The high grade non-oriented electrical steel sheets containing 3.0%Si were manufacturing processed using different cutting techniques, then they were stress relief annealed(SRA), the profiles and textures of the cut...The high grade non-oriented electrical steel sheets containing 3.0%Si were manufacturing processed using different cutting techniques, then they were stress relief annealed(SRA), the profiles and textures of the cutting edges were compared before and after annealing, and the magnetic properties of these specimens were tested and compared. The experimental results show that the iron loss of the specimen by water jet cutting is the lowest, but the magnetic induction under the low magnetic field is the highest, the iron loss of the specimen by laser cutting is the highest, but the magnetic induction under the low magnetic field is the lowest. It is necessary to adopt suitable production conditions and minimize the deterioration involved, and the magnetic property can be recovered by SRA effectively.展开更多
For a long time now, humanity has been facing the phenomenon known as “climate change”, a major challenge of which we must be aware of what we are doing so as not to affect ourselves or future generations. It is evi...For a long time now, humanity has been facing the phenomenon known as “climate change”, a major challenge of which we must be aware of what we are doing so as not to affect ourselves or future generations. It is evident that, if what is sought is a sustainable energy future, the current energy model implemented in certain countries and regions of the world is not the most adequate and makes the achievement of this goal unfeasible. This situation threatens to greatly alter our ecosystems and our social structures, and one of the key actions to mitigate it is, undeniably, the generalization of the use of renewable energy sources;and specifically, the non-conventional sources, referring to solar and wind, technologies that comply with the principle of energy complementarity;however, there are other possible solutions such as the deployment of programs that consider efficient cooking technologies;involving with it is everything related to energy security and equity, as well as environmental protection. In this article, as a technology to be considered to reduce and mitigate the Greenhouse Gases (GHG) emissions, an analysis of the efficiency assessment of electric induction cooktops and the determination of their potential energy savings are carried out. The impact of these results is taken into consideration and a series of conclusions and recommendations for improvement are issued.展开更多
The performance of a 3-phase 6-pole 400 W inverter-drive induction motor was investigated using a variety of non-oriented electrical steels for stator core at PWM inverter fundamental wave frequencies of 30 to 300 Hz....The performance of a 3-phase 6-pole 400 W inverter-drive induction motor was investigated using a variety of non-oriented electrical steels for stator core at PWM inverter fundamental wave frequencies of 30 to 300 Hz. There existed an optimum Si content of the material depending on the tooth flux density. Both reduction of material thickness and stress-relief annealing of the stator core improved the motor efficiency. The influence of Si content on the efficiency was small at lower PWM frequencies, while at higher frequencies the motor efficiency increased with increasing Si content. The Cu loss WC increased and the Fe loss Wi counteractiveiy decreasedwith increasing Si content at lower frequencies; while at higher frequencies Wi had dominant effect on the efficiency. Newly developed materials RMA, having lower Fe losses after stress-relief annealing and higher flux densities with lower Si contents, showed motor efficiencies superior to conventional J1S grade materials with comparable Fe losses.展开更多
基金Funded by the High Technology Research and Development Program of China(2011AA11A238)
文摘The high grade non-oriented electrical steel sheets containing 3.0%Si were manufacturing processed using different cutting techniques, then they were stress relief annealed(SRA), the profiles and textures of the cutting edges were compared before and after annealing, and the magnetic properties of these specimens were tested and compared. The experimental results show that the iron loss of the specimen by water jet cutting is the lowest, but the magnetic induction under the low magnetic field is the highest, the iron loss of the specimen by laser cutting is the highest, but the magnetic induction under the low magnetic field is the lowest. It is necessary to adopt suitable production conditions and minimize the deterioration involved, and the magnetic property can be recovered by SRA effectively.
文摘For a long time now, humanity has been facing the phenomenon known as “climate change”, a major challenge of which we must be aware of what we are doing so as not to affect ourselves or future generations. It is evident that, if what is sought is a sustainable energy future, the current energy model implemented in certain countries and regions of the world is not the most adequate and makes the achievement of this goal unfeasible. This situation threatens to greatly alter our ecosystems and our social structures, and one of the key actions to mitigate it is, undeniably, the generalization of the use of renewable energy sources;and specifically, the non-conventional sources, referring to solar and wind, technologies that comply with the principle of energy complementarity;however, there are other possible solutions such as the deployment of programs that consider efficient cooking technologies;involving with it is everything related to energy security and equity, as well as environmental protection. In this article, as a technology to be considered to reduce and mitigate the Greenhouse Gases (GHG) emissions, an analysis of the efficiency assessment of electric induction cooktops and the determination of their potential energy savings are carried out. The impact of these results is taken into consideration and a series of conclusions and recommendations for improvement are issued.
文摘The performance of a 3-phase 6-pole 400 W inverter-drive induction motor was investigated using a variety of non-oriented electrical steels for stator core at PWM inverter fundamental wave frequencies of 30 to 300 Hz. There existed an optimum Si content of the material depending on the tooth flux density. Both reduction of material thickness and stress-relief annealing of the stator core improved the motor efficiency. The influence of Si content on the efficiency was small at lower PWM frequencies, while at higher frequencies the motor efficiency increased with increasing Si content. The Cu loss WC increased and the Fe loss Wi counteractiveiy decreasedwith increasing Si content at lower frequencies; while at higher frequencies Wi had dominant effect on the efficiency. Newly developed materials RMA, having lower Fe losses after stress-relief annealing and higher flux densities with lower Si contents, showed motor efficiencies superior to conventional J1S grade materials with comparable Fe losses.