Based on the nanostructured surface model,where conical nanoparticle arrays grow out symmetrically from a plane metal substrate,a theoretical model of the local electric potential near nanocones is built when a unifor...Based on the nanostructured surface model,where conical nanoparticle arrays grow out symmetrically from a plane metal substrate,a theoretical model of the local electric potential near nanocones is built when a uniform external electric field is applied.In terms of this model,the electric potential distribution near the nanocone arrays is obtained and given by a curved surface using a numerical computation method.The computational results show that the electric potential distribution near the nanocone arrays exhibit an obvious geometrical symmetry.These results could serve as a basis for explaining many abnormal phenomena,such as the abnormal infrared effects(AIREs) which are found on nanostructured metal surfaces,as well as a reference for investigating the applications of nanomaterials,such as nanoelectrodes and nanosensors.展开更多
Aluminum production is a high energy consumption process so that maintaining fundamental compositions in balance and optimal conditions are essential.The molten electrolyte and melted aluminum are primary materials an...Aluminum production is a high energy consumption process so that maintaining fundamental compositions in balance and optimal conditions are essential.The molten electrolyte and melted aluminum are primary materials and their boundary needs to be monitored from time to time.An automatic measurement technic is presented in the paper to substitute for the traditional manual measurement work that is dull,poor efficiency and dangerous for operators.The boundary forming mechanism is analyzed,the vertical profile of electric potential is simulated,an automatic instrument is developed to sense the potential distribution,and a strategy is provided to identify the boundary according to the potential curves.Finally,some practical results are compared with manual measurements,which shows good consistency.展开更多
It is the key element in the integrated capillary electrophoresis chip separation to push a certain liquid sample into the separation channel.The electrokinetic injection system model was set up;the theory and the rul...It is the key element in the integrated capillary electrophoresis chip separation to push a certain liquid sample into the separation channel.The electrokinetic injection system model was set up;the theory and the rule of the liquid flow were studied.The numerical simulation describing the potential,velocity vector and the stream distribution in the micro channel is presented.According to these simulation results,the pushing sample injection experiments were designed and the experimental results agree well with the simulation results.展开更多
基金Project supported by the Natural Science Foundation of Fujian Province,China (Grant Nos. 2010J01210,B509043A,and2011J05006)
文摘Based on the nanostructured surface model,where conical nanoparticle arrays grow out symmetrically from a plane metal substrate,a theoretical model of the local electric potential near nanocones is built when a uniform external electric field is applied.In terms of this model,the electric potential distribution near the nanocone arrays is obtained and given by a curved surface using a numerical computation method.The computational results show that the electric potential distribution near the nanocone arrays exhibit an obvious geometrical symmetry.These results could serve as a basis for explaining many abnormal phenomena,such as the abnormal infrared effects(AIREs) which are found on nanostructured metal surfaces,as well as a reference for investigating the applications of nanomaterials,such as nanoelectrodes and nanosensors.
文摘Aluminum production is a high energy consumption process so that maintaining fundamental compositions in balance and optimal conditions are essential.The molten electrolyte and melted aluminum are primary materials and their boundary needs to be monitored from time to time.An automatic measurement technic is presented in the paper to substitute for the traditional manual measurement work that is dull,poor efficiency and dangerous for operators.The boundary forming mechanism is analyzed,the vertical profile of electric potential is simulated,an automatic instrument is developed to sense the potential distribution,and a strategy is provided to identify the boundary according to the potential curves.Finally,some practical results are compared with manual measurements,which shows good consistency.
文摘It is the key element in the integrated capillary electrophoresis chip separation to push a certain liquid sample into the separation channel.The electrokinetic injection system model was set up;the theory and the rule of the liquid flow were studied.The numerical simulation describing the potential,velocity vector and the stream distribution in the micro channel is presented.According to these simulation results,the pushing sample injection experiments were designed and the experimental results agree well with the simulation results.