Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity grad...Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity gradient(TSG)between water-air interface and adjacent seawater,affording opportunities of harnessing electricity.However,the efficiency of conventional SIWE technologies is limited by significant challenges,including salt passivation to hinder evaporation and difficulties in exploiting overlapped TSG simultaneously.Herein,we report self-sustaining hybrid SIWE for not only sustainable seawater desalination but also efficient electricity generation from TSG.It enables spontaneous circulation of salt flux upon seawater evaporation,inducing a self-cleaning evaporative interface without salt passivation for stable steam generation.Meanwhile,this design enables spatial separation and simultaneous utilization of overlapped TSG to enhance electricity generation.These benefits render a remarkable efficiency of90.8%in solar energy utilization,manifesting in co-generation of solar steam at a fast rate of 2.01 kg m^(-2)-h^(-1)and electricity power of 1.91 W m^(-2)with high voltage.Directly interfacing the hybrid SIWE with seawater electrolyzer constructs a system for water-electricity-hydrogen co-generation without external electricity supply.It produces hydrogen at a rapid rate of 1.29 L h^(-1)m^(-2)and freshwater with 22 times lower Na+concentration than the World Health Organization(WHO)threshold.展开更多
A membrane-less constructed wetland microbial fuel cell (CW-MFC) is constructed and operated under continuous flow with a hydraulic retention time (HRT) of 2 d. Fed with glucose, the CW-MFC generates a stable curr...A membrane-less constructed wetland microbial fuel cell (CW-MFC) is constructed and operated under continuous flow with a hydraulic retention time (HRT) of 2 d. Fed with glucose, the CW-MFC generates a stable current density of over 2 A/m3 with a resistor of 1 kΩ and has a chemical oxygen demand (COD) removal efficiency of more than 90% after the startup of 2 to 3 d. A series of systems with the electrode spacings of 10, 20, 30 and 40 cm are compared. It is found that the container with the electrode spacing of 20 cm gains the highest voltage of 560 mV, the highest power density of 0. 149 W/m 3, and the highest Coulombic efficiency of 0.313%. It also has the highest COD removal efficiency of 94. 9%. In addition, the dissolved oxygen (DO) concentrations are observed as the lowest level in the middle of all the CW-MFC reactors. The results show that the more COD is removed, the greater power is generated, and the relatively higher Coulombic efficiency will be achieved. The present study indicates that the CW-MFC process can be used as a cost-effective and environmentally friendly wastewater treatment with simultaneous power generation.展开更多
Electricity consumption increases rapidly with the rapid development of China. The environmental damage costs of electricity generation are very important for both policy analysis and the proper management of the envi...Electricity consumption increases rapidly with the rapid development of China. The environmental damage costs of electricity generation are very important for both policy analysis and the proper management of the environment. A method was developed in this work to estimate gross environmental damage costs according to emission inventory and environmental cost factors, and to extend the costs from provincial to national level with population density. In this paper, sulfur dioxide (SO2), nitrogen oxides (NOx), particulate matter less than 10 μm in diameter (PM10), and carbon dioxide (CO2) from fossil fired power plants over 6000 kW were selected as index pollutants to quantify the environmental costs of damages on human health and global warming. With the new developed method, environmental damage costs, caused by 3 types of fired power plants in 30 provinces and 6 economic sectors during the years 2000 to 2003, were evaluated and analyzed. It can be seen that the calculated total national environmental damage costs of electricity have rapidly increased from 94930.87×106 USD in 2000 to about 141041.39×106 USD in 2003, with an average annual growth rate of 14.11%. Environmental damage costs of SO2, NOx, PM10, and CO2 are 69475.69×106, 30079.29×106, 28931.84×106, and 12554.57×106 USD and account for 49.26%, 21.33%, 20.51%, and 8.90% of total environmental costs in fossil electricity generation, respectively. With regard to regional distribution, external costs caused by fossil electricity generation are mainly concentrated in the more populated and industrialized areas of China, i.e., the Eastern Central and Southeastern areas.展开更多
It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to...It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to induction motor to drive cylinder loads. During upstroke operation, the variable pump/motor (P/M) driven by both electric motor and the second (P/M) works as hydraulic pump and output flow to the cylinders which drive the load. During load deceleration, the cylinders work as pump while the operation of the two secondary units are reversed, the variable (P/M) works as a motor generating a torque with the electric motor to drive the other (P/M) which transforms mechanical energy to hydraulic energy that is saved in the accumulator. When the energy storage capacity of the accumulator is attained as the operation continues, energy storage to the accumulator is thermostatically stopped while the induction motor begins to work as a generator and generates electricity that is stored in the power distribution unit. Simulations were performed using a limited PT2 Block, i.e. 2nd-order transfer function with limitation of slope and signal output to determine suitable velocity of the cylinder which will match high performance and system stability. A mathematical model suited to the simulation of the hydraulic accumulator both in an open-or close-loop system is presented. The quest for improvement of lower energy capacity storage, saving and re-utilization of the conventional accumulator resulting in the short cycle time usage of hydraulic accumulators both in domestic and industrial purposes necessitates this research. The outcome of the research appears to be very efficient for generating fluctuation free electricity, power quality and reliability, energy saving/reutilization and system noise reduction.展开更多
Many recent studies are concerned with low cost,easy to handle and alternative renewable energy as a feasible solution for the upcoming crisis of energy shortage.Microalgae are unicellular entities the can only depend...Many recent studies are concerned with low cost,easy to handle and alternative renewable energy as a feasible solution for the upcoming crisis of energy shortage.Microalgae are unicellular entities the can only depend on CO_(2),water and solar power to cover their nutritional needs.The current study is concerned with using algal cells in a polymeric hydrogel,as a cheap source of energy for electricity generation.Chlorella vulgaris has been proved to be a promising algal species for electricity generation,as compared with Micractinium reisseri.PVA hydrogel has been used for the immobilization of both algal species in order to protect them from the adverse surrounding conditions in addition to its ability to slowly release the required water molecules according to needs.Under these conditions,C.vulgaris showed the ability to generate 60 mV compared with 15 mV generated by M.reisseri.Scanning electron micrographs showed nano-threads that bind the C.vulgaris cells to each other,indicating the ability of algae to create nanowires that facilitate the electron transfer among algal cells and from cells to the nearest electrode.However,we would expect an increase in the produced potential with simultaneous amendment of environmentally polluted water,such as sewage or waste water.Both of FTIR and raman spectroscopy proved the presence of the characteristic groups of PVA hydrogel and proved the proper integration of the algal cells inside the hydrogel cavities.展开更多
Heat generated by electric current in a quantum dot device contacting a phonon bath is studied using the non- equilibrium Green function technique. Spin-polarized current is generated owing to the Zeeman splitting of ...Heat generated by electric current in a quantum dot device contacting a phonon bath is studied using the non- equilibrium Green function technique. Spin-polarized current is generated owing to the Zeeman splitting of the dot level. The current's strength and the spin polarization are further manipulated by changing the frequency of an applied photon field and the ferromagnetism on the leads. We find that the associated heat by this spin- polarized current emerges even if the bias voltage is smaller than the phonon energy quanta and obvious negative differential of the heat generation develops when the photon frequency exceeds that of the phonon. It is also found that both the strength and the resonant peaks' position of the heat generation can be tuned by changing the value and the arrangement configurations of the magnetic moments of the two leads, and then provides an effective method to generate large spin-polarized current with weak heat. Such a result may be useful in designing low energy consumption spintronic devices.展开更多
According to the US Energy Information Administration, about 4118 billion kilowatt-hours (kWh) electricity was generated at large-scale generation facilities in 2019. About 63% of this was from fossil fuels, e.g., coa...According to the US Energy Information Administration, about 4118 billion kilowatt-hours (kWh) electricity was generated at large-scale generation facilities in 2019. About 63% of this was from fossil fuels, e.g., coal, natural gas, petroleum, and other gases. Environmental exposure to particulates, sulfur dioxide, nitrogen oxides, mercury, arsenic, radioactive fly ash, and other pollutants are extremely detrimental to the human cardiovascular, respiratory, and nervous systems. Such exposure increases the risk of lung cancer, stroke, heart disease, chronic respiratory diseases, respiratory infections, and other illnesses. In light of the challenges associated with renewables providing large quantities of base load power, as well as other factors, the benefits offered by nuclear power should be reexamined by policy makers to move the country towards a more ecological and ethical method of electric power production. This paper offers a concise analysis of many of the salient issues, comparing electricity generation from coal plants and light water nuclear reactors.展开更多
The study takes motivation from provincial and national issues regarding waste management and electricity production in Canada.Most sources include previous research relating pyrolysis’applications in different parts...The study takes motivation from provincial and national issues regarding waste management and electricity production in Canada.Most sources include previous research relating pyrolysis’applications in different parts of the world.The research included 2-3 weeks of extensive reading of previous research and understanding the theory relating polymers.Research has been conducted to understand why polymers have the properties that they do.Thorough analysis about the chemical reactions relating polymers on a small and large scale is conducted.More research was conducted relating to socio-economic conditions of Canada and Singapore for application purposes.Findings of the research point to an addition the Canadian government can uphold i.e.,build more plastic pyrolysis plants in different regions for waste management.Our findings also suggest that the short term spending on such projects can yield long term benefits.This research is important because it will solve Canada’s non-recyclable waste problems,it will help bring in a new source of electricity and it will help increase the budget of municipalities in the long run.This paper is not just informative on polymers,but also will help readers understand issues regarding Canadian waste management and propose possible solutions.展开更多
In the first half of 1996, electricity generation in China had steadily, grown with a total electricity generation accumulated to 508.3 TWh, it was 47.5% of the planned figure in the year, and 8.3% higher than the sam...In the first half of 1996, electricity generation in China had steadily, grown with a total electricity generation accumulated to 508.3 TWh, it was 47.5% of the planned figure in the year, and 8.3% higher than the same period of previous year. Among the generation, hydro-electricity amounted to 78.2 TWh, 5.39% lower than previous year, thermal electricity amounted to 424.55 TWh, 10.87% higher than previous year, nuclear electricity amounted to 5.52 TWh, 47.15% higher than previous year. The steady growth of thermal electricity might attribute to newly installed generating capacity in one hand, and the展开更多
Conventional chemical oxidation of aldehydes such as furfural to corresponding acids by molecular oxygen usually needs high pressure to increase the solubility of oxygen in aqueous phase,while electrochemical oxidatio...Conventional chemical oxidation of aldehydes such as furfural to corresponding acids by molecular oxygen usually needs high pressure to increase the solubility of oxygen in aqueous phase,while electrochemical oxidation needs input of external electric energy.Herein,we developed a liquid flow fuel cell(LFFC)system to achieve oxidation of furfural in anode for furoic acid production with co-production of hydrogen gas.By controlling the electron transfer in cathode for reduction of oxygen,efficient generation of electricity or production of H_(2)O_(2)were achieved.Metal oxides especially Ag_(2)O have been screened as the efficient catalyst to promote the oxidation of aldehydes,while liquid redox couples were used for promoting the kinetics of oxygen reduction.A novel alkaline-acidic asymmetric design was also used for anolyte and catholyte,respectively,to promote the efficiency of electron transfer.Such an LFFC system achieves efficient conversion of chemical energy of aldehyde oxidation to electric energy and makes full use the transferred electrons for high-value added products without input of external energy.With(VO_(2))_(2)SO_(4)as the electron carrier in catholyte for four-electron reduction of oxygen,the peak output power density(Pmax)at room temperature reached 261 mW/cm^(2)with furoic acid and H_(2)yields of 90%and 0.10 mol/mol furfural,respectively.With anthraquinone-2-sulfonate(AQS)as the cathodic electron carrier,Pmaxof 60 mW/cm^(2)and furoic acid,H_(2)and H_(2)O_(2)yields of 0.88,0.15 and 0.41 mol/mol furfural were achieved,respectively.A new reaction mechanism on furfural oxidation on Ag_(2)O anode was proposed,referring to one-electron and two-electron reaction pathways depending on the fate of adsorbed hydrogen atom transferred from furfural aldehyde group.展开更多
National development requires adequate electricity supply of which all activities--generation, transmission and distribution leading to it are capital-intensive in terms of funds, natural and human resources. The dwin...National development requires adequate electricity supply of which all activities--generation, transmission and distribution leading to it are capital-intensive in terms of funds, natural and human resources. The dwindling power sector government funding coupled with low private sector participation and weak level political will require creative and innovative solutions in addressing the power supply problem in Nigeria. Hence, this paper seeks to examine power sector privatization as a viable option.展开更多
The importance and the necessary of researches on renewable energy have become a hot topic in recent years due to climate change and global warming. In addition, the fossil fuel reserves is facing rapid depletion on t...The importance and the necessary of researches on renewable energy have become a hot topic in recent years due to climate change and global warming. In addition, the fossil fuel reserves is facing rapid depletion on the earth. Currently, most researches have concentrated on producing biogas for heating, lighting, drying, cooking but lack in researching on electricity production because the possibility of producing biogas at households are common at small scale. Studying on alternative energy sources to replace traditional fuel for electric power generation brings new chances and great opportunities for development. This study presents an assessment electric power generation via water hyacinths and agricultural waste. In this paper, the evaluation electric power is generated by operating internal combustion engines which use biogas fuel to replace traditional fuel (diesel, gasoline). The results of the studies were demonstrated by experiments on the renewable energy production system at Hoa An Biotechnology Research and Experimental Center of Cantho University.展开更多
Turkey is in good condition in terms of solar energy because of the fact that, Turkey falls in between 40 degree North and 40 degree South latitude which is called as "sunbelt". The potential of producing electric f...Turkey is in good condition in terms of solar energy because of the fact that, Turkey falls in between 40 degree North and 40 degree South latitude which is called as "sunbelt". The potential of producing electric from solar energy is very high in terms of potential of Turkey. According to a report by the Turkish Energy Ministry, Turkey's average rate of electrical energy consumption increased to levels 5.59 in the last 11 years. Moreover, solar energy may be primary energy source on account of the fact that, Turkey is in the position of a country importing energy and has signed Kyoto Protocol of carbon emission to atmosphere. The aim of the article is to give information about acts need to be done and present policies of Turkey on producing electric from solar energy. Beyond question, the policies of the government will determine the direction of developmental momentum of energy industry in Turkey as whole world will. The present support to production of electric from solar energy is not enough, so it is needed to give much higher level of support to this sector. In this context, it is essential to enhance guarantied tariff cost and the power of unlicensed electric production.展开更多
In tenth Malaysian Plan, Malaysian government had voluntarily targeted to reduce its emission intensity to 40% compared to the 2005 level by the year 2020 and recently re-pledge to reduce more and declared for 45% emi...In tenth Malaysian Plan, Malaysian government had voluntarily targeted to reduce its emission intensity to 40% compared to the 2005 level by the year 2020 and recently re-pledge to reduce more and declared for 45% emission reduction by 2030. Looking at the country's high dependency to the fossil fuel generation it is a high concern on the increasing CO2 emission in Malaysia. This paper intends to analyze the current status of CO2 emissions from electricity generation in Malaysia during the period 1992-2014 by applying the LMDI (logarithmic mean Divisia index) technique to find the nature of the factors influencing the changes in CO2 emissions. The decomposition analysis observed three biggest factors contributed to the reduction of CO2 emission throughout the period which is thermal generation effect, electricity generation efficiency effect and electricity structure effect.展开更多
We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to ge...We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to generate electricity in a fuel cell mode and then reused to store electricity in an electrolysis mode. The state of charge (H2 frication in cathode) effectively enhances the open circuit voltages (OCVs) while the system gas pressure in electrodes also increases the OCVs. On the other hand, a higher system pressure facilitates the species diffusion in electrodes that therefore accordingly improve electrode polarizations. With the aid of recycled system heat, the roundtrip efficiency reaches as high as 92% for the repeated electricity storage and generation.展开更多
基金This work was supported by the National Key Research and Development Program of China(2022YFB4101600,2022YFB4101605)the National Natural Science Foundation of China(52372175,51972040)+1 种基金the Innovation and Technology Fund of Dalian(N2023JJ12GX020,2022JJ12GX023)Liaoning Normal University 2022 Outstanding Research Achievements Cultivation Fund(No.22GDL002).The authors also acknowledge the assistance of the DUT Instrumental Analysis Center.
文摘Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity gradient(TSG)between water-air interface and adjacent seawater,affording opportunities of harnessing electricity.However,the efficiency of conventional SIWE technologies is limited by significant challenges,including salt passivation to hinder evaporation and difficulties in exploiting overlapped TSG simultaneously.Herein,we report self-sustaining hybrid SIWE for not only sustainable seawater desalination but also efficient electricity generation from TSG.It enables spontaneous circulation of salt flux upon seawater evaporation,inducing a self-cleaning evaporative interface without salt passivation for stable steam generation.Meanwhile,this design enables spatial separation and simultaneous utilization of overlapped TSG to enhance electricity generation.These benefits render a remarkable efficiency of90.8%in solar energy utilization,manifesting in co-generation of solar steam at a fast rate of 2.01 kg m^(-2)-h^(-1)and electricity power of 1.91 W m^(-2)with high voltage.Directly interfacing the hybrid SIWE with seawater electrolyzer constructs a system for water-electricity-hydrogen co-generation without external electricity supply.It produces hydrogen at a rapid rate of 1.29 L h^(-1)m^(-2)and freshwater with 22 times lower Na+concentration than the World Health Organization(WHO)threshold.
基金The Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China (No.51109038)
文摘A membrane-less constructed wetland microbial fuel cell (CW-MFC) is constructed and operated under continuous flow with a hydraulic retention time (HRT) of 2 d. Fed with glucose, the CW-MFC generates a stable current density of over 2 A/m3 with a resistor of 1 kΩ and has a chemical oxygen demand (COD) removal efficiency of more than 90% after the startup of 2 to 3 d. A series of systems with the electrode spacings of 10, 20, 30 and 40 cm are compared. It is found that the container with the electrode spacing of 20 cm gains the highest voltage of 560 mV, the highest power density of 0. 149 W/m 3, and the highest Coulombic efficiency of 0.313%. It also has the highest COD removal efficiency of 94. 9%. In addition, the dissolved oxygen (DO) concentrations are observed as the lowest level in the middle of all the CW-MFC reactors. The results show that the more COD is removed, the greater power is generated, and the relatively higher Coulombic efficiency will be achieved. The present study indicates that the CW-MFC process can be used as a cost-effective and environmentally friendly wastewater treatment with simultaneous power generation.
基金Project (No. 056846) supported by the National Development and Reform Commission of China (NDRC)
文摘Electricity consumption increases rapidly with the rapid development of China. The environmental damage costs of electricity generation are very important for both policy analysis and the proper management of the environment. A method was developed in this work to estimate gross environmental damage costs according to emission inventory and environmental cost factors, and to extend the costs from provincial to national level with population density. In this paper, sulfur dioxide (SO2), nitrogen oxides (NOx), particulate matter less than 10 μm in diameter (PM10), and carbon dioxide (CO2) from fossil fired power plants over 6000 kW were selected as index pollutants to quantify the environmental costs of damages on human health and global warming. With the new developed method, environmental damage costs, caused by 3 types of fired power plants in 30 provinces and 6 economic sectors during the years 2000 to 2003, were evaluated and analyzed. It can be seen that the calculated total national environmental damage costs of electricity have rapidly increased from 94930.87×106 USD in 2000 to about 141041.39×106 USD in 2003, with an average annual growth rate of 14.11%. Environmental damage costs of SO2, NOx, PM10, and CO2 are 69475.69×106, 30079.29×106, 28931.84×106, and 12554.57×106 USD and account for 49.26%, 21.33%, 20.51%, and 8.90% of total environmental costs in fossil electricity generation, respectively. With regard to regional distribution, external costs caused by fossil electricity generation are mainly concentrated in the more populated and industrialized areas of China, i.e., the Eastern Central and Southeastern areas.
文摘It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to induction motor to drive cylinder loads. During upstroke operation, the variable pump/motor (P/M) driven by both electric motor and the second (P/M) works as hydraulic pump and output flow to the cylinders which drive the load. During load deceleration, the cylinders work as pump while the operation of the two secondary units are reversed, the variable (P/M) works as a motor generating a torque with the electric motor to drive the other (P/M) which transforms mechanical energy to hydraulic energy that is saved in the accumulator. When the energy storage capacity of the accumulator is attained as the operation continues, energy storage to the accumulator is thermostatically stopped while the induction motor begins to work as a generator and generates electricity that is stored in the power distribution unit. Simulations were performed using a limited PT2 Block, i.e. 2nd-order transfer function with limitation of slope and signal output to determine suitable velocity of the cylinder which will match high performance and system stability. A mathematical model suited to the simulation of the hydraulic accumulator both in an open-or close-loop system is presented. The quest for improvement of lower energy capacity storage, saving and re-utilization of the conventional accumulator resulting in the short cycle time usage of hydraulic accumulators both in domestic and industrial purposes necessitates this research. The outcome of the research appears to be very efficient for generating fluctuation free electricity, power quality and reliability, energy saving/reutilization and system noise reduction.
基金funding this work through General Research Project under grant number(R.G.P.1/26/38).
文摘Many recent studies are concerned with low cost,easy to handle and alternative renewable energy as a feasible solution for the upcoming crisis of energy shortage.Microalgae are unicellular entities the can only depend on CO_(2),water and solar power to cover their nutritional needs.The current study is concerned with using algal cells in a polymeric hydrogel,as a cheap source of energy for electricity generation.Chlorella vulgaris has been proved to be a promising algal species for electricity generation,as compared with Micractinium reisseri.PVA hydrogel has been used for the immobilization of both algal species in order to protect them from the adverse surrounding conditions in addition to its ability to slowly release the required water molecules according to needs.Under these conditions,C.vulgaris showed the ability to generate 60 mV compared with 15 mV generated by M.reisseri.Scanning electron micrographs showed nano-threads that bind the C.vulgaris cells to each other,indicating the ability of algae to create nanowires that facilitate the electron transfer among algal cells and from cells to the nearest electrode.However,we would expect an increase in the produced potential with simultaneous amendment of environmentally polluted water,such as sewage or waste water.Both of FTIR and raman spectroscopy proved the presence of the characteristic groups of PVA hydrogel and proved the proper integration of the algal cells inside the hydrogel cavities.
基金Supported by the National Natural Science Foundation of China under Grant No 61274101
文摘Heat generated by electric current in a quantum dot device contacting a phonon bath is studied using the non- equilibrium Green function technique. Spin-polarized current is generated owing to the Zeeman splitting of the dot level. The current's strength and the spin polarization are further manipulated by changing the frequency of an applied photon field and the ferromagnetism on the leads. We find that the associated heat by this spin- polarized current emerges even if the bias voltage is smaller than the phonon energy quanta and obvious negative differential of the heat generation develops when the photon frequency exceeds that of the phonon. It is also found that both the strength and the resonant peaks' position of the heat generation can be tuned by changing the value and the arrangement configurations of the magnetic moments of the two leads, and then provides an effective method to generate large spin-polarized current with weak heat. Such a result may be useful in designing low energy consumption spintronic devices.
文摘According to the US Energy Information Administration, about 4118 billion kilowatt-hours (kWh) electricity was generated at large-scale generation facilities in 2019. About 63% of this was from fossil fuels, e.g., coal, natural gas, petroleum, and other gases. Environmental exposure to particulates, sulfur dioxide, nitrogen oxides, mercury, arsenic, radioactive fly ash, and other pollutants are extremely detrimental to the human cardiovascular, respiratory, and nervous systems. Such exposure increases the risk of lung cancer, stroke, heart disease, chronic respiratory diseases, respiratory infections, and other illnesses. In light of the challenges associated with renewables providing large quantities of base load power, as well as other factors, the benefits offered by nuclear power should be reexamined by policy makers to move the country towards a more ecological and ethical method of electric power production. This paper offers a concise analysis of many of the salient issues, comparing electricity generation from coal plants and light water nuclear reactors.
文摘The study takes motivation from provincial and national issues regarding waste management and electricity production in Canada.Most sources include previous research relating pyrolysis’applications in different parts of the world.The research included 2-3 weeks of extensive reading of previous research and understanding the theory relating polymers.Research has been conducted to understand why polymers have the properties that they do.Thorough analysis about the chemical reactions relating polymers on a small and large scale is conducted.More research was conducted relating to socio-economic conditions of Canada and Singapore for application purposes.Findings of the research point to an addition the Canadian government can uphold i.e.,build more plastic pyrolysis plants in different regions for waste management.Our findings also suggest that the short term spending on such projects can yield long term benefits.This research is important because it will solve Canada’s non-recyclable waste problems,it will help bring in a new source of electricity and it will help increase the budget of municipalities in the long run.This paper is not just informative on polymers,but also will help readers understand issues regarding Canadian waste management and propose possible solutions.
文摘In the first half of 1996, electricity generation in China had steadily, grown with a total electricity generation accumulated to 508.3 TWh, it was 47.5% of the planned figure in the year, and 8.3% higher than the same period of previous year. Among the generation, hydro-electricity amounted to 78.2 TWh, 5.39% lower than previous year, thermal electricity amounted to 424.55 TWh, 10.87% higher than previous year, nuclear electricity amounted to 5.52 TWh, 47.15% higher than previous year. The steady growth of thermal electricity might attribute to newly installed generating capacity in one hand, and the
基金supported by the National Natural Science Foundation of China(No.2187817622178197)。
文摘Conventional chemical oxidation of aldehydes such as furfural to corresponding acids by molecular oxygen usually needs high pressure to increase the solubility of oxygen in aqueous phase,while electrochemical oxidation needs input of external electric energy.Herein,we developed a liquid flow fuel cell(LFFC)system to achieve oxidation of furfural in anode for furoic acid production with co-production of hydrogen gas.By controlling the electron transfer in cathode for reduction of oxygen,efficient generation of electricity or production of H_(2)O_(2)were achieved.Metal oxides especially Ag_(2)O have been screened as the efficient catalyst to promote the oxidation of aldehydes,while liquid redox couples were used for promoting the kinetics of oxygen reduction.A novel alkaline-acidic asymmetric design was also used for anolyte and catholyte,respectively,to promote the efficiency of electron transfer.Such an LFFC system achieves efficient conversion of chemical energy of aldehyde oxidation to electric energy and makes full use the transferred electrons for high-value added products without input of external energy.With(VO_(2))_(2)SO_(4)as the electron carrier in catholyte for four-electron reduction of oxygen,the peak output power density(Pmax)at room temperature reached 261 mW/cm^(2)with furoic acid and H_(2)yields of 90%and 0.10 mol/mol furfural,respectively.With anthraquinone-2-sulfonate(AQS)as the cathodic electron carrier,Pmaxof 60 mW/cm^(2)and furoic acid,H_(2)and H_(2)O_(2)yields of 0.88,0.15 and 0.41 mol/mol furfural were achieved,respectively.A new reaction mechanism on furfural oxidation on Ag_(2)O anode was proposed,referring to one-electron and two-electron reaction pathways depending on the fate of adsorbed hydrogen atom transferred from furfural aldehyde group.
文摘National development requires adequate electricity supply of which all activities--generation, transmission and distribution leading to it are capital-intensive in terms of funds, natural and human resources. The dwindling power sector government funding coupled with low private sector participation and weak level political will require creative and innovative solutions in addressing the power supply problem in Nigeria. Hence, this paper seeks to examine power sector privatization as a viable option.
文摘The importance and the necessary of researches on renewable energy have become a hot topic in recent years due to climate change and global warming. In addition, the fossil fuel reserves is facing rapid depletion on the earth. Currently, most researches have concentrated on producing biogas for heating, lighting, drying, cooking but lack in researching on electricity production because the possibility of producing biogas at households are common at small scale. Studying on alternative energy sources to replace traditional fuel for electric power generation brings new chances and great opportunities for development. This study presents an assessment electric power generation via water hyacinths and agricultural waste. In this paper, the evaluation electric power is generated by operating internal combustion engines which use biogas fuel to replace traditional fuel (diesel, gasoline). The results of the studies were demonstrated by experiments on the renewable energy production system at Hoa An Biotechnology Research and Experimental Center of Cantho University.
文摘Turkey is in good condition in terms of solar energy because of the fact that, Turkey falls in between 40 degree North and 40 degree South latitude which is called as "sunbelt". The potential of producing electric from solar energy is very high in terms of potential of Turkey. According to a report by the Turkish Energy Ministry, Turkey's average rate of electrical energy consumption increased to levels 5.59 in the last 11 years. Moreover, solar energy may be primary energy source on account of the fact that, Turkey is in the position of a country importing energy and has signed Kyoto Protocol of carbon emission to atmosphere. The aim of the article is to give information about acts need to be done and present policies of Turkey on producing electric from solar energy. Beyond question, the policies of the government will determine the direction of developmental momentum of energy industry in Turkey as whole world will. The present support to production of electric from solar energy is not enough, so it is needed to give much higher level of support to this sector. In this context, it is essential to enhance guarantied tariff cost and the power of unlicensed electric production.
文摘In tenth Malaysian Plan, Malaysian government had voluntarily targeted to reduce its emission intensity to 40% compared to the 2005 level by the year 2020 and recently re-pledge to reduce more and declared for 45% emission reduction by 2030. Looking at the country's high dependency to the fossil fuel generation it is a high concern on the increasing CO2 emission in Malaysia. This paper intends to analyze the current status of CO2 emissions from electricity generation in Malaysia during the period 1992-2014 by applying the LMDI (logarithmic mean Divisia index) technique to find the nature of the factors influencing the changes in CO2 emissions. The decomposition analysis observed three biggest factors contributed to the reduction of CO2 emission throughout the period which is thermal generation effect, electricity generation efficiency effect and electricity structure effect.
文摘We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to generate electricity in a fuel cell mode and then reused to store electricity in an electrolysis mode. The state of charge (H2 frication in cathode) effectively enhances the open circuit voltages (OCVs) while the system gas pressure in electrodes also increases the OCVs. On the other hand, a higher system pressure facilitates the species diffusion in electrodes that therefore accordingly improve electrode polarizations. With the aid of recycled system heat, the roundtrip efficiency reaches as high as 92% for the repeated electricity storage and generation.