For the simulation of the three-dimensional(3D)nearshore circulation,a 3D hydrodynamic model is developed by taking into account the depth-dependent radiation stresses.Expressions for depth-dependent radiation stres...For the simulation of the three-dimensional(3D)nearshore circulation,a 3D hydrodynamic model is developed by taking into account the depth-dependent radiation stresses.Expressions for depth-dependent radiation stresses in the Cartesian coordinates are introduced on the basis of the linear wave theory,and then vertical variations of depth-dependent radiation stresses are discussed.The 3D hydrodynamic model of ELCIRC(Eulerian-Lagrangian CIRCulation)is extended by adding the terms of the depth-dependent or depth-averaged radiation stresses in the momentum equations.The wave set-up,set-down and undertow are simulated by the extended ELCIRC model based on the wave fields provided by the experiment or the REF/DIF wave model.The simulated results with the depth-dependent and depth-averaged radiation stresses both show good agreement with the experimental data for wave set-up and set-down.The undertow profiles predicted by the model with the depth-dependent radiation stresses are also consistent with the experimental results,while the model with the depth-averaged radiation stresses can not reflect the vertical distribution of undertow.展开更多
基金supported bythe National Natural Science Foundation of China(Grant No.50279029)
文摘For the simulation of the three-dimensional(3D)nearshore circulation,a 3D hydrodynamic model is developed by taking into account the depth-dependent radiation stresses.Expressions for depth-dependent radiation stresses in the Cartesian coordinates are introduced on the basis of the linear wave theory,and then vertical variations of depth-dependent radiation stresses are discussed.The 3D hydrodynamic model of ELCIRC(Eulerian-Lagrangian CIRCulation)is extended by adding the terms of the depth-dependent or depth-averaged radiation stresses in the momentum equations.The wave set-up,set-down and undertow are simulated by the extended ELCIRC model based on the wave fields provided by the experiment or the REF/DIF wave model.The simulated results with the depth-dependent and depth-averaged radiation stresses both show good agreement with the experimental data for wave set-up and set-down.The undertow profiles predicted by the model with the depth-dependent radiation stresses are also consistent with the experimental results,while the model with the depth-averaged radiation stresses can not reflect the vertical distribution of undertow.