期刊文献+
共找到6,029篇文章
< 1 2 250 >
每页显示 20 50 100
基于双阶段特征提取网络的ECG降噪分类算法
1
作者 林楠 唐凯鹏 +1 位作者 牛勇鹏 谢李鹏 《郑州大学学报(工学版)》 CAS 北大核心 2024年第5期61-68,共8页
临床采集到的标准12导联心电图常含有噪声,影响了心电信号分类结果的准确度,为此提出了一种基于双阶段特征提取网络的心电图(ECG)降噪分类算法。首先,在空间特征提取阶段,由深度耦合软阈值化去噪方法的残差收缩网络从输入的12导联标准... 临床采集到的标准12导联心电图常含有噪声,影响了心电信号分类结果的准确度,为此提出了一种基于双阶段特征提取网络的心电图(ECG)降噪分类算法。首先,在空间特征提取阶段,由深度耦合软阈值化去噪方法的残差收缩网络从输入的12导联标准心电信号中提取空间特征;其次,在时间特征提取阶段,由长短期记忆网络与注意力机制结合继续从心电信号中提取时间特征;最后,通过全连接网络层融合提取到的空间特征与时间特征,输出9个类别的概率预测分布。在CPSC2018数据集上与其他同类型先进分类算法进行了对比实验,验证所提算法的效果,实验结果表明:提出的分类算法在对9类ECG信号进行分类时平均F1分数达到0.854,在各项指标上表现更优。此外,实验证明所提算法在含噪数据中的表现也优于其他主流网络,充分证明了所提算法对于含噪心电信号的降噪分类性能,该算法也可应用于其他类似含噪声生理信号的分析和处理。 展开更多
关键词 心电信号分类 心电信号去噪 残差收缩网络 软阈值化 注意力机制
下载PDF
腔内ECG定位技术联合体外测量法在PICC中的应用
2
作者 赵连英 沈叶红 +1 位作者 周娟 王齐芳 《中外医学研究》 2024年第2期93-96,共4页
目的:探讨腔内心电图(ECG)定位技术联合体外测量法在经外周静脉穿刺的中心静脉导管(PICC)中的应用。方法:选取2021年1月—2023年1月阜宁县人民医院收治的100例行上肢PICC置管的患者作为研究对象。根据抛币法将其随机分为观察组和对照组,... 目的:探讨腔内心电图(ECG)定位技术联合体外测量法在经外周静脉穿刺的中心静脉导管(PICC)中的应用。方法:选取2021年1月—2023年1月阜宁县人民医院收治的100例行上肢PICC置管的患者作为研究对象。根据抛币法将其随机分为观察组和对照组,各50例。两组均进行PICC,对照组PICC应用体外测量法,观察组PICC应用腔内ECG定位技术联合体外测量法。比较两组一次性置管情况、导管相关并发症、置管满意度。结果:观察组置管准确率为98.00%,高于对照组的86.00%,置管过深率低于对照组,差异有统计学意义(P<0.05)。两组并发症发生率比较,差异无统计学意义(P>0.05)。观察组总满意度为100%,高于对照组的92.00%,差异有统计学意义(P<0.05)。结论:腔内ECG定位技术联合体外测量法可提高一次置管准确率,提高患者满意率。 展开更多
关键词 腔内心电图定位技术 体外测量法 经外周静脉穿刺的中心静脉导管 尖端最佳位置
下载PDF
基于单通道ECG信号与INFO-ABCLogitBoost模型的睡眠分期
3
作者 朱炳洋 吴建锋 +2 位作者 王柯 王章权 刘半藤 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2547-2555,2585,共10页
为了减少对传统多导睡眠图(PSG)系统的依赖,基于单通道心电图(ECG)信号,设计了一种简单高效的睡眠分析算法.采用最大重叠离散小波变换(MODWT)对原始信号进行多分辨分析,再进一步提取峰值信息;根据峰值位置的一阶偏差,提取多维度的心率... 为了减少对传统多导睡眠图(PSG)系统的依赖,基于单通道心电图(ECG)信号,设计了一种简单高效的睡眠分析算法.采用最大重叠离散小波变换(MODWT)对原始信号进行多分辨分析,再进一步提取峰值信息;根据峰值位置的一阶偏差,提取多维度的心率变异性(HRV)特征.为了进一步筛选与不同睡眠阶段具有强关联性的HRV特征,提出基于ReliefF算法与Gini指数的特征提取方法.在此基础上,采用INFO-ABCLogitBoost方法挖掘HRV与不同睡眠阶段之间的关联性,从而实现睡眠阶段的精细分类.在实际公开数据集上的实验结果表明,所提出的模型在睡眠分期任务中,总体精度为83.67%,准确率为82.59%,Kappa系数为77.94%,F1-Score为82.97%.相比于睡眠分期任务中的常规模型,所提方法展现出更加高效便捷的睡眠质量评估性能,有助于实现家庭或移动医疗场景下的睡眠监测. 展开更多
关键词 睡眠分析 心电图(ecg) 最大重叠离散小波变换(MODWT) 心率变异性(HRV) INFO-ABCLogitBoost
下载PDF
基于深度学习的ECG信号分类与诊断
4
作者 张占 何朗 +3 位作者 张金鹏 王涛 陈为满 娄文璐 《生物医学工程与临床》 CAS 2024年第3期431-437,共7页
心电图(ECG)信号描绘了心脏的电活动,提供了有关心脏状态的重要信息。ECG信号分类可用于临床预测、诊断、评估的成果,对于心脏病的自动诊断非常重要。但是基于机器学习的ECG信号分类研究也存在一些如模型复杂度与临床数据实时传输和及... 心电图(ECG)信号描绘了心脏的电活动,提供了有关心脏状态的重要信息。ECG信号分类可用于临床预测、诊断、评估的成果,对于心脏病的自动诊断非常重要。但是基于机器学习的ECG信号分类研究也存在一些如模型复杂度与临床数据实时传输和及时更新等未能解决的问题。因此,笔者首先对近10年来基于机器学习的ECG信号分类从波形形态分类、疾病诊断分类和纯粹的机器学习分类研究进行了回顾与综述,总结出了目前的研究遇到的困境,最后对未来面临的问题进行展望。深入学习模型在现实应用中仍存在一些挑战,未来的研究将进一步探索在芯片中实现机器学习模型的便携性和成本效益的硬件解决方案。此外,机器学习算法应寻求最佳的计算开销平衡,并重视在现实世界环境中的应用。在未来研究中,ECG应多进行临床试验,以评估机器学习模型在处理实际生物医学信号时的有效性和可行性,同时构造性价比高的深度学习模型,以帮助医学专家进行精确和及时的预测和诊断。 展开更多
关键词 ecg 机器学习 深度学习 心血管疾病
下载PDF
Emotion Detection Using ECG Signals and a Lightweight CNN Model
5
作者 Amita U.Dessai Hassanali G.Virani 《Computer Systems Science & Engineering》 2024年第5期1193-1211,共19页
Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,an... Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,and text data,do not always indicate true emotions,as users can falsify them.Among the physiological methods of emotion detection,Electrocardiogram(ECG)is a reliable and efficient way of detecting emotions.ECG-enabled smart bands have proven effective in collecting emotional data in uncontrolled environments.Researchers use deep machine learning techniques for emotion recognition using ECG signals,but there is a need to develop efficient models by tuning the hyperparameters.Furthermore,most researchers focus on detecting emotions in individual settings,but there is a need to extend this research to group settings aswell since most of the emotions are experienced in groups.In this study,we have developed a novel lightweight one dimensional(1D)Convolutional Neural Network(CNN)model by reducing the number of convolution,max pooling,and classification layers.This optimization has led to more efficient emotion classification using ECG.We tested the proposed model’s performance using ECG data from the AMIGOS(A Dataset for Affect,Personality and Mood Research on Individuals andGroups)dataset for both individual and group settings.The results showed that themodel achieved an accuracy of 82.21%and 85.62%for valence and arousal classification,respectively,in individual settings.In group settings,the accuracy was even higher,at 99.56%and 99.68%for valence and arousal classification,respectively.By reducing the number of layers,the lightweight CNNmodel can process data more quickly and with less complexity in the hardware,making it suitable for the implementation on the mobile phone devices to detect emotions with improved accuracy and speed. 展开更多
关键词 Emotions AMIGOS ecg LIGHTWEIGHT 1D CNN
下载PDF
Deep Learning-Based ECG Classification for Arterial Fibrillation Detection
6
作者 Muhammad Sohail Irshad Tehreem Masood +3 位作者 Arfan Jaffar Muhammad Rashid Sheeraz Akram Abeer Aljohani 《Computers, Materials & Continua》 SCIE EI 2024年第6期4805-4824,共20页
The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnos... The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnosis increases the patient’s chances of recovery.However,issues like overfitting and inconsistent accuracy across datasets remain challenges.In a quest to address these challenges,a study presents two prominent deep learning architectures,ResNet-50 and DenseNet-121,to evaluate their effectiveness in AFib detection.The aim was to create a robust detection mechanism that consistently performs well.Metrics such as loss,accuracy,precision,sensitivity,and Area Under the Curve(AUC)were utilized for evaluation.The findings revealed that ResNet-50 surpassed DenseNet-121 in all evaluated categories.It demonstrated lower loss rate 0.0315 and 0.0305 superior accuracy of 98.77%and 98.88%,precision of 98.78%and 98.89%and sensitivity of 98.76%and 98.86%for training and validation,hinting at its advanced capability for AFib detection.These insights offer a substantial contribution to the existing literature on deep learning applications for AFib detection from ECG signals.The comparative performance data assists future researchers in selecting suitable deep-learning architectures for AFib detection.Moreover,the outcomes of this study are anticipated to stimulate the development of more advanced and efficient ECG-based AFib detection methodologies,for more accurate and early detection of AFib,thereby fostering improved patient care and outcomes. 展开更多
关键词 Convolution neural network atrial fibrillation area under curve ecg false positive rate deep learning CLASSIFICATION
下载PDF
Efficient ECG classification based on Chi-square distance for arrhythmia detection
7
作者 Dhiah Al-Shammary Mustafa Noaman Kadhim +2 位作者 Ahmed M.Mahdi Ayman Ibaida Khandakar Ahmedb 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期1-15,共15页
This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for ar... This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data. 展开更多
关键词 Arrhythmia classification Chi-square distance Electrocardiogram(ecg)signal Particle swarm optimization(PSO)
下载PDF
以BP神经网络为工具的短时ECG信号情感分类
8
作者 张善斌 《福建电脑》 2024年第2期11-16,共6页
针对目前生理信号情感识别领域采用的生理信号种类太多或使用的生信号长度较长的问题,本文使用BP神经网络对单一、短时ECG信号进行情感识别分类,并对识别时间进行了估计。通过诱发被试喜、怒、哀、惧和平静5种基本情感状态,采集到ECG生... 针对目前生理信号情感识别领域采用的生理信号种类太多或使用的生信号长度较长的问题,本文使用BP神经网络对单一、短时ECG信号进行情感识别分类,并对识别时间进行了估计。通过诱发被试喜、怒、哀、惧和平静5种基本情感状态,采集到ECG生理信号,处理后利用神经网络建立模型。实验结果表明,本文方法得到的情感分类的平均识别率为89.14%,且生理信号进行特征提取和识别分类的时间总和小于0.15s,有效地降低了对生理信号种类和窗口长度的依赖。 展开更多
关键词 情感分类 BP神经网络 ecg信号 机器识别
下载PDF
基于ECG和PPG特征的情绪识别研究
9
作者 黄欣琪 彭奕文 +4 位作者 黄远周 姚伟为 和盛华 单全莹 项修家 《电脑与电信》 2024年第8期33-39,共7页
心理健康是我们身体健康的重要组成部分,也是我们拥有幸福生活的基础。现代社会的高压力和快节奏生活使人们越来越容易感到焦虑、抑郁和情绪不稳定,通过合理的健康情绪检测方法有益于帮助医护对患者进行情绪监督调理。基于现有的心电图(... 心理健康是我们身体健康的重要组成部分,也是我们拥有幸福生活的基础。现代社会的高压力和快节奏生活使人们越来越容易感到焦虑、抑郁和情绪不稳定,通过合理的健康情绪检测方法有益于帮助医护对患者进行情绪监督调理。基于现有的心电图(ECG)和脉搏波(PPG)两种穿戴式监测情绪的方法,使用WESAD数据集,分别验证了心电信号的心率和心率特异性对中性、压力、愉悦和冥想四种情绪状态的重要性,并基于Sklearn库的分类器,使用交叉验证方法评估和比较它们的性能。实验结果显示,ExtraTrees分类模型在情感状态分类中表现最佳,ECG在分类器中具有更优秀的表现。 展开更多
关键词 心率检测 PPG ecg 心率变异性 情绪识别
下载PDF
基于卷积神经网络的ECG心律失常分类研究
10
作者 杨风健 李小琪 李洪亮 《电子设计工程》 2024年第9期165-169,共5页
基于心电信号进行心律失常自动检测和分类识别研究,辅助临床医生进行心血管相关疾病诊断。采用MIT-BIH数据库作为数据源,对该数据库心电数据进行小波分解与重构去噪后,构建卷积神经网络模型,结合Adam优化器,并优化丢弃值、训练步数和批... 基于心电信号进行心律失常自动检测和分类识别研究,辅助临床医生进行心血管相关疾病诊断。采用MIT-BIH数据库作为数据源,对该数据库心电数据进行小波分解与重构去噪后,构建卷积神经网络模型,结合Adam优化器,并优化丢弃值、训练步数和批大小三个超参数来优化模型,使用准确率、灵敏性和正预测率三个指标评价模型性能。实验结果表明,模型实现心律失常五分类的整体准确率大于99%,与现有模型性能相比,准确率提升1.2%。 展开更多
关键词 卷积神经网络 心律失常 心电信号 小波变换
下载PDF
Research on the driver fatigue early warning model of electric vehicles based on the fusion of EMG and ECG signals
11
作者 REN Bin LI Qibing +1 位作者 ZHOU Qinyu LUO Wenfa 《High Technology Letters》 EI CAS 2024年第4期333-343,共11页
Electric vehicles have been rapidly developing worldwide due to the use of new energy.However,at the same time,serious traffic accidents caused by driver fatigue in emergency situations have also drawn widespread atte... Electric vehicles have been rapidly developing worldwide due to the use of new energy.However,at the same time,serious traffic accidents caused by driver fatigue in emergency situations have also drawn widespread attention.The lack of datasets in real vehicle test environments has always been a bottleneck in the research of driver fatigue in electric vehicles.Therefore,this study establishes a dataset from real vehicle test,applies the Bayesian optimization support vector machine(BOA-SVM)algorithm to take features of electromyography(EMG)and electrocardiography(ECG)signals as input and develop an early warning model for driving fatigue detection.Firstly,the driver’s EMG and ECG signals are collected through real vehicle testing experiments and then combined with the driver’s subjective fatigue evaluation scores to establish the dataset.Secondly,the study establishes a driver fatigue early warning model for emergency situations.Time-domain and frequency-domain features are extracted from the EMG signals.Principal component analysis(PCA)is applied for dimensionality reduction of these features.The experimental results show that based on the input of dimensionality reduced EMG features and ECG features,the BOA-SVM algorithm achieved an accuracy of 94.4%in classification. 展开更多
关键词 driver fatigue early warning electromyography(EMG)signal electrocardiography(ecg)signal principal component analysis(PCA) support vector machine(SVM)
下载PDF
全面解读IA ECG广色域测试版ICC文件
12
作者 姚磊磊 赵广 《中国印刷》 2024年第2期56-61,共6页
七色分色技术已发展多年,欧美印刷机构和协会相继投人研发和制定更新相关标准体系,当前色彩校准技术手段等条件正走向成熟,本文对IAECG广色域测试版ICC文件进行全面解读。
关键词 测试版 广色域 ecg 全面解读 色彩校准 分色技术 技术手段
下载PDF
缓慢型心房颤动(Af)伴发长R-R间期在静态心电图(ECG)中发生率及意义
13
作者 毛社娟 《中文科技期刊数据库(引文版)医药卫生》 2024年第4期0115-0118,共4页
探讨ECG(静态心电图)在缓慢型Af(心房颤动)伴发长R-R间期中的应用意义。方法 截选2021年03月至2022年03月54例ECG提示缓慢型心房颤动患者,按照有无伴随相关症状(头晕、黑朦、晕厥等),分为甲组33例(有相关症状)和乙组21例(无相关症状);... 探讨ECG(静态心电图)在缓慢型Af(心房颤动)伴发长R-R间期中的应用意义。方法 截选2021年03月至2022年03月54例ECG提示缓慢型心房颤动患者,按照有无伴随相关症状(头晕、黑朦、晕厥等),分为甲组33例(有相关症状)和乙组21例(无相关症状);按照年龄,分为老年组30例(≥80岁)和非老年组24例(<80岁);比较各组伴发长R-R间期发生率。结果 本试验中,甲、乙组伴发长R-R间期发生率差异明显,甲组发生率显著更高(P<0.05)。老年组、非老年组伴发长R-R间期发生率差异明显,老年组发生率显著更高(P<0.05)。结论 缓慢型心房颤动行静态心电图检查,能够准确诊断患者有无伴发长R-R间期;针对老年患者和伴随头晕、黑朦、晕厥等症状患者,应加强其静态心电图检查,以便更好诊断、鉴别其病情,促使患者尽早接受专业治疗和干预,保证其生命安全与预后质量。 展开更多
关键词 静态心电图(ecg) 缓慢型心房颤动 长R-R间期
下载PDF
基于卷积神经网络与ECG信息的多模态疲劳驾驶检测研究
14
作者 闫凯航 石岩松 +5 位作者 邓炬鑫 李汶翰 庞志颖 翁明珠 潘志广 孙修泽 《电脑知识与技术》 2024年第12期24-26,34,共4页
为解决驾驶员疲劳驾驶引发的交通事故问题,本研究致力于设计一款高精度、及时预警的疲劳驾驶检测与预警装置。文章提出了一种基于卷积神经网络与ECG信息的多模态疲劳驾驶检测方法:首先,通过训练数据集获取模型文件,并将其与预设行为进... 为解决驾驶员疲劳驾驶引发的交通事故问题,本研究致力于设计一款高精度、及时预警的疲劳驾驶检测与预警装置。文章提出了一种基于卷积神经网络与ECG信息的多模态疲劳驾驶检测方法:首先,通过训练数据集获取模型文件,并将其与预设行为进行对比,得出预警结果;接着,结合ECG信号对驾驶员的驾驶状态进行进一步分析,输出最终结果并触发预警。实验结果表明,该方法能够准确识别驾驶员的疲劳状态并及时发出预警,最高检测正确率达到了99%,验证了方法的可行性。 展开更多
关键词 疲劳检测 YOLOv4卷积神经网络模型 面部识别 ecg 特征融合
下载PDF
高效液相色谱法测定茶多酚中EGCG和ECG的含量 被引量:21
15
作者 刘锦文 李红玉 +1 位作者 石瑞君 郭杨杨 《食品工业科技》 CAS CSCD 北大核心 2010年第11期372-374,共3页
目的:建立茶多酚中表没食子儿茶素没食子酸酯(EGCG)和表儿茶素没食子酸酯(ECG)的高效液相色谱含量测定方法。方法:以Diamonsil C18(4.6mm×200mm,5μm)为色谱柱,流动相为甲醇-0.1%磷酸水溶液(68:32),流速为1.0mL&... 目的:建立茶多酚中表没食子儿茶素没食子酸酯(EGCG)和表儿茶素没食子酸酯(ECG)的高效液相色谱含量测定方法。方法:以Diamonsil C18(4.6mm×200mm,5μm)为色谱柱,流动相为甲醇-0.1%磷酸水溶液(68:32),流速为1.0mL·min^-1,检测波长为279nm,柱温25℃,进样量为20μL。结果:EGCG的进样量在0.1~6μg范围内,ECG的进样量在0.05-1.2μg范围内与峰面积呈良好的线性关系。平均加样回收率分别为EGCG:97.57%、ECG:96.60%,RSD分别为EGCG:1.93%、ECG:1.53%。结论:本方法简便,准确,重复性好,可作为茶多酚中EGCG和ECG的含量测定方法。 展开更多
关键词 茶多酚 高效液相色谱法 EGCG ecg
下载PDF
基于小波分解和数据融合方法的ECG身份识别 被引量:14
16
作者 杨向林 严洪 +2 位作者 李延军 魏莉 孙即祥 《航天医学与医学工程》 CAS CSCD 北大核心 2009年第4期296-301,共6页
目的研究一种新的基于ECG的身份识别方法。方法选取35位健康人ECG波形的波形特征、小波特征和融合特征作为特征向量,通过相关系数阈值法进行ECG身份识别。结果对35位被试者的另外40段数据进行身份识别验证,基于波形特征、小波特征、融... 目的研究一种新的基于ECG的身份识别方法。方法选取35位健康人ECG波形的波形特征、小波特征和融合特征作为特征向量,通过相关系数阈值法进行ECG身份识别。结果对35位被试者的另外40段数据进行身份识别验证,基于波形特征、小波特征、融合特征的身份识别正确率分别为82.5%、87.5%、95%。采用小波特征身份识别的正确率优于波形特征的正确率,而采用融合特征识别的正确率优于其他两种特征的正确率。结论实验表明,基于ECG的身份识别技术是可行的,可以和指纹等多种生物特征联合使用开发多导生物识别系统,并且本文所提方法算法简单,实时性好,准确度高。 展开更多
关键词 ecg 身份识别 波形特征 小波特征 融合特征 相关系数
下载PDF
基于小波变换的自适应滤波器消除ECG中基线漂移 被引量:20
17
作者 李小燕 王涛 +1 位作者 冯焕清 詹长安 《中国科学技术大学学报》 CAS CSCD 北大核心 2000年第4期450-454,共5页
设计了一种新的基于小波变换的自适应滤波器 ,其参考信号选择原始信号经小波分解后的高频部分 .该滤波器可有效消除心电信号中基线漂移 .经MIT/BIH心电数据库检验 ,取得满意的结果 .
关键词 小波变换 自适应滤波器 ecg信号 基线漂移
下载PDF
基于小波变换与形态学运算的ECG自适应滤波算法 被引量:25
18
作者 季虎 孙即祥 毛玲 《信号处理》 CSCD 北大核心 2006年第3期333-337,共5页
针对ECG信号常用滤波算法存在的缺陷,提出了基于小波变换与形态学运算的自适应滤波新算法。该算法利用形态学滤波器去除基线漂移信号,用小波滤波器去除高频干扰信号,并将这两部分所得到的心电噪声分量作为自适应滤波器的参考输入信号,... 针对ECG信号常用滤波算法存在的缺陷,提出了基于小波变换与形态学运算的自适应滤波新算法。该算法利用形态学滤波器去除基线漂移信号,用小波滤波器去除高频干扰信号,并将这两部分所得到的心电噪声分量作为自适应滤波器的参考输入信号,利用自适应滤波器调整对含噪ECG信号进行滤波处理。最后,经实验验证了本文算法的有效性。 展开更多
关键词 ecg信号 小波变换 形态学滤波 自适应滤波器
下载PDF
基于小波提升的ECG去噪和QRS波识别快速算法 被引量:11
19
作者 姚成 司玉娟 +3 位作者 郎六琪 朴德慧 徐海峰 李贺佳 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第4期1037-1043,共7页
提出了一种基于小波提升的ECG去噪和QRS波识别的快速算法。该算法在小波提升基础上引入加权阈值收缩法,保证ECG有用信息不丢失,提高了去噪效果;利用去噪重构的中间结果并结合简单的差分法,实现了使用平滑函数一阶导数对信号进行小波提... 提出了一种基于小波提升的ECG去噪和QRS波识别的快速算法。该算法在小波提升基础上引入加权阈值收缩法,保证ECG有用信息不丢失,提高了去噪效果;利用去噪重构的中间结果并结合简单的差分法,实现了使用平滑函数一阶导数对信号进行小波提升变换,避免了需要二次小波提升变换的运算,在保证识别精度的同时,大大降低了运算复杂度。实验结果表明,该算法能得到较高的SNR和较低的MSE,QRS波识别准确率达到了99.5%以上。并且,该算法利于在硬件平台(FPGA)上实现,便于在心电监护设备上集成。 展开更多
关键词 信息处理技术 ecg去噪 提升小波 加权阈值收缩 QRS波识别 差分
下载PDF
AB-8树脂吸附分离EGCG和ECG的研究 被引量:5
20
作者 姜绍通 李慧星 +2 位作者 马道荣 陈晓燕 潘丽军 《安徽农业科学》 CAS 北大核心 2006年第5期972-973,980,共3页
通过静态试验研究了7种树脂对表没食子儿茶素没食子酸酯(EGCG)和表儿茶素没食子酸酯(ECG)的吸附和解吸性能。试验结果表明,所选用的树脂对ECG的吸附率大于对EGCG的吸附率,其中AB-8树脂对EGCG和ECG的吸附差异最大。在静态试验的基础上,选... 通过静态试验研究了7种树脂对表没食子儿茶素没食子酸酯(EGCG)和表儿茶素没食子酸酯(ECG)的吸附和解吸性能。试验结果表明,所选用的树脂对ECG的吸附率大于对EGCG的吸附率,其中AB-8树脂对EGCG和ECG的吸附差异最大。在静态试验的基础上,选择AB-8树脂为柱填料,以茶多酚为原料,获得吸附分离EGCG和ECG的最佳工艺条件是:上样茶多酚浓度10 mg/ml,流速12ml/min,柱高35 cm。该条件下制品中EGCG含量为80%,ECG含量为3%。 展开更多
关键词 AB-8树脂 吸附分离 EGCG ecg
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部