期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A new electric field mill array with each of the mill’s rotor controlled precisely by a GPS module:Equipment and initial results
1
作者 Kozo Yamashita Hironobu Fujisaka +4 位作者 DaoHong Wang Hiroyuki Iwasaki Kazuo Yamamoto Koichiro Michimoto Masashi Hayakawa 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期423-435,共13页
We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote... We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote estimation of the transferred charge to measure electric field changes caused by charge loss at the time of a lightning strike at multiple locations.For multiple-station measurement of electric field changes,not only speed but also phase for exposure and shielding of the sensing plates inside each EFM of the array should be synchronized to maintain the sensitivities of the deployed instruments.Currently,there is no such EFM with specified speed and phase control performance of the rotary part.Thus,we developed a new EFM in which the rotary mechanism was controlled consistently to within 3%error by a GPS module.Five EFMs had been distributed in the Hokuriku area of Japan during the winter season of 2022-2023 for a test observation.Here we describe the design and a simple calibration method for our new EFM array.Data analysis method based on the assumption of a simple monopole charge structure is also summarized.For validation,locations of assumed point charges were compared with three-dimensional lightning mapping data estimated by radio observations in the MF-HF bands.Initial results indicated the validity to estimate transferred charge amounts and positions of winter cloud-to-ground lightning discharges with our new EFM array. 展开更多
关键词 LIGHTNING electrostatic field electric field mill electric field change
下载PDF
Analysis of the Initial Stage Intracloud Lightning Using the Pulse Location Technique Based on the Fast Electric Field Change
2
作者 王东方 郄秀书 +4 位作者 袁铁 张广庶 张彤 张廷龙 张其林 《Acta meteorologica Sinica》 SCIE 2009年第6期772-781,共10页
Academy of Sciences,Beijing 100029 2 Lanzhou University,Lanzhou 730000 3 Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences,Lanzhou 730000 4 Nanjing University of Infor... Academy of Sciences,Beijing 100029 2 Lanzhou University,Lanzhou 730000 3 Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences,Lanzhou 730000 4 Nanjing University of Information Science&Technology,Nanjing 210044 Using both fast and slow electric field change sensors and field mill,multi-station observations on lightning flashes over China inland plateau areas were conducted during the summer of 2004.All of the stations were synchronized by GPS with a time-resolution of±50 ns.Using the different time of arrival(DTOA)and based on the fast electric field change sensor,a lightning radiation location technique was developed.Radiation pulses in the initial stages of five intracloud(IC)lightning discharges which occurred on 20 August were analyzed.The results indicate that the technique developed could effectively locate the lightning radiation sources.Furthermore,the lightning discharges were compared with the Doppler radar data.The results show that the radiation sources were well associated with the storm development.When the storm was at the mature stage with an echo top of about 10.9 km,the radiation sources ranged from 5.2 to 8.3 km above mean sea level;when the storm gradually became weaker,with echo top of about 7.9 km,the radiation sources ranged from 3.0 to 5.9 km.In particular,one of the IC lightning discharges ranged from 3.0 to 4.9 km during the dissipation stage of the storm.The results also indicate that the radiation sources were closely associated with the high reflectivity region(25–50 dBZ)of the storm,which,to some extent,demonstrates the reliability of the location results,thereby showing that multi-station observations of fast electric field change sensors could be a useful tool for monitoring the storm development.Location errors from radiation sources were also compared with the radar data and the results of a simple simulation.It was found that the errors were getting smaller when the radiation sources approached the center of the detection network, and vice versa.Compared with the limited experimental observations,the simulation results were found capable of effectively reflecting the location errors. 展开更多
关键词 thunderstorm intracloud lightning fast electric field change radiation source 3-D location Doppler radar
原文传递
Development characteristics of cloud-to-ground lightning with multiple grounding points
3
作者 Bin FAN Ping YUAN +3 位作者 Xuejuan WANG Yang ZHAO Jianyong CEN Yanling SU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第8期1127-1135,共9页
Using the optical images of a cloud-to-ground lightning flash with multiple grounding points obtained by a highspeed video system in the Qinghai Province of China along with synchronous radiated electric field informa... Using the optical images of a cloud-to-ground lightning flash with multiple grounding points obtained by a highspeed video system in the Qinghai Province of China along with synchronous radiated electric field information, the propagation characteristic and the electric field change features of the leaders and the grounding behavior of discharge channels are analyzed.In addition, the two-dimensional velocity of the leader was estimated and its correlation with the time interval of the corresponding subsequent return stroke, and that with the peak current of return stroke are investigated. The results show that the average distance between the three obvious grounded points of the first return stroke channel is about 512.7 m, and the average time interval between the pulses of the corresponding electric field fast changes is 3.8 μs. Further, the average time interval between electric field pulses from the stepped leader is smaller than that of normal single grounding lightning. The observed lightning in our study has two main channels, namely the left and right channels. Based on our observations, it is clear that the dart leader comes close to the ground in case of the left channel after the first return stroke, but it fails to form a return stroke.However, the right channel exhibits a relatively rare phenomenon in that the subsequent return stroke R2 occurred about 2.1 ms after the dart leader arrived at the ground, which was unusually long; this phenomenon might be attributed to the strong discharge of the first return stroke and insufficient charge accumulation near the grounded point in a timely manner. The two-dimensional velocities for the stepped leader of the two main channels are about 1.23×105 and 1.16×105 m s-1, respectively. A sub-branch of stepped leader for the left channel fails to reach the ground and develops into an attempt leader eventually; this might be attributed to the fact that the main branch connects considerably many sub-branches, which leads to the instantaneous decline of the potential difference between the sub-branch and ground. Furthermore, it might also be because the propagation direction of this sub-branch is almost perpendicular to the atmospheric electric field direction, which is not conducive to charge transfer. The two-dimensional velocities for the dart leaders of five subsequent return strokes are all in the normal range, and they positively correlate with the peak current of the subsequent return stroke. 展开更多
关键词 Multiple grounding lightning High-speed camera electric field changes LEADER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部