the thermal properties and elastic response to temperature in the borosilicate glasses system with the composition of 70.65Si O_(2)·21.09B_(2)O_(3)·1.88Al_(2)O_(3)·(6.38-x)Li_(2)O·x Na_(2)O glasses,where x=0.00,1.595,3.19,4.785,and 6.38.Except for the expected positive and negative deviations from linearity for the coefficients of thermal expansion,room temperature E and G,we observed a new mixed alkali efiect on the response of elastic moduli to temperature.Fourier transform infrared spectra were obtained to elucidate the possible structural origin of the mixed alkali efiects.This work provides a valuable insight into the structural and mechanical properties of mixed-alkali borosilicate glasses.展开更多
The generalized Fourier-series method was used to derive the impact responses formula of an unrestrained planar frame structure when subjected to an impact of a moving rigid-body. By using these formula, the analytic ...The generalized Fourier-series method was used to derive the impact responses formula of an unrestrained planar frame structure when subjected to an impact of a moving rigid-body. By using these formula, the analytic solutions of dynamic responses of the contact-impact system can be obtained. During the derivation, the momentum sum of elastic responses of the contact-impact system is demonstrated to be zero. From the derivation, it is seen that the modal method can also be used to solve this kind of impact problem.展开更多
The relationship between microphase structure and mechanical response of the binary blends consisting of polystyrene-block-polyisoprene-block-polystyrene copolymer and low molecular weight polystyrene has been investi...The relationship between microphase structure and mechanical response of the binary blends consisting of polystyrene-block-polyisoprene-block-polystyrene copolymer and low molecular weight polystyrene has been investigated. Low molecular weight polystyrene was chosen to obtain uniformly solubilized nano-blends without macrophase separation. The specimens were solution-cast by adding different amounts of homo-polystyrene to acquire different microphase structures. Small angle X-ray scattering(SAXS), transmission electron microscopy(TEM) and atom force microscopy(AFM) have been used to study the microdomain and grain structure. It is observed that the structural changes in d-spacing and grain size on account of different amounts of polystyrene alter the mechanical behavior in both monotonic tensile and cyclic tests. The elastic and the Mullins effects are strongly sensitive to the changes in d-spacing and grain sizes. Moreover, the sample with bi-continuous structure shows the largest tensile strength and Mullins effect. In addition, the Mooneye-Rivlin phenomenological model was used to evaluate and explore the relationship between the polymer topological networks and the rubber elasticity of these styrenic nano-blends.展开更多
Based on the principle of speed superposition,the oscillation system for continuous casting mold synchronously driven by double servomotors can adjust all parameters online with high reliability and high bearing capac...Based on the principle of speed superposition,the oscillation system for continuous casting mold synchronously driven by double servomotors can adjust all parameters online with high reliability and high bearing capacity.The elastodynamic model of the oscillation system was presented to analyze the oscillation characteristics affected by multiple parameters.Firstly,the working principle of the system was illustrated,with the kinematic model of the system given.Considering the elastic deformation of mechanical components,the lumped parameter method was used to establish the equivalent component and elastodynamic model of the oscillation system.Based on Runge–Kutta method,the oscillation response of the system was calculated.The validity of the elastodynamic model was validated by comparing the simulated solution and experimental data,and the oscillation characteristics of the system were analyzed emphatically with model parameters.The results showed that the first three harmonic frequencies of the eccentric shafts are the main cause of harmonic resonance,which has a strong relationship with the system error.The increase in the fluctuation coefficients and the decrease in the phase difference enhanced the elastic oscillation of the system.System elastic error tends to show linear growth with the increase in the friction force of the slab.展开更多
基金supported by the National Natural Science Foundation of China (No.42274110 and 42374106)long-term monitoring project in the Three Gorges Reservoir area (the National Natural Science Foundation of China,No.41874090 and 41504065)。
文摘The construction of dams for intercepting and storing water has altered surface water distributions, landsea water exchanges, and the load response of the solid Earth. The lack of accurate estimation of reservoir properties through the land surface and hydrological models can lead to water storage simulation and extraction errors. This impact is particularly evident in many artificial reservoirs in China. The study aims to comprehensively assess the spatiotemporal distribution and trends of water storage in medium and large reservoirs(MLRs) in Chinese mainland during 1950-2016, and to investigate the gravity,displacement, and strain effects induced by the reservoir mass concentration using the load elasticity theory. In addition, the impoundment contributions of MLRs to the relative sea level changes were assessed using a sea-level equation. The results show impoundment increases in the MLRs during1950-2016, particularly in the Yangtze River(Changjiang) and southern basins, causing significant elastic load effects in the surrounding areas of the reservoirs and increasing the relative sea level in China's offshore. However, long-term groundwater estimation trends are overestimated and underestimated in the Yangtze River and southwestern basins, respectively, due to the neglect of the MLRs impacts or the uncertainty of the hydrological model's output(e.g., soil moisture, etc.). The construction of MLRs may reduce the water mass input from land to the ocean, thus slowing global sea level rise. The results of the impact of human activities on the regional water cycle provide important references and data support for improving the integration of hydrological models, evaluating Earth's viscoelastic responses under longterm reservoir storage, enhancing in-situ and satellite geodetic measurements, and identifying the main factors driving sea level changes.
基金Project supported by the National Natural Science foundation of China(Grant Nos.51571165 and 51371151)Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase),Chinathe Fundamental Research Funds for the Central Universities,China(Grant No.3102015BJ(II)ZS001)
文摘To understand and develop new nanostructure materials with specific mechanical properties, a good knowledge of the elastic strain response is mandatory. Here we investigate the linear elasticity response in the modified phase-field-crystal(MPFC) model. The results show that two different propagation modes control the elastic interaction length and time, which determine whether the density waves can propagate or not. By quantitatively calculating the strain field, we find that the strain distribution is indeed extremely uniform in case of elasticity. Further, we present a detailed theoretical analysis for the orientation dependence and temperature dependence of shear modulus. The simulation results show that the shear modulus reveals strong anisotropy and the one-mode analysis provides a good guideline for determining elastic shear constants until the system temperature falls below a certain value.
文摘A moving rigid-body and an unrestrained Timoshenko beam, which is subjected to the transverse impact of the rigid-body, are treated as a contact-impact system. The generalized Fourier-series method was used to derive the characteristic equation and the characteristic function of the system. The analytical solutions of the impact responses for the system were presented. The responses can be divided into two parts: elastic responses and rigid responses. The momentum sum of elastic responses of the contact-impact system is demonstrated to be zero, which makes the rigid responses of the system easy to evaluate according to the principle of momentum conservation.
基金National Natural Science Foundation of China(No.52172007)the Ph D Program Fund of Non-Metallic Excellence and Innovation Center for Building Materials(No.2022SFP6-2)+1 种基金Guang Dong Basic and Applied Basic Research Foundation(No.2022A1515010312)Jiangsu Science and Technology Innovation Project for Carbon Peaking and Carbon Neutrality(No.BE2022035)。
文摘We investigated the mixed alkali effect on the thermal properties and elastic response to temperature in the borosilicate glasses system with the composition of 70.65Si O_(2)·21.09B_(2)O_(3)·1.88Al_(2)O_(3)·(6.38-x)Li_(2)O·x Na_(2)O glasses,where x=0.00,1.595,3.19,4.785,and 6.38.Except for the expected positive and negative deviations from linearity for the coefficients of thermal expansion,room temperature E and G,we observed a new mixed alkali efiect on the response of elastic moduli to temperature.Fourier transform infrared spectra were obtained to elucidate the possible structural origin of the mixed alkali efiects.This work provides a valuable insight into the structural and mechanical properties of mixed-alkali borosilicate glasses.
文摘The generalized Fourier-series method was used to derive the impact responses formula of an unrestrained planar frame structure when subjected to an impact of a moving rigid-body. By using these formula, the analytic solutions of dynamic responses of the contact-impact system can be obtained. During the derivation, the momentum sum of elastic responses of the contact-impact system is demonstrated to be zero. From the derivation, it is seen that the modal method can also be used to solve this kind of impact problem.
基金financially supported by the National Natural Science Foundation of China(Nos.51173112 and 51121001)the Special Funds for Major State Basic Research Projects of China(No.2011CB606006)
文摘The relationship between microphase structure and mechanical response of the binary blends consisting of polystyrene-block-polyisoprene-block-polystyrene copolymer and low molecular weight polystyrene has been investigated. Low molecular weight polystyrene was chosen to obtain uniformly solubilized nano-blends without macrophase separation. The specimens were solution-cast by adding different amounts of homo-polystyrene to acquire different microphase structures. Small angle X-ray scattering(SAXS), transmission electron microscopy(TEM) and atom force microscopy(AFM) have been used to study the microdomain and grain structure. It is observed that the structural changes in d-spacing and grain size on account of different amounts of polystyrene alter the mechanical behavior in both monotonic tensile and cyclic tests. The elastic and the Mullins effects are strongly sensitive to the changes in d-spacing and grain sizes. Moreover, the sample with bi-continuous structure shows the largest tensile strength and Mullins effect. In addition, the Mooneye-Rivlin phenomenological model was used to evaluate and explore the relationship between the polymer topological networks and the rubber elasticity of these styrenic nano-blends.
基金supported by the Joint Fund of Iron and Steel Research of Hebei Province(E2016203339).
文摘Based on the principle of speed superposition,the oscillation system for continuous casting mold synchronously driven by double servomotors can adjust all parameters online with high reliability and high bearing capacity.The elastodynamic model of the oscillation system was presented to analyze the oscillation characteristics affected by multiple parameters.Firstly,the working principle of the system was illustrated,with the kinematic model of the system given.Considering the elastic deformation of mechanical components,the lumped parameter method was used to establish the equivalent component and elastodynamic model of the oscillation system.Based on Runge–Kutta method,the oscillation response of the system was calculated.The validity of the elastodynamic model was validated by comparing the simulated solution and experimental data,and the oscillation characteristics of the system were analyzed emphatically with model parameters.The results showed that the first three harmonic frequencies of the eccentric shafts are the main cause of harmonic resonance,which has a strong relationship with the system error.The increase in the fluctuation coefficients and the decrease in the phase difference enhanced the elastic oscillation of the system.System elastic error tends to show linear growth with the increase in the friction force of the slab.