期刊文献+
共找到587篇文章
< 1 2 30 >
每页显示 20 50 100
BRITTLE-DUCTILE TRANSITION OF PP/EPDM/ELASTOMERIC NANO-PARTICLE TERNARY BLENDS 被引量:1
1
作者 傅强 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2006年第4期389-394,共6页
The brittle-ductile transition is a very important phenomenon for polymer toughening. Polypropylene (PP) is often toughened by using rubbers, e.g., ethylene-propylene diene monomer (EPDM) has often been used as a ... The brittle-ductile transition is a very important phenomenon for polymer toughening. Polypropylene (PP) is often toughened by using rubbers, e.g., ethylene-propylene diene monomer (EPDM) has often been used as a modifier. In this article, the toughening of PP by using a new kind of rubber, known as elastomeric nano-particle (ENP), and the brittleductile transition of PP/EPDM/ENP was studied. Compared to PP/EPDM binary blends, the brittle-ductile transition of PP/EPDM/ENP ternary blends occurred at lower EPDM contents. SEM experiment was carried out to investigate the etched and impact-fractured surfaces. ENP alone had no effect on the impact strength of PP, however, with the same EPDM content, PP/EPDM/ENP ternary blends had smaller particle size, better dispersion and smaller interparticle distance in contrary to PP/EPDM binary blends, which promoted the brittle-ductile transition to occur earlier. 展开更多
关键词 PP EPDM elastomeric nano-particle Brittle-ductile transition.
下载PDF
Quasi-Static, Poiseuille Flow of Analgesics from an Elastomeric Pump: Theoretical Determination of Infusion Times and Toxicity Conditions
2
作者 Clare B. Lipscombe Trevor C. Lipscombe Don S. Lemons 《Journal of Biosciences and Medicines》 2024年第9期251-265,共15页
Background: Elastomeric pumps (elastic balls into which analgesics or antibiotics can be inserted) push medicines through a catheter to a nerve or blood vessel. Since elastomeric pumps are small and need no power sour... Background: Elastomeric pumps (elastic balls into which analgesics or antibiotics can be inserted) push medicines through a catheter to a nerve or blood vessel. Since elastomeric pumps are small and need no power source, they fit easily into a pocket during infusion, allowing patient mobility. Elastomeric pumps are widely used and widely studied experimentally, but they have well-known problems, such as maintaining reliable flow rates and avoiding toxicity or other peak-and-trough effects. Objectives: Our research objective is to develop a realistic theoretical model of an elastomeric pump, analyze its flow rates, determine its toxicity conditions, and otherwise improve its operation. We believe this is the first such theoretical model of an elastomeric pump consisting of an elastic, medicine-filled ball attached to a horizontal catheter. Method: Our method is to model the system as a quasi-Poiseuille flow driven by the pressure drop generated by the elastic sphere. We construct an engineering model of the pressure exerted by an elastic sphere and match it to a solution of the one-dimensional radial Navier-Stokes equation that describes flow through a horizontal, cylindrical tube. Results: Our results are that the model accurately reproduces flow rates obtained in clinical studies. We also discover that the flow rate has an unavoidable maximum, which we call the “toxicity bump”, when the radius of the sphere approaches its terminal, unstretched value—an effect that has been observed experimentally. Conclusions: We conclude that by choosing the properties of an elastomeric pump, the toxicity bump can be restricted to less than 10% of the earlier, relatively constant flow rate. Our model also produces a relation between the length of time that the analgesic fluid infuses and the physical properties of the fluid, of the elastomeric sphere and the tube, and of the blood vessel into which the analgesic infuses. From these, we conclude that elastomeric pumps can be designed, using our simple model, to control infusion times while avoiding toxicity effects. 展开更多
关键词 elastomeric Pump Infusion Therapy Bio-Fluids Medical Devices Antibiotic Delivery Analgesic Delivery
下载PDF
Interface and properties of epoxy resin modified by elastomeric nano-particles 被引量:9
3
作者 HUANG Fan1, LIU Yiqun1, ZHANG Xiaohong1, GAO Jianming1, SONG Zhihai1, TANG Banghui1, WEI Genshuan2 & QIAO Jinliang1 1. SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China 2. Institute of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100080, China Correspondence should be addressed to Qiao Jinliang (email: jqiao@brici.ac.cn.) 《Science China Chemistry》 SCIE EI CAS 2005年第2期148-155,共8页
Study on a new composite of epoxy resin/elastomeric nano-particles (ENP) is re- ported in this paper, which shows that, in comparison with pure epoxy resin and epoxy toughened with CTBN, the composites of epoxy resin/... Study on a new composite of epoxy resin/elastomeric nano-particles (ENP) is re- ported in this paper, which shows that, in comparison with pure epoxy resin and epoxy toughened with CTBN, the composites of epoxy resin/carboxylic nitrile-butadiene ENP and epoxy resin/styrene butadiene vinyl-pyridine ENP possess both higher toughness and heat resistance. Both ENPs used in the study have an average size of less than 100 nm. Study on the epoxy network’s morphology and interface properties suggests that due to the chemical reaction be- tween ENP and epoxy resin and more hydrogen bonds between nitrile groups of the rubber and hydroxyl groups of the epoxy resin, stronger interaction at the larger interface may lead to the observed excellent properties of the epoxy resin toughened with ENP. 展开更多
关键词 elastomeric nano-particles epoxy resin carboxylic nitrile-butadiene rubber STYRENE BUTADIENE vinyl-pyridine rubber interface.
原文传递
Microstructure and mechanical properties of Mg-3Sn-1Ca reinforced with AlN nano-particles
4
作者 Shaozhu Wang Yuanding Huang +7 位作者 Lixiang Yang Ying Zeng Yaozeng Hu Xiao Zhang Qiang Sun Shaojun Shi Guangyao Meng Norbert Hort 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期259-269,共11页
Microstructural evolution and strengthening mechanisms of Mg-3Sn-1Ca based alloys with additions of different amounts of Al N nanoparticles were investigated.It was found that with increasing the amount of AlN nano-pa... Microstructural evolution and strengthening mechanisms of Mg-3Sn-1Ca based alloys with additions of different amounts of Al N nanoparticles were investigated.It was found that with increasing the amount of AlN nano-particles the grain size decreases obviously.The existence of AlN nano-particles could refine the primary crystal phases CaMgSn,which provided more heterogeneous nucleation sites for the formation of magnesium.Moreover,such nano-particles could also restrict the grain growth during solidification.After adding AlN nano-particles,both the tensile properties at room temperature and high temperature 250℃and the hardness are largely improved.The improvement of strength is attributed to grain refinement and second phase refinement. 展开更多
关键词 Mg-Sn-Ca alloy AlN nano-particles Microstructure Strengthening mechanisms Grain refinement
下载PDF
Micro/nano-wrinkled elastomeric electrodes enabling high energy storage performance and various form factors
5
作者 Changeun Yoo Seokmin Lee +4 位作者 Yongkwon Song Woojae Chang Moon Kyu Park Younji Ko Jinhan Cho 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期137-152,共16页
Stretchable elastomer-based electrodes are considered promising energy storage electrodes for next-generation wearable/flexible electronics requiring various shape designs.However,these elastomeric electrodes suffer f... Stretchable elastomer-based electrodes are considered promising energy storage electrodes for next-generation wearable/flexible electronics requiring various shape designs.However,these elastomeric electrodes suffer from the limited electrical conductivity of current collectors,low charge storage capacities,poor interfacial interactions between elastomers and conductive/active materials,and lack of shape controllability.In this study,we report hierarchically micro/nano-wrinkle-structured elastomeric electrodes with notably high energy storage performance and good mechanical/electrochemical stabilities,simultaneously allowing various form factors.For this study,a swelling/deswelling-involved metal nanoparticle(NP)assembly is first performed on thiol-functionalized polydimethylsiloxane(PDMS)elastomers,generating a micro-wrinkled structure and a conductive seed layer for subsequent electrodeposition.After the assembly of metal NPs,the conformal electrodeposition of Ni and NiCo layered double hydroxides layers with a homogeneous nanostructure on the micro-wrinkled PDMS induces the formation of a micro/nano-wrinkled surface morphology with a large active surface area and high electrical conductivity.Based on this unique approach,the formed elastomeric electrodes show higher areal capacity and superior rate capability than conventional elastomeric electrodes while maintaining their electrical/electrochemical properties under external mechanical deformation.This notable mechanical/electrochemical performance can be further enhanced by using spiral-structured PDMS(stretchability of~500%)and porous-structured PDMS(areal capacity of~280μAh cm^(-2)). 展开更多
关键词 elastomeric electrodes ELECTRODEPOSITION micro/nano-wrinkled structures
下载PDF
Frequency domain analysis of pre-stressed elastomeric vibration isolators
6
作者 S.Somanath R.Marimuthu Shankar Krishnapillai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期33-47,共15页
Two types of elastomeric vibration isolators used for equipment vibration isolation in aerospace vehicles are considered for the present study. These isolators are constructed using elastomers mounted in steel encasin... Two types of elastomeric vibration isolators used for equipment vibration isolation in aerospace vehicles are considered for the present study. These isolators are constructed using elastomers mounted in steel encasings. These isolators are initially deformed statically and dynamic loads are applied on the deformed configuration. To capture the static deformation, equivalent static load corresponding to its load rating and specified displacements are created. Static deformation is computed using Finite Element methods with four node axi-symmetric element which include the geometric non-linear effect for steel and with standard Yeoh hyper-elastic material model for elastomers(Muhammed and Zu, 2012) [1]. Yeoh material constants are derived from uni-axial tension test data of the elastomer specimen. These isolators are subjected to harmonic and random excitations in the pre-deformed state. For numerical analysis, elastomeric constants at dynamic conditions are obtained as complex function of frequency using Dynamic Mechanical Analyzer(DMA) for a range of frequencies. The standard material model of Yeoh is modified incorporating frequency dependant material characteristics and damping in the range of frequencies of interest. A multiplicative non-separable variables law is derived for Yeoh material model to include the effect of static pre-stress, based on the methodology given in literature(Nashif et al.,1985;Beda et al., 2014) [2,3]. The modifications of Yeoh model suitable for frequency domain analysis is the novelty in the present study. In the analysis, while dynamic loads are applied, the configuration is updated considering initial static loading. The frequency response of the isolators is computed using material properties evaluated at progressive dynamic strains until a match in natural frequency is observed. Appropriate damping corrections are then incorporated to match the test observed transmissibility. Then updated material properties are used to compute the random response which showed good agreement with results of experiments, validating the approach taken for the development of this model. 展开更多
关键词 elastomer ISOLATOR Axi-symmetric Frequency Random Response Strain amplitude Complex modulus TRANSMISSIBILITY
下载PDF
Interfacial friction effects on sealing performances of elastomer packer
7
作者 Peng-Cheng Wang Ming-Hui Chen +2 位作者 Jim Jenkinson Yong-Xin Song Li Sun 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2037-2047,共11页
Elastomer sealing performance is of critical importance for downhole tools application including the use of fracturing(Frac)plugs during multi-stage hydraulic fracking.In practice sealing performances of such plugs ar... Elastomer sealing performance is of critical importance for downhole tools application including the use of fracturing(Frac)plugs during multi-stage hydraulic fracking.In practice sealing performances of such plugs are normally evaluated through pressure tests,and in numerical simulation studies,maximum contact stress,average contact stress and contact length data are used to determine sealing quality between a packer and casing.In previous studies,the impact of friction forces on sealing performance is often overlooked.This work aims to fill this knowledge gap in determining the influence of friction forces on elastomer packer sealing performances.We first determined the most appropriate constitutive hyperelastic model for the elastomers used in frac plug.Then we compared analytical calculation results with Finite Element Analysis simulation using a simplified tubular geometry and showed the significant influences on interfacial friction on elastomer packer stress distribution,deformation,and contact stress after setting.With the demonstration of validity of FEA method,we conducted systematic numerical simulation studies to show how the interfacial friction coefficients can affect the maximum contact stress,average contact stress,contact stress distribution,and maximum mises stress for an actual packer used in plug products.In addition,we also demonstrated how the groove in a packer can affect packer deformation and evolvement during setting with the consideration of interfacial stress.This study underscores the critical role that friction forces play in Frac plug performance and provides a new dimension for optimizing packer design by controlling interfacial interactions at the packer contact surfaces. 展开更多
关键词 elastomer seal FRICTION Sealing performance Contact stress
下载PDF
Stability analysis of a liquid crystal elastomer self-oscillator under a linear temperature field
8
作者 Haiyang WU Jiangfeng LOU +2 位作者 Biao ZHANG Yuntong DAI Kai LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期337-354,共18页
Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for ... Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for obtaining the characteristics of self-oscillation including amplitude and frequency.However,numerical methods are burdened by intricate computations and limited precision,hindering comprehensive investigations into self-oscillating systems.In this paper,the stability of a liquid crystal elastomer fiber self-oscillating system under a linear temperature field is studied,and analytical solutions for the amplitude and frequency are determined.Initially,we establish the governing equations of self-oscillation,elucidate two motion regimes,and reveal the underlying mechanism.Subsequently,we conduct a stability analysis and employ a multi-scale method to obtain the analytical solutions for the amplitude and frequency.The results show agreement between the multi-scale and numerical methods.This research contributes to the examination of diverse self-oscillating systems and advances the theoretical analysis of self-oscillating systems rooted in active materials. 展开更多
关键词 SELF-OSCILLATION stability analysis multi-scale method liquid crystal elastomer linear temperature field
下载PDF
Investigation on Magnetorheological Effect of Novel Self-healing Magnetorheological Elastomers
9
作者 Wang Deping Wang Jing +4 位作者 Wang Xin Noman Tariq Yu Zhen Zheng Wenbo Wei Yintao 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期88-97,共10页
Magnetorheological elastomers(MREs)hold significant promise in various fields such as automotive engineering,and civil engineering,where they serve as intelligent materials.Depending on the application of an external ... Magnetorheological elastomers(MREs)hold significant promise in various fields such as automotive engineering,and civil engineering,where they serve as intelligent materials.Depending on the application of an external magnetic field,these materials exhibit varying magnetorheological and viscoelastic properties,including shear stress,yield stress,dynamic moduli,and damping.In this work,a new type of MRE,termed self-healing MREs(SH-MREs),has been developed by adding a novel self-healing agent into existing MREs.The dynamic modulus and loss factor of SH-MREs with different compositions have been characterized under various conditions of frequency,temperature,and strain.The results show that as the strain value increases,the loss factor also increases.Moreover,the loss factor initially increases and then decreases with increasing magnetic field strength.Although higher concentrations of ferromagnetic particles increase the loss factor,they enhance the operational range due to their better responsiveness to magnetic fields.SH-MREs demonstrate improved damping capabilities,attributed to the formation of coordination bonds between ferromagnetic particles and the self-healing agent.The stable structure increases the viscosity of MREs.The results of the regression model suggest a direct proportionality between sensitivity to the magnetic field and the ferromagnetic particle concentration. 展开更多
关键词 magnetorheological elastomer magnetorheological effect storage modulus loss factor
下载PDF
In silico optimization of actuation performance in dielectric elastomercomposites via integrated finite element modeling and deep learning
10
作者 Jiaxuan Ma Sheng Sun 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期48-56,共9页
Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize ... Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites. 展开更多
关键词 Dielectric elastomer composites Multi-objective optimization Finite element modeling Convolutional neural network
下载PDF
Preparation and Properties of Spray Polyurea Elastomer for Aquaculture Foam Floating Balls
11
作者 Guifang HUANG Guanyuan WEI +3 位作者 Shengjun WEI Lan DING Wenhong CAI Bolin PAN 《Agricultural Biotechnology》 2024年第2期38-42,共5页
[Objectives] This study was conducted to develop a polyurea elastomer which can be sprayed on the surface of expanded polystyrene (EPS) floating balls, so as to improve the surface strength and service life of the flo... [Objectives] This study was conducted to develop a polyurea elastomer which can be sprayed on the surface of expanded polystyrene (EPS) floating balls, so as to improve the surface strength and service life of the floating balls. [Methods] The effects of the types and amounts of isocyanate, chain extenders and polyether polyols on the gelation rate, adhesion and wear resistance of polyurea elastomer were investigated, and it was finally determined the preparation process of polyurea elastomer using liquid isophorone diisocyanate (IPDI) and amino-terminated polyether (D2000) as the main raw materials, dimethylthiotoluene diamine (E300) as the chain extender and silica as the wear resistance modifier through two-step solution polymerization of prepolymerization and chain extension. [Results] The physical properties and chemical resistance tests of spray polyurea elastomer showed that it had good physical properties and acid and alkali resistance, and could meet the requirements of spraying and protection of EPS floating ball surface in marine environment. [Conclusions] Polyurea elastomer coating can improve the aging resistance, wear resistance and acid and alkali resistance of EPS floating balls, and prevent them from being fragile and floating randomly to form marine floating garbage which results in "white pollution". 展开更多
关键词 EPS floating ball Spray polyurea elastomer Gelation rate Wear resistant ADHESION Chemical resistance
下载PDF
High temperature frictional wear behaviors of nano-particle reinforced NiCoCrAlY cladded coatings 被引量:13
12
作者 王宏宇 左敦稳 +3 位作者 王明娣 孙桂芳 缪宏 孙玉利 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1322-1328,共7页
The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in ... The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in static air were investigated. The comparison was made with the coating without nano-particles. The results show that the wear mechanism of the NiCoCrAlY coatings with nano-particles, like the coating without nano-particles, is the delamination wear due to the strong plastic deformation and oxidative wear. However, the frictional coefficient of the coatings increases and presents the decrease trend with the increase of sliding distance after adding nano-particles. Moreover, the wear rate of the coatings with nano-particles is only 34.0%-64.5% of the coating without nano-particles. Among the three nano-particles, the improvement of nano-SiC on the high temperature wear resistance of the coating is the most significant. 展开更多
关键词 metal-matrix composite frictional wear NiCoCrA1Y coating nano-particleS laser cladding
下载PDF
Micromolding in Capillaries Using Swollen Elastomeric Stamp
13
作者 石锦霞 王政 +1 位作者 何平笙 杨海洋 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第6期527-529,共3页
Micromolding in capillaries of a micro square array was carried out for polystyrene solution in acetone by means of swollen polydimethylsiloxane (PDMS) elastomeric stamp. The resulting micro-cubic poles were isolate... Micromolding in capillaries of a micro square array was carried out for polystyrene solution in acetone by means of swollen polydimethylsiloxane (PDMS) elastomeric stamp. The resulting micro-cubic poles were isolated and separable when the added amount of the polystyrene solution was small. Some special distorting micro-patterns in the micro-square array were observed because of shrinkage resulting from the varying evaporation rate of solvent at different places. 展开更多
关键词 Micromolding in capillaries Swelling POLYDIMETHYLSILOXANE elastomeric stamp
下载PDF
Microstructure and Oxidation Behaviors of Nano-particles Strengthened NiCoCrAlY Cladded Coatings on Superalloys 被引量:12
14
作者 WANG Hongyu ZUO Dunwen +2 位作者 CHEN Xinfeng YU Shouxin GU Yuanzhi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期297-304,共8页
Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its appli... Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its application in the bond coat of duplex structure thermal barrier coating(TBC). Three kinds of NiCoCrAlY coatings strengthened by different nano-particles with the same addition (1%, mass fraction) were prepared by the laser cladding technique on Ni-based superalloy substrates, aiming to study the effects of the nano-particles on microstructure and oxidation resistance of NiCoCrAlY coatings (the bond coat of the duplex structure thermal barrier coatings). Scanning electron microscope (SEM), X-ray diffractometer(XRD) and thermogravimetry were employed to investigate their morphologies, phases and cyclic oxidation behaviors in atmosphere at 1 050℃, compared with the coating without nano-particles. With the addition of nano-particles, the growth pattern of the grains at the interface changed from epitaxial growth to non-epitaxial growth or part-epitaxial growth; slender dendrites were broken and cellularized; cracks and pores were restrained; and the oxidation weight-gain and the stripping resistance of the oxide scale were improved as well. Among the three kinds of nano-particles, the SiC nano-particles showed the most improvement on microstructure, while the CeO2 nano-particles were insufficient, but its effects on the oxidation resistance are the same as those of the SiC nano-particles. Based on the discussions of the influence mechanism, it is believed that CeO2 nano-particles would show better improvement than SiC nano-particles if the proper amount is added and the proper preparation technique of micro-nanometer composite powders is adopted, with the synergistic action of nanometer effect and reactive element effect. 展开更多
关键词 high-temperature protective coating nano-particle MICROSTRUCTURE cyclic oxidation laser cladding
下载PDF
Dynamic Analysis Model of Embedded Fluid Elastomeric Damper for Bearingless Rotor 被引量:2
15
作者 Wu Shen Yang Weidong Li Ruirui 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第5期552-558,共7页
According to the structural characteristics of embedded fluid elastomeric damper and dynamic modeling method of bearingless rotor(BR)system,a time-domain dynamic model based on multilayer elastomeric theory and fluid ... According to the structural characteristics of embedded fluid elastomeric damper and dynamic modeling method of bearingless rotor(BR)system,a time-domain dynamic model based on multilayer elastomeric theory and fluid dynamic equations is developed.The parameters contained in the analysis model are identified by dynamic experiment data of embedded fluid elastomeric damper.The dynamic characteristics curves calculated through dynamic model are compared with those derived from experimental data.The consistent results illustrate that the model can describe the nonlinear relationship between stress and strain of embedded fluid elastomeric damper under different displacement amplitude and frequency.Due to the validity and reliability of the dynamic analysis model,it can be used in aeroelastic characteristics calculation of BR with embedded fluid elastomeric damper for helicopters. 展开更多
关键词 HELICOPTER bearingless rotor(BR) embedded fluid elastomeric damper nonlinear dynamics characteristics
下载PDF
Surface tension of lithium bromide aqueous solution/ammonia with additives and nano-particles 被引量:3
16
作者 蔡伟华 孔伟伟 +2 位作者 王悦 朱蒙生 王新雷 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1979-1985,共7页
In order to investigate the effect of additives and nano-particle on the surface tensions of lithium bromide(Li Br) aqueous solution/ammonia, many experiments were carried out based on Wilhelmy plate method. Firstly, ... In order to investigate the effect of additives and nano-particle on the surface tensions of lithium bromide(Li Br) aqueous solution/ammonia, many experiments were carried out based on Wilhelmy plate method. Firstly, the surface tension of Li Br aqueous solution with 1-octanol was measured and then the comparison between the measured results and previous experimental results was given to verify the measuring accuracy. Some new additives, such as cationic surfactants cetyltrimethyl ammonium chloride(CTAC), and cetyltrimethyl ammonium bromide(CTAB) were chosen in the experiments. The experimental results show that CTAC and CTAB can obviously reduce the surface tension of Li Br aqueous solution/ammonia. In addition, it is found that nano-particles cannot remarkably decrease the surface tension of Li Br aqueous solution/ammonia. However, the mixed addition of additives and nano-particles can remarkably affect the surface tension of Li Br aqueous solution/ammonia. That is to say, additives play more important role in reducing the surface tension of Li Br aqueous solution/ammonia. But nano-particles may enhance the heat transfer in the absorption refrigeration process. 展开更多
关键词 lithium bromide AMMONIA ADDITIVES nano-particleS surface tension
下载PDF
Effect of nano-particle size on product distribution and kinetic parameters of Fe/Cu/La catalyst in Fischer-Tropsch synthesis 被引量:4
17
作者 Ali Nakhaei Pour Mohammad Reza Housaindokht +1 位作者 Sayyed Faramarz Tayyari Jamshid Zarkesh 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第2期107-116,共10页
Effects of nano-particle size on hydrocarbon production rates and distributions for precipitated Fe/Cu/La catalysts in Fischer-Tropsch synthesis were investigated.Nano-structured iron catalyst was prepared by micro-em... Effects of nano-particle size on hydrocarbon production rates and distributions for precipitated Fe/Cu/La catalysts in Fischer-Tropsch synthesis were investigated.Nano-structured iron catalyst was prepared by micro-emulsion method.The concept of two superimposed AndersonSchulz-Flory (ASF) distributions has been applied for the representation of the effects of reaction conditions and nano-particles size on kinetics parameters and product distributions.These results reveal that by reducing the particle size of catalyst,the break in ASF distributions was decreased.Also useful different kinetics equations for synthesis of C3 to C9 and C10 to C22 were determined by using α1 and α2 chain growth probabilities. 展开更多
关键词 chain length distribution Fischer-Tropsch synthesis iron-based catalyst nano-particle size
下载PDF
Influence of SiO_2 nano-particles on microstructures and properties of Ni-W-P/CeO_2-SiO_2 composites prepared by pulse electrodeposition 被引量:2
18
作者 王军丽 徐瑞东 章俞之 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期839-843,共5页
Ni-W-P base composites containing CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by pulse co-deposition of Ni,W,P,CeO2 and SiO2 nano-particles.The influence of SiO2 concentrations in bath on... Ni-W-P base composites containing CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by pulse co-deposition of Ni,W,P,CeO2 and SiO2 nano-particles.The influence of SiO2 concentrations in bath on microstructures and properties of Ni-W-P/CeO2-SiO2 composites was studied,and the characteristics were assessed by chemical compositions,element distribution,surface morphologies,deposition rate and microhardness.The results indicate that when SiO2 concentration in bath is controlled at 20 g/L,the composites possess the fastest deposition rate,the highest microhardness,compact microstructures,smaller crystallite sizes and uniform distribution of W,P,Ce and Si within Ni-W-P matrix metal.Increasing SiO2 concentration in bath from 10 to 20 g/L leads to the refinement in grain size and the inhomogeneity of microstructures.While when SiO2 concentration is increased to 30 g/L,the crystallite sizes increase again and some bosses with nodulation shape appear on the surface of composites. 展开更多
关键词 pulse electrodeposition nano-particle composite microstructure and property
下载PDF
Preparation and Characterization of Fe3O4 Magnetic Nano-particles by ^(60)Co γ-ray Irradiation 被引量:2
19
作者 Mingcheng YANG Hongyan SONG +2 位作者 Chengshen ZHU Suqin HE Ya GAO 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第2期182-184,共3页
By using a new method, ^60Co γ-ray irradiation, Fe3O4 magnetic nano-particles were successfully synthesized at room temperature under ambient pressure. The structure, morphology and magnetic properties of these nanop... By using a new method, ^60Co γ-ray irradiation, Fe3O4 magnetic nano-particles were successfully synthesized at room temperature under ambient pressure. The structure, morphology and magnetic properties of these nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM), respectively. The radiation formation mechanism was also discussed. The results show that the absorbed dose can greatly influence the structure, morphology and magnetic properties of the products. XRD and TEM studies show that the product prepared by γ-ray irradiation (10 kGy) is pure FesO4 phase and the mean diameter of these nano-particles is about 21 nm. The Fe3O4 nano-particles synthesized by γ-ray irradiation (10 kGy) are mainly in small cubic shape and the size uniformity of these particles is good. 展开更多
关键词 ^60Co γ-ray IRRADIATION Fe304 nano-particles Super-paramagnetism
下载PDF
Pressure-Induced Structural Transitions of the Zinc Sulfide Nano-particles with Different Sizes 被引量:1
20
作者 Yuewu PAN Jie YU +3 位作者 Zhan HU Hongdong LI Qiliang CUI Guangtian ZOU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第2期193-195,共3页
ZnS nano-particles with average sizes of 10 nm and 5 nm were fabricated by sol-gel method, and their pressure-induced phase transformations were in-situ examined in a diamond anvil cell by energy dispersive X-ray diff... ZnS nano-particles with average sizes of 10 nm and 5 nm were fabricated by sol-gel method, and their pressure-induced phase transformations were in-situ examined in a diamond anvil cell by energy dispersive X-ray diffraction (EDXD) from ambient pressure to 35.0 GPa. From the obtained interplanar spacing data,the volume compression ratios were derived at different pressures, and then the bulk modulus and its pressure derivative were obtained by fitting to the Murnaghan equation. It is found that both ZnS nano-particles initially in the zinc-blende phase transformed to cubic NaCl structure in the presence of pressure and the transition was reversible when the pressure was released. Moreover, it is suggested that a smaller particle size will induce a larger transition pressure. 展开更多
关键词 nano-particleS ZNS Phase transformations Synchrotron radiation
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部