Rock failure can cause serious geological disasters,and the non-extensive statistical features of electric potential(EP)are expected to provide valuable information for disaster prediction.In this paper,the uniaxial c...Rock failure can cause serious geological disasters,and the non-extensive statistical features of electric potential(EP)are expected to provide valuable information for disaster prediction.In this paper,the uniaxial compression experiments with EP monitoring were carried out on fine sandstone,marble and granite samples under four displacement rates.The Tsallis entropy q value of EPs is used to analyze the selforganization evolution of rock failure.Then the influence of displacement rate and rock type on q value are explored by mineral structure and fracture modes.A self-organized critical prediction method with q value is proposed.The results show that the probability density function(PDF)of EPs follows the q-Gaussian distribution.The displacement rate is positively correlated with q value.With the displacement rate increasing,the fracture mode changes,the damage degree intensifies,and the microcrack network becomes denser.The influence of rock type on q value is related to the burst intensity of energy release and the crack fracture mode.The q value of EPs can be used as an effective prediction index for rock failure like b value of acoustic emission(AE).The results provide useful reference and method for the monitoring and early warning of geological disasters.展开更多
Although high resolution can be provided by electrical logging, the measured electrical log range is narrow and is limited to near the well. Borehole-surface electric potential measurements are able to detect a wide e...Although high resolution can be provided by electrical logging, the measured electrical log range is narrow and is limited to near the well. Borehole-surface electric potential measurements are able to detect a wide enough range but its resolution is limited, particularly for reservoirs with complex oil and water distribution or complicated structure. In this study, we attempt to accurately locate the 3-D reservoir water and oil distribution by combining borehole-surface and crosswell electric potentials. First, the distributions of oil and water in both vertical and horizontal directions are detected by the borehole-surface and erosswell electric potential methods, respectively, and then the measured crosswell potential result is used to calibrate the measured borehole-surface electric potential data to improve vertical resolution so that the residual oil distribution is determined in a lower half-space with three dimensions. The evaluation of residual oil distribution is obtained by investigation of differences between the simulation results of the reservoir with and without water flooding. The finite difference numerical simulation results prove that the spatial residual oil distribution can be effectively determined by combining the crosswell and borehole-surface electric potentials.展开更多
In this paper, the formula of electric field distribution and ground apparent resistivity of high resistance rock medium containing low resistance crack are deduced and simulated. The result shows that interstitial pa...In this paper, the formula of electric field distribution and ground apparent resistivity of high resistance rock medium containing low resistance crack are deduced and simulated. The result shows that interstitial parameters, such as buried depth, scale, strike, and real resistivity, etc, have influence on observation and computing result of apparent resistivity. This study provided a useful foundation for earthquake prediction using apparent resistivity method.展开更多
We study the electronic structure and spin polarization of the surface states of a three-dimensional topological insulator thin film modulated by an electrical potential well. By routinely solving the low-energy surfa...We study the electronic structure and spin polarization of the surface states of a three-dimensional topological insulator thin film modulated by an electrical potential well. By routinely solving the low-energy surface Dirac equation for the system, we demonstrate that confined surface states exist, in which the electron density is almost localized inside the well and exponentially decayed outside in real space, and that their subband dispersions are quasilinear with respect to the propagating wavevector. Interestingly, the top and bottom surface confined states with the same density distribution have opposite spin polarizations due to the hybridization between the two surfaces. Along with the mathematical analysis, we provide an intuitive, topological understanding of the effect.展开更多
Electric potential near a wall for plasma with the surface produced negative ions with magnetic field increasing toward a wall is investigated analytically. The potential profile is derived analytically by using a pla...Electric potential near a wall for plasma with the surface produced negative ions with magnetic field increasing toward a wall is investigated analytically. The potential profile is derived analytically by using a plasma-sheath equation, where negative ions produced on the plasma grid (PG) surface are considered in addition to positive ions and electrons. The potential profile depends on the amount and the temperature of the surface produced negative ions and the profile of the magnetic field. The negative potential peak is formed in the sheath region near the PG surface for the case of strong surface production of negative ions or low temperature negative ions. As the increase rate of the magnetic field near the wall becomes large, the negative potential peak becomes small.展开更多
The method in which a source is set on the surface and electric potential is received in the borehole is called surface-borehole electric potential technique. Technique of surface-borehole electric potential was emplo...The method in which a source is set on the surface and electric potential is received in the borehole is called surface-borehole electric potential technique. Technique of surface-borehole electric potential was employed to study electric response of layered formation. The electric potential was obtained by solving Poisson equation with finite difference method. In the course of calculation, forward modeling wilth finite difference method was realized by adopting bandwidth non-zero storage technique and the incomplete Cholesky conjugate gradient method. The results show that method of surface-borehole can acquire anomalous electric potential corresponding tc geo-electric layers. In addition, application of appropriate mathematical operator can improve the resolution. Moreover, overburden low resistivity layers have severe influence on measuring results of surface-borehole electric potential. However, bottom low resistivity layers play a positive role in the measurement.展开更多
Based on the nanostructured surface model,where conical nanoparticle arrays grow out symmetrically from a plane metal substrate,a theoretical model of the local electric potential near nanocones is built when a unifor...Based on the nanostructured surface model,where conical nanoparticle arrays grow out symmetrically from a plane metal substrate,a theoretical model of the local electric potential near nanocones is built when a uniform external electric field is applied.In terms of this model,the electric potential distribution near the nanocone arrays is obtained and given by a curved surface using a numerical computation method.The computational results show that the electric potential distribution near the nanocone arrays exhibit an obvious geometrical symmetry.These results could serve as a basis for explaining many abnormal phenomena,such as the abnormal infrared effects(AIREs) which are found on nanostructured metal surfaces,as well as a reference for investigating the applications of nanomaterials,such as nanoelectrodes and nanosensors.展开更多
In this paper,free vibration,wave propagation,and bending analyses of a sandwich microbeam integrated with piezoelectric face-sheets resting on Pasternak foundation under electric potential are presented based on the ...In this paper,free vibration,wave propagation,and bending analyses of a sandwich microbeam integrated with piezoelectric face-sheets resting on Pasternak foundation under electric potential are presented based on the strain gradient theory and Euler–Bernoulli beam theory.The material properties of core are assumed variable along the thickness direction and piezoelectric face-sheets are assumed homogeneous piezoelectric materials.A two-dimensional electric potential distribution along the axial and transverse direction is applied on the face-sheets of microbeam.Hamilton principal is used to derive governing differential equations of motion.Three behaviors of sandwich microbeam including free vibration,wave propagation,and bending analyses are studied in this paper.Some numerical results are presented to capture the effect of important parameters of the problem such as in-homogeneous index,applied voltage,parameters of foundation,and material length scales.The numerical results indicate that the effect of electric potential along the axial direction is very small rather than one along the transverse direction where initial voltage is applied.展开更多
Citric acid(CA), a widely used eco-friendly electrolyte, can be employed as an agent for enhancing toxic metal(TM) removal from contaminated dredged sediment using electrokinetic(EK) technology. In this study, dredged...Citric acid(CA), a widely used eco-friendly electrolyte, can be employed as an agent for enhancing toxic metal(TM) removal from contaminated dredged sediment using electrokinetic(EK) technology. In this study, dredged harbor sediments co-contaminated by TMs were subjected to enhanced EK treatment using a mixture of chelating agent(CA) and surfactant as an additive in the processing fluids. Several control conditions that may influence the efficiency of TM removal were tested, including open/closed sediment chamber orifices, electric potential gradients(0.5, 1.0, and 1.5 V cm^(-1)), and electrolyte surfactant. Tween 20(4 mmol L-1) was used as a surfactant within the electrolyte to investigate the extent of TM removal in sediment with high organic matter content. The results showed that an open orifice led to a greater electro-osmotic flow(EOF) with moderate TM removal. In contrast, a closed orifice with a nonionic surfactant electrolyte allowed the highest removal of TMs from the matrix. Moreover, increasing the electric potential gradient led to a higher EOF under the open orifice condition, but no significant increase in TM removal was observed owing to a higher accumulation of TMs in the middle of the matrix, caused by the opposite direction of EOF and electro-migration of metal-citrate complexes.展开更多
Crack monitoring plays a great role in modern structural health monitoring, however, most of the conventional crack inspections have disadvantages in terms of the accuracy, expense, reliability, durability and level o...Crack monitoring plays a great role in modern structural health monitoring, however, most of the conventional crack inspections have disadvantages in terms of the accuracy, expense, reliability, durability and level of instrumentation required. Thus, development of a simple and reliable crack inspection technique that allows continuous monitoring has been desired. In this paper, electrical potential technique and modern surface technology are employed together to develop a new structural surface crack monitoring method. A special crack monitoring coating sensor based on electrical potential technique was deposited on the hot spot of the structure by modern surface technology. The sensor consists of three layers: the isolated layer, the sensing layer and the protective layer. The isolated layer is prepared by anodic oxidation technology, the sensing layer is made of ion plated copper, and the protective layer is made of silicone. The thickness of each layer is at micrometer magnitude. The electrical conductivity of the sensor is very stable, and the fatigue performance of the specimen with or without coating sensor is nearly unchanged. The crack monitoring experiment result shows that there are two sudden rises of the coating sensor electrical potential values, corresponding to different stages of the crack initiation and propagation. Since the width of the surface coating sensor is only 0.5 mm, this crack monitoring sensor can detect the propagation of cracks less than 0.5 mm long. The method proposed takes the simplicity of electrical potential technique and can monitor surface crack of nearly all kinds of structures precisely. The results of this paper may form the basis of a new crack monitoring system.展开更多
The electrical oscillations across a liquid membrane in water/oil/water system was studied with octanol as oil phase by introducing two opposite charged surfactants in oil and aqueous phase, respectively. The sustaine...The electrical oscillations across a liquid membrane in water/oil/water system was studied with octanol as oil phase by introducing two opposite charged surfactants in oil and aqueous phase, respectively. The sustained and rhythmic oscillation was observed. To a certain extent, the features of the oscillation (e.g. induction time, frequency, life time and orientation of the pulse pikes) strongly depend on the property of surfactant, dissolved in octanol. The mechanism may be explained by the formation and destruction of dual-ion surfactant membrane accompanying with emulsification at the interface and considering the coupling effect of diffusion and associated reaction in the vicinity of the interface.展开更多
Using the density functional B3P86/cc-PV5Z method, the geometric structure of BH molecule under different external electric fields is optimized, and the bond lengths, dipole moments, vibration frequencies, and other p...Using the density functional B3P86/cc-PV5Z method, the geometric structure of BH molecule under different external electric fields is optimized, and the bond lengths, dipole moments, vibration frequencies, and other physical properties parameters are obtained. On the basis of setting appropriate parameters, scanning single point energies are obtained by the same method and the potential energy curves under different external fields are also obtained. These results show that the physical property parameters and potential energy curves may change with external electric field, especially in the case of reverse direction electric field. The potential energy function without external electric field is fitted by Morse potential, and the fitting parameters are obtained which are in good agreement with experimental values. In order to obtain the critical dissociation electric parameter, the dipole approximation is adopted to construct a potential model fitting the corresponding potential energy curve of the external electric field. It is found that the fitted critical dissociation electric parameter is consistent with numerical calculation, so that the constructed model is reliable and accurate. These results will provide important theoretical and experimental reference for further studying the molecular spectrum, dynamics, and molecular cooling with Stark effect.展开更多
ECAPs are the summary of multiple neurons’ spikes which could be recorded by a bidirectional stimulation-recording system via the cochlear implant,with the artifact elimination paradigms of forward-masking subtractio...ECAPs are the summary of multiple neurons’ spikes which could be recorded by a bidirectional stimulation-recording system via the cochlear implant,with the artifact elimination paradigms of forward-masking subtraction paradigm or alternating polarity paradigm.Three kinds of FDA approved cochlear implants support ECAP testing.This article is to summarize the clinical application of ECAP lest.ECAP test after insertion of electrode during implant operation has been widely used during cochlear implant surgery.In recent years.ECAP thresholds are also used to estimate the T levels and C levels helping programming.However,correlation between ECAP thresholds and psychophysical thresholds is affected by many factors.So far,ECAPs cannot yet be a good indicator of post-operative hearing and speech performance.展开更多
The geometric structures of an Nit radical in different external electric fields are optimized by using the density functional B3P86/cc-PVSZ method, and the bond lengths, dipole moments, vibration frequencies and IR s...The geometric structures of an Nit radical in different external electric fields are optimized by using the density functional B3P86/cc-PVSZ method, and the bond lengths, dipole moments, vibration frequencies and IR spectrum are obtained. The potential energy curves are gained by the CCSD (T) method with the same basis set. These results indicate that the physical property parameters and potential energy curves may change with the external electric field, especially in the reverse direction electric field. The potential energy function of zero field is fitted by the Morse potential, and the fitting parameters are in good accordance with the experimental data. The potential energy functions of different external electric fields are fitted adopting the constructed potential model. The fitted critical dissociation electric parameters are shown to be consistent with the numerical calculation, and the relative errors are only 0.27% and 6.61%, hence the constructed model is reliable and accurate. The present results provide an important reference for further study of the molecular spectrum, dynamics and molecular cooling with Stark effect.展开更多
In light of the nanostructured surface model, where half-spherical nanoparticles grow out symmetrically from a plane metallic film, the mathematical model for the partial electrical potential around nanospheres is dev...In light of the nanostructured surface model, where half-spherical nanoparticles grow out symmetrically from a plane metallic film, the mathematical model for the partial electrical potential around nanospheres is developed when a uniform external electric field is applied. On the basis of these models, the three-dimensional spatial distribution of the partial electrical potential is obtained and given in the form of a curved surface using a numerical computation method. Our results show that the electrical potential distribution around the nanospheres exhibits an obvious geometrical symmetry. These results could serve as a reference for investigating many abnormal phenomena such as abnormal infrared effects, which are found when CO molecules are adsorbed on the surface of nanostructured transition metals.展开更多
We investigate the electron transport and conductance properties in Fibonacci quasi-periodic graphene superlat- rices with electrostatic barriers and magnetic vector potentials. It is found that a new Dirac point appe...We investigate the electron transport and conductance properties in Fibonacci quasi-periodic graphene superlat- rices with electrostatic barriers and magnetic vector potentials. It is found that a new Dirac point appears in the band structure of graphene superlattice and the position of the Dirac point is exactly located at the energy corresponding to the zero-averaged w^ve number. The magnetic and eleetr/c potentials modify the energy band structure and transmission spectrum in entirely diverse ways. In addition, the angular-dependent transmission is blocked by the potential barriers at certain incident angles due to the appearance of the evanescent states. The effects of lattice constants and different potentials on angular-averaged conductance are also discussed.展开更多
The paper first studies the analytical expression of electrical potential by a point current source in a uniform half-space medium,and then focuses on the distribution of electrical potential in a horizontally layered...The paper first studies the analytical expression of electrical potential by a point current source in a uniform half-space medium,and then focuses on the distribution of electrical potential in a horizontally layered half-space model by a point current source within the surface layer or the bottom layer.Finally,the electrical potential by a source electrode in any layer of a layered half-space model is presented.展开更多
Creep-fatigue test was carried out using smooth round bar specimens of Type 304 stainless steel. Cavities and small cracks on the cross-section of the specimen were carefully observed by a scanning laser microscope. ...Creep-fatigue test was carried out using smooth round bar specimens of Type 304 stainless steel. Cavities and small cracks on the cross-section of the specimen were carefully observed by a scanning laser microscope. Moreover, direct current electrical potential method (DC-EPM) was applied in order to evaluate non-destructively the distribution of internal cracks. The distribution evaluated by DC-EPM agrees well with the actual one. (Edited author abstract) 9 Refs.展开更多
This study explores the flotation behavior of chalcopyrite in the presence of different concentrations of sodium sulfide (Na2S·9H2O) at pH 12 under controlled potential conditions. It was observed that the flot...This study explores the flotation behavior of chalcopyrite in the presence of different concentrations of sodium sulfide (Na2S·9H2O) at pH 12 under controlled potential conditions. It was observed that the flotation of chalcopyrite is not depressed completely when the pulp potential is low, even at high concentrations of sodium sulfide, i.e., 10-1-10-2 mol/L. However, a partial and controlled oxidation of pulp does enhance the effectiveness of sodium sulfide on the depression of chalcopyrite. Characterization of the chalcopyrite particle surface by X-ray photoelectron spectroscopy allowed the identification of hydrophilic and hydrophobic surface species, which are responsible for the depression and flotation of chalcopyrite. Changes in pulp potential were found to be an effective float controlling parameter, by which Na2S can be used to initiate or depress the flotation behavior of chalcopyrite.展开更多
In the case of three-layered(air-seawater-seabed)model,the analytical expressions of the static electric and static magnetic field produced by the static electric dipole located in seawater were derived by using the m...In the case of three-layered(air-seawater-seabed)model,the analytical expressions of the static electric and static magnetic field produced by the static electric dipole located in seawater were derived by using the mirror image theory.Combined with the distribution of the underwater electric potential measured in laboratory,an electric dipole model for physical scale of ship was established and the distribution characteristics of an actual ship' s corrosion related magnetic field were obtained.Based on established models,theoretical analysis and calculation were made to catch out the distribution characteristics of static magnetic field related with corrosion and anticorrosion,which can not be measured directly in seawater.The results show that the static magnetic field related with corrosion and anticorrosion is a kind of noteworthy obstacle signal for degaussed ships.展开更多
基金supported by National Key R&D Program of China(2022YFC3004705)the National Natural Science Foundation of China(Nos.52074280,52227901 and 52204249)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_2913)the Graduate Innovation Program of China University of Mining and Technology(No.2024WLKXJ139).
文摘Rock failure can cause serious geological disasters,and the non-extensive statistical features of electric potential(EP)are expected to provide valuable information for disaster prediction.In this paper,the uniaxial compression experiments with EP monitoring were carried out on fine sandstone,marble and granite samples under four displacement rates.The Tsallis entropy q value of EPs is used to analyze the selforganization evolution of rock failure.Then the influence of displacement rate and rock type on q value are explored by mineral structure and fracture modes.A self-organized critical prediction method with q value is proposed.The results show that the probability density function(PDF)of EPs follows the q-Gaussian distribution.The displacement rate is positively correlated with q value.With the displacement rate increasing,the fracture mode changes,the damage degree intensifies,and the microcrack network becomes denser.The influence of rock type on q value is related to the burst intensity of energy release and the crack fracture mode.The q value of EPs can be used as an effective prediction index for rock failure like b value of acoustic emission(AE).The results provide useful reference and method for the monitoring and early warning of geological disasters.
文摘Although high resolution can be provided by electrical logging, the measured electrical log range is narrow and is limited to near the well. Borehole-surface electric potential measurements are able to detect a wide enough range but its resolution is limited, particularly for reservoirs with complex oil and water distribution or complicated structure. In this study, we attempt to accurately locate the 3-D reservoir water and oil distribution by combining borehole-surface and crosswell electric potentials. First, the distributions of oil and water in both vertical and horizontal directions are detected by the borehole-surface and erosswell electric potential methods, respectively, and then the measured crosswell potential result is used to calibrate the measured borehole-surface electric potential data to improve vertical resolution so that the residual oil distribution is determined in a lower half-space with three dimensions. The evaluation of residual oil distribution is obtained by investigation of differences between the simulation results of the reservoir with and without water flooding. The finite difference numerical simulation results prove that the spatial residual oil distribution can be effectively determined by combining the crosswell and borehole-surface electric potentials.
文摘In this paper, the formula of electric field distribution and ground apparent resistivity of high resistance rock medium containing low resistance crack are deduced and simulated. The result shows that interstitial parameters, such as buried depth, scale, strike, and real resistivity, etc, have influence on observation and computing result of apparent resistivity. This study provided a useful foundation for earthquake prediction using apparent resistivity method.
基金the National Natural Science Foundation of China(Grant No.11274108)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20114306110008)
文摘We study the electronic structure and spin polarization of the surface states of a three-dimensional topological insulator thin film modulated by an electrical potential well. By routinely solving the low-energy surface Dirac equation for the system, we demonstrate that confined surface states exist, in which the electron density is almost localized inside the well and exponentially decayed outside in real space, and that their subband dispersions are quasilinear with respect to the propagating wavevector. Interestingly, the top and bottom surface confined states with the same density distribution have opposite spin polarizations due to the hybridization between the two surfaces. Along with the mathematical analysis, we provide an intuitive, topological understanding of the effect.
文摘Electric potential near a wall for plasma with the surface produced negative ions with magnetic field increasing toward a wall is investigated analytically. The potential profile is derived analytically by using a plasma-sheath equation, where negative ions produced on the plasma grid (PG) surface are considered in addition to positive ions and electrons. The potential profile depends on the amount and the temperature of the surface produced negative ions and the profile of the magnetic field. The negative potential peak is formed in the sheath region near the PG surface for the case of strong surface production of negative ions or low temperature negative ions. As the increase rate of the magnetic field near the wall becomes large, the negative potential peak becomes small.
基金Project supported by Global Center of Excellence in Novel Carbon Resource Sciences,Kyushu University,Japan
文摘The method in which a source is set on the surface and electric potential is received in the borehole is called surface-borehole electric potential technique. Technique of surface-borehole electric potential was employed to study electric response of layered formation. The electric potential was obtained by solving Poisson equation with finite difference method. In the course of calculation, forward modeling wilth finite difference method was realized by adopting bandwidth non-zero storage technique and the incomplete Cholesky conjugate gradient method. The results show that method of surface-borehole can acquire anomalous electric potential corresponding tc geo-electric layers. In addition, application of appropriate mathematical operator can improve the resolution. Moreover, overburden low resistivity layers have severe influence on measuring results of surface-borehole electric potential. However, bottom low resistivity layers play a positive role in the measurement.
基金Project supported by the Natural Science Foundation of Fujian Province,China (Grant Nos. 2010J01210,B509043A,and2011J05006)
文摘Based on the nanostructured surface model,where conical nanoparticle arrays grow out symmetrically from a plane metal substrate,a theoretical model of the local electric potential near nanocones is built when a uniform external electric field is applied.In terms of this model,the electric potential distribution near the nanocone arrays is obtained and given by a curved surface using a numerical computation method.The computational results show that the electric potential distribution near the nanocone arrays exhibit an obvious geometrical symmetry.These results could serve as a basis for explaining many abnormal phenomena,such as the abnormal infrared effects(AIREs) which are found on nanostructured metal surfaces,as well as a reference for investigating the applications of nanomaterials,such as nanoelectrodes and nanosensors.
基金The research described in this paper was financially supported by the University of Kashan[grant number:574613/027].The first author would like to thank the Iranian Nanotechnology Development Committee for their financial support.
文摘In this paper,free vibration,wave propagation,and bending analyses of a sandwich microbeam integrated with piezoelectric face-sheets resting on Pasternak foundation under electric potential are presented based on the strain gradient theory and Euler–Bernoulli beam theory.The material properties of core are assumed variable along the thickness direction and piezoelectric face-sheets are assumed homogeneous piezoelectric materials.A two-dimensional electric potential distribution along the axial and transverse direction is applied on the face-sheets of microbeam.Hamilton principal is used to derive governing differential equations of motion.Three behaviors of sandwich microbeam including free vibration,wave propagation,and bending analyses are studied in this paper.Some numerical results are presented to capture the effect of important parameters of the problem such as in-homogeneous index,applied voltage,parameters of foundation,and material length scales.The numerical results indicate that the effect of electric potential along the axial direction is very small rather than one along the transverse direction where initial voltage is applied.
基金financially supported by the Project SEDEVAR of the Research Network SCALE provided by the Normandy Region, France
文摘Citric acid(CA), a widely used eco-friendly electrolyte, can be employed as an agent for enhancing toxic metal(TM) removal from contaminated dredged sediment using electrokinetic(EK) technology. In this study, dredged harbor sediments co-contaminated by TMs were subjected to enhanced EK treatment using a mixture of chelating agent(CA) and surfactant as an additive in the processing fluids. Several control conditions that may influence the efficiency of TM removal were tested, including open/closed sediment chamber orifices, electric potential gradients(0.5, 1.0, and 1.5 V cm^(-1)), and electrolyte surfactant. Tween 20(4 mmol L-1) was used as a surfactant within the electrolyte to investigate the extent of TM removal in sediment with high organic matter content. The results showed that an open orifice led to a greater electro-osmotic flow(EOF) with moderate TM removal. In contrast, a closed orifice with a nonionic surfactant electrolyte allowed the highest removal of TMs from the matrix. Moreover, increasing the electric potential gradient led to a higher EOF under the open orifice condition, but no significant increase in TM removal was observed owing to a higher accumulation of TMs in the middle of the matrix, caused by the opposite direction of EOF and electro-migration of metal-citrate complexes.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA03Z103)Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of China (Grant No. [2006]331)
文摘Crack monitoring plays a great role in modern structural health monitoring, however, most of the conventional crack inspections have disadvantages in terms of the accuracy, expense, reliability, durability and level of instrumentation required. Thus, development of a simple and reliable crack inspection technique that allows continuous monitoring has been desired. In this paper, electrical potential technique and modern surface technology are employed together to develop a new structural surface crack monitoring method. A special crack monitoring coating sensor based on electrical potential technique was deposited on the hot spot of the structure by modern surface technology. The sensor consists of three layers: the isolated layer, the sensing layer and the protective layer. The isolated layer is prepared by anodic oxidation technology, the sensing layer is made of ion plated copper, and the protective layer is made of silicone. The thickness of each layer is at micrometer magnitude. The electrical conductivity of the sensor is very stable, and the fatigue performance of the specimen with or without coating sensor is nearly unchanged. The crack monitoring experiment result shows that there are two sudden rises of the coating sensor electrical potential values, corresponding to different stages of the crack initiation and propagation. Since the width of the surface coating sensor is only 0.5 mm, this crack monitoring sensor can detect the propagation of cracks less than 0.5 mm long. The method proposed takes the simplicity of electrical potential technique and can monitor surface crack of nearly all kinds of structures precisely. The results of this paper may form the basis of a new crack monitoring system.
文摘The electrical oscillations across a liquid membrane in water/oil/water system was studied with octanol as oil phase by introducing two opposite charged surfactants in oil and aqueous phase, respectively. The sustained and rhythmic oscillation was observed. To a certain extent, the features of the oscillation (e.g. induction time, frequency, life time and orientation of the pulse pikes) strongly depend on the property of surfactant, dissolved in octanol. The mechanism may be explained by the formation and destruction of dual-ion surfactant membrane accompanying with emulsification at the interface and considering the coupling effect of diffusion and associated reaction in the vicinity of the interface.
基金Project supported by the National Natural Science Foundation of China(Grand Nos.11147158 and 11264020)the Natural Science Foundation of Jiangxi Province,China(Grand No.2010GQW0031)the Scientific Research Program of the Education Bureau of Jiangxi Province,China(Grand No.GJJ12483)
文摘Using the density functional B3P86/cc-PV5Z method, the geometric structure of BH molecule under different external electric fields is optimized, and the bond lengths, dipole moments, vibration frequencies, and other physical properties parameters are obtained. On the basis of setting appropriate parameters, scanning single point energies are obtained by the same method and the potential energy curves under different external fields are also obtained. These results show that the physical property parameters and potential energy curves may change with external electric field, especially in the case of reverse direction electric field. The potential energy function without external electric field is fitted by Morse potential, and the fitting parameters are obtained which are in good agreement with experimental values. In order to obtain the critical dissociation electric parameter, the dipole approximation is adopted to construct a potential model fitting the corresponding potential energy curve of the external electric field. It is found that the fitted critical dissociation electric parameter is consistent with numerical calculation, so that the constructed model is reliable and accurate. These results will provide important theoretical and experimental reference for further studying the molecular spectrum, dynamics, and molecular cooling with Stark effect.
基金supported by grants from the National Basic Research Program of China(973 Program)(#2012CB967900)Science and Technology Innovation Nursery Foundation of PLA General Hospital(13KMM14)Clinical Research Supporting Foundation of PLA General Hospital(2012FC-TSYS-3056)
文摘ECAPs are the summary of multiple neurons’ spikes which could be recorded by a bidirectional stimulation-recording system via the cochlear implant,with the artifact elimination paradigms of forward-masking subtraction paradigm or alternating polarity paradigm.Three kinds of FDA approved cochlear implants support ECAP testing.This article is to summarize the clinical application of ECAP lest.ECAP test after insertion of electrode during implant operation has been widely used during cochlear implant surgery.In recent years.ECAP thresholds are also used to estimate the T levels and C levels helping programming.However,correlation between ECAP thresholds and psychophysical thresholds is affected by many factors.So far,ECAPs cannot yet be a good indicator of post-operative hearing and speech performance.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11147158 and 11264020the Jiangxi Province Natural Science Foundation under Grant No 2010GQW0031the Jiangxi Province Scientific Research Program of the Education Bureau under Grant No GJJ12483
文摘The geometric structures of an Nit radical in different external electric fields are optimized by using the density functional B3P86/cc-PVSZ method, and the bond lengths, dipole moments, vibration frequencies and IR spectrum are obtained. The potential energy curves are gained by the CCSD (T) method with the same basis set. These results indicate that the physical property parameters and potential energy curves may change with the external electric field, especially in the reverse direction electric field. The potential energy function of zero field is fitted by the Morse potential, and the fitting parameters are in good accordance with the experimental data. The potential energy functions of different external electric fields are fitted adopting the constructed potential model. The fitted critical dissociation electric parameters are shown to be consistent with the numerical calculation, and the relative errors are only 0.27% and 6.61%, hence the constructed model is reliable and accurate. The present results provide an important reference for further study of the molecular spectrum, dynamics and molecular cooling with Stark effect.
基金Project supported by the Natural Science Foundation of Fujian Province,China(Grant No.2010J01210)
文摘In light of the nanostructured surface model, where half-spherical nanoparticles grow out symmetrically from a plane metallic film, the mathematical model for the partial electrical potential around nanospheres is developed when a uniform external electric field is applied. On the basis of these models, the three-dimensional spatial distribution of the partial electrical potential is obtained and given in the form of a curved surface using a numerical computation method. Our results show that the electrical potential distribution around the nanospheres exhibits an obvious geometrical symmetry. These results could serve as a reference for investigating many abnormal phenomena such as abnormal infrared effects, which are found when CO molecules are adsorbed on the surface of nanostructured transition metals.
文摘We investigate the electron transport and conductance properties in Fibonacci quasi-periodic graphene superlat- rices with electrostatic barriers and magnetic vector potentials. It is found that a new Dirac point appears in the band structure of graphene superlattice and the position of the Dirac point is exactly located at the energy corresponding to the zero-averaged w^ve number. The magnetic and eleetr/c potentials modify the energy band structure and transmission spectrum in entirely diverse ways. In addition, the angular-dependent transmission is blocked by the potential barriers at certain incident angles due to the appearance of the evanescent states. The effects of lattice constants and different potentials on angular-averaged conductance are also discussed.
基金funded under the key project,Study on Techniques of Medium and Short-term Earthquake Prediction for Tianjin and Its Nearby Areas(07ZCGYSF03100),of the Science & Technology Pillar Program of Tianjin Municipality
文摘The paper first studies the analytical expression of electrical potential by a point current source in a uniform half-space medium,and then focuses on the distribution of electrical potential in a horizontally layered half-space model by a point current source within the surface layer or the bottom layer.Finally,the electrical potential by a source electrode in any layer of a layered half-space model is presented.
文摘Creep-fatigue test was carried out using smooth round bar specimens of Type 304 stainless steel. Cavities and small cracks on the cross-section of the specimen were carefully observed by a scanning laser microscope. Moreover, direct current electrical potential method (DC-EPM) was applied in order to evaluate non-destructively the distribution of internal cracks. The distribution evaluated by DC-EPM agrees well with the actual one. (Edited author abstract) 9 Refs.
基金Tarbiat Modares University and the Sarcheshmeh Copper Complex of Kerman for their financial support
文摘This study explores the flotation behavior of chalcopyrite in the presence of different concentrations of sodium sulfide (Na2S·9H2O) at pH 12 under controlled potential conditions. It was observed that the flotation of chalcopyrite is not depressed completely when the pulp potential is low, even at high concentrations of sodium sulfide, i.e., 10-1-10-2 mol/L. However, a partial and controlled oxidation of pulp does enhance the effectiveness of sodium sulfide on the depression of chalcopyrite. Characterization of the chalcopyrite particle surface by X-ray photoelectron spectroscopy allowed the identification of hydrophilic and hydrophobic surface species, which are responsible for the depression and flotation of chalcopyrite. Changes in pulp potential were found to be an effective float controlling parameter, by which Na2S can be used to initiate or depress the flotation behavior of chalcopyrite.
基金Sponsored by National Defense Pre-research Foundation(51444070105JB11)
文摘In the case of three-layered(air-seawater-seabed)model,the analytical expressions of the static electric and static magnetic field produced by the static electric dipole located in seawater were derived by using the mirror image theory.Combined with the distribution of the underwater electric potential measured in laboratory,an electric dipole model for physical scale of ship was established and the distribution characteristics of an actual ship' s corrosion related magnetic field were obtained.Based on established models,theoretical analysis and calculation were made to catch out the distribution characteristics of static magnetic field related with corrosion and anticorrosion,which can not be measured directly in seawater.The results show that the static magnetic field related with corrosion and anticorrosion is a kind of noteworthy obstacle signal for degaussed ships.