In Brazil and various regions globally, the initiation of landslides is frequently associated with rainfall;yet the spatial arrangement of geological structures and stratification considerably influences landslide occ...In Brazil and various regions globally, the initiation of landslides is frequently associated with rainfall;yet the spatial arrangement of geological structures and stratification considerably influences landslide occurrences. The multifaceted nature of these influences makes the surveillance of mass movements a highly intricate task, requiring an understanding of numerous interdependent variables. Recent years have seen an emergence in scholarly research aimed at integrating geophysical and geotechnical methodologies. The conjoint examination of geophysical and geotechnical data offers an enhanced perspective into subsurface structures. Within this work, a methodology is proposed for the synchronous analysis of electrical resistivity geophysical data and geotechnical data, specifically those extracted from the Light Dynamic Penetrometer (DPL) and Standard Penetration Test (SPT). This study involved a linear fitting process to correlate resistivity with N10/SPT N-values from DPL/SPT soundings, culminating in a 2D profile of N10/SPT N-values predicated on electrical profiles. The findings of this research furnish invaluable insights into slope stability by allowing for a two-dimensional representation of penetration resistance properties. Through the synthesis of geophysical and geotechnical data, this project aims to augment the comprehension of subsurface conditions, with potential implications for refining landslide risk evaluations. This endeavor offers insight into the formulation of more effective and precise slope management protocols and disaster prevention strategies.展开更多
This research aims to address the pressing issue of failed and abandoned wells, causing water scarcity in Lapan Gwari Community, through an improved groundwater exploration approach integrating remote sensing and elec...This research aims to address the pressing issue of failed and abandoned wells, causing water scarcity in Lapan Gwari Community, through an improved groundwater exploration approach integrating remote sensing and electrical resistivity soundings. The study area, located within the Zungeru Sheet 163 SE, spans Latitudes 9°30'00"N to 9°32'00"N and Longitudes 6°28'00" to 6°30'00". The surface geologic, structural, and hydrogeological mapping provided essential insights into the hydrogeological framework. Leveraging SRTM DEM data, thematic maps were created for geomorphology, slope, land use, lineament density, and drainage density. These datasets were then integrated using ArcGIS to develop a preliminary groundwater potential zones map. Further investigations were conducted using Vertical Electrical Sounding (VES) and Electrical Resistivity Imaging (2D VES) surveys at targeted locations identified by the preliminary map. Results show that the study area predominantly consists of crystalline rocks of the Nigerian Basement Complex, primarily comprising schist and granite with minor occurrences of quartz vein intrusions. Surface joint directions indicated a dominant NE-SW trend. The VES data revealed three to four geoelectric layers, encompassing the topsoil (1 to 5 m depth, resistivity: 100 Ωm to 300 Ωm), the weathered layer (in the 3-layer system) or fractured layer (in the 4-layer system), and the fresh basement rock characterized by infinite resistivity. The shallow weathered layers (3 to 30 m thickness) are believed to hold aquiferous potential. Hydrogeological interpretation, facilitated by 2D resistivity models, delineated water horizons trapped within clayey sand and weathered/fractured formations. Notably, the aquifer resistivity range was found to be between 3 - 35 m and 100 - 300 Ωm, signifying a promising aquifer positioned at depths of 40 to 88 m. This aligns with corroborative static water level measurements. Given this, we recommend drilling depths of a minimum of 80 m to ensure the acquisition of sufficient and sustainable water supplies. The final groundwater potential zones map derived from this study is expected to serve as an invaluable guide for prospective groundwater developers and relevant authorities in formulating effective water resource management plans. By effectively tackling water scarcity challenges in Lapan Gwari Community, this integrated approach demonstrates its potential for application in similar regions facing comparable hydrogeological concerns.展开更多
To minimize the number of solutions in 3D resistivity inversion, an inherent problem in inversion, the amount of data considered have to be large and prior constraints need to be applied. Geological and geophysical da...To minimize the number of solutions in 3D resistivity inversion, an inherent problem in inversion, the amount of data considered have to be large and prior constraints need to be applied. Geological and geophysical data regarding the extent of a geological anomaly are important prior information. We propose the use of shape constraints in 3D electrical resistivity inversion, Three weighted orthogonal vectors (a normal and two tangent vectors) were used to control the resistivity differences at the boundaries of the anomaly. The spatial shape of the anomaly and the constraints on the boundaries of the anomaly are thus established. We incorporated the spatial shape constraints in the objective function of the 3D resistivity inversion and constructed the 3D resistivity inversion equation with spatial shape constraints. Subsequently, we used numerical modeling based on prior spatial shape data to constrain the direction vectors and weights of the 3D resistivity inversion. We established a reasonable range between the direction vectors and weights, and verified the feasibility and effectiveness of using spatial shape prior constraints in reducing excessive structures and the number of solutions. We applied the prior spatially shape-constrained inversion method to locate the aquifer at the Guangzhou subway. The spatial shape constraints were taken from ground penetrating radar data. The inversion results for the location and shape of the aquifer agree well with drilling data, and the number of inversion solutions is significantly reduced.展开更多
The dynamic monitoring of landslides in engineering geology has focused on the correlation among landslide stability,rainwater infiltration,and subsurface hydrogeology.However,the understanding of this complicated cor...The dynamic monitoring of landslides in engineering geology has focused on the correlation among landslide stability,rainwater infiltration,and subsurface hydrogeology.However,the understanding of this complicated correlation is still poor and inadequate.Thus,in this study,we investigated a typical landslide in southwestern China via time-lapse electrical resistivity tomography(TLERT) in November 2013 and August 2014.We studied landslide mechanisms based on the spatiotemporal characteristics of surface water infiltration and flow within the landslide body.Combined with borehole data,inverted resistivity models accurately defined the interface between Quaternary sediments and bedrock.Preferential flow pathways attributed to fracture zones and fissures were also delineated.In addition,we found that surface water permeates through these pathways into the slipping mass and drains away as fissure water in the fractured bedrock,probably causing the weakly weathered layer to gradually soften and erode,eventually leading to a landslide.Clearly,TLERT dynamic monitoring can provide precursory information of critical sliding and can be used in landslide stability analysis and prediction.展开更多
The electrical resistivity characteristics of cement soil and flyash lime soil are investigated in the laboratory and the field. It is shown that the electrical resistivities of the cement soil and flyash lime s...The electrical resistivity characteristics of cement soil and flyash lime soil are investigated in the laboratory and the field. It is shown that the electrical resistivities of the cement soil and flyash lime soil are sensitive to water content, degree of saturation and unconfined strength. The cement soil and flyash lime soil with higher water content, greater degree of saturation, lower unconfined strength has lower electrical resistivity. Electrical resistivity is also correlated with additives. Based on the tests, it is concluded that the electrical resistivity method is available for checking the effectiveness of the soil improvement by the cement soil and flyash lime soil mixing pile in terms of engineering practice.展开更多
Laboratory visual detection on the hydrate accumulation process provides an effective and low-cost method to uncover hydrate accumulation mechanisms in nature.However,the spatial hydrate distribution and its dynamic e...Laboratory visual detection on the hydrate accumulation process provides an effective and low-cost method to uncover hydrate accumulation mechanisms in nature.However,the spatial hydrate distribution and its dynamic evolutionary behaviors are still not fully understood due to the lack of methods and experimental systems.Toward this goal,we built a two-dimensional electrical resistivity tomography(ERT)apparatus capable of measuring spatial and temporal characteristics of hydrate-bearing porous media.Beach sand(0.05–0.85 mm)was used to form artificial methane hydrate-bearing sediment.The experiments were conducted at 1°C under excess water conditions and the ERT data were acquired and analyzed.This study demonstrates the utility of the ERT method for hydrate mapping in laboratory-scale.The results indicate that the average electrical conductivity decreases nonlinearly with the formation of the hydrate.At some special time-intervals,the average conductivity fluctuates within a certain scope.The plane conductivity fields evolve heterogeneously and the local preferential hydrate-forming positions alternate throughout the experimental duration.We speculate that the combination of hydrate formation itself and salt-removal effect plays a dominant role in the spatial and temporal hydrate distribution,as well as geophysical parameters changing behaviors during hydrate accumulation.展开更多
The precipitation behavior and its influence on the electrical resistivity of the Al-0.96Mg2Si alloy during aging were investigated with in-situ resistivity measurement and transmission electron microscopy (TEM). Th...The precipitation behavior and its influence on the electrical resistivity of the Al-0.96Mg2Si alloy during aging were investigated with in-situ resistivity measurement and transmission electron microscopy (TEM). The precipitates of the peak aged alloy include both β" and if, but the amount ratio of β" to β" varies with the aging temperature and time increasing. The precipitates during aging at 175 ℃ are dominated by needle-like β" phases (including pre-β" phase), the size of which increases with the time prolonging, but does not increase substantially after further aging. The evolution of electrical conductivity is directly related to such microstructural evolution. However, the hardness of the alloy stays at the peak value for a long term. When the alloy is aged at 195 ℃, the ratio of β" to β' becomes the main factor to influence relative resistivity (Ap) value. The higher the temperature is, the smaller the ratio is, and the faster the Ap value decreases. Moreover, the hardness peak drops with the decrease of the ratio. With the size and distribution parameters measured from TEM images, a semi-quantitative relationship between precipitates and the electrical resistivity was established.展开更多
Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian ne...Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter αk, which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.展开更多
The improvement of question soils with cement shows great technical, economic and environmental advantages. And interest in introducing electrical resistivity measurement to assess the quality of cement treated soils ...The improvement of question soils with cement shows great technical, economic and environmental advantages. And interest in introducing electrical resistivity measurement to assess the quality of cement treated soils has increased markedly recently due to its economical, non-destructive, and relatively non-invasive advantages. This work aims to quantify the effect of cement content (aw), porosity (nt), and curing time(T) on the electrical resistivity (p) and unconfined compression strength (UCS) of cement treated soil. A series of electrical resistivity tests and UCS tests of cement treated soil specimen after various curing periods were carried out. A modified Archie empirical law was proposed taking into account the effect of cement content and curing period on the electrical resistivity of cement treated soil. The results show that nt/(aw·T) and nt/(aw·T^1/2) ratio are appropriate parameters to assess electrical resistivity and UCS of cement treated soil, respectively. Finally, the relationship between UCS and electrical resistivity was also established.展开更多
The Panxi region is located in the frontal zone of positive squeezing subduction and side squeezing shearing between the Indian plate and the Eurasian plate. The long-period magnetotelluric (LMT) and broadband magne...The Panxi region is located in the frontal zone of positive squeezing subduction and side squeezing shearing between the Indian plate and the Eurasian plate. The long-period magnetotelluric (LMT) and broadband magnetotelluric (MT) techniques are both used to study the deep electrical conductivity structure in this region; magnetic and gravity surveys are also performed along the profile. According to the 2-D resistivity model along the Yanyuan-Yongshan profile, a high- conductivity layer (HCL) exists widely in the crust, and a high-resistivity block (HRB) exists widely in the upper mantle in general, as seen by the fact that a large HCL exists from the western Jinpingshan tectonic zone to the eastern Mabian tectonic zone in the crust, while the HRB found in the Panxi tectonic zone is of abnormally high resistivity in that background compared to both sides of Panxi tectonic zone. In addition, the gravity and magnetic field anomalies are of high value. Combined with geological data, the results indicate that there probably exists basic or ultrabasic rock with a large thickness in the lithosphere in the Panxi axial region, which indicates that fracture activity once occurred in the lithosphere. As a result, we can infer that the high-resistivity zone in the Panxi lithosphere is the eruption channel for Permian Emeishan basalt and the accumulation channel for basic and ultrabasic rock. The seismic sources along the profile are counted according to seismic record data. The results indicate that the most violent earthquake sources are located at the binding site of the HRB and the HCL, where the tectonic activity zone is generally acknowledged to be; however, the earthquakes occurring in the HCL are not so violent, which reflects the fact that the HCL is a plastic layer, and the fracture threshold of a plastic layer is low generally, making high stress difficult to accumulate but easy to release in the layer. As a result, a higher number of smaller earthquakes occurred in the HCL at Daliangshan tectonic zone, and violent earthquakes occurred at the binding site of high- and low-resistivity blocks at the Panxi tectonic zone.展开更多
A non contacting electrical resistivity measurement device was used for measuring the electrical resistivity of cement paste incorporated with retarder.The hydration process was divided into dissolving period,setting...A non contacting electrical resistivity measurement device was used for measuring the electrical resistivity of cement paste incorporated with retarder.The hydration process was divided into dissolving period,setting period,hardening period.With the increase of the retarder,the dissolution time will increase.The setting time happens between minimum point time and inflexion point time based on the electrical resistivity curve.The strength isoline was proposed to predict the strength trend.展开更多
Electrical measurement was employed to investigate the early hydration characteristics of cement pastes with different dosages of superplasticizer in the same W/C ratio. The hyperbolic method was applied to analyze th...Electrical measurement was employed to investigate the early hydration characteristics of cement pastes with different dosages of superplasticizer in the same W/C ratio. The hyperbolic method was applied to analyze the electrical resistivity development. The peak point (Ph) on the hyperbolic curve could be easily read. The time (th) to reach the point Ph had strong relations with the setting time. th was delayed with the increment of the dosage of superplasticizer. The time th was used to plot the relationship between the initial setting time and final setting time. The hyperbolic equation was established to predict the ultimate resistivity. The retardation effect of the superplasticizer was confirmed in the same W/C ratio by setting time and isothermal heat evolution.展开更多
Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was pres...Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was presented,which was able to improve global search ability for resistivity tomography 2-D nonlinear inversion.In the proposed method,Tent equation was applied to obtain automatic parameter settings in DE and the restricted parameter Fcrit was used to enhance the ability of converging to global optimum.An implementation of proposed DE-BPNN was given,the network had one hidden layer with 52 nodes and it was trained on 36 datasets and tested on another 4 synthetic datasets.Two abnormity models were used to verify the feasibility and effectiveness of the proposed method,the results show that the proposed DE-BP algorithm has better performance than BP,conventional DE-BP and other chaotic DE-BP methods in stability and accuracy,and higher imaging quality than least square inversion.展开更多
The electrical resistivity of TiB2/C cathode composite coating at different temperatures was measured with the electrical conductivity test device; the effects of TiB2 content and kinds of carbonaceous fillers as well...The electrical resistivity of TiB2/C cathode composite coating at different temperatures was measured with the electrical conductivity test device; the effects of TiB2 content and kinds of carbonaceous fillers as well as their mean particle size on their electrical resistivities were investigated. The results show that electrical resistivity of the coating decreases with the increase of TiB2 content and the decrease of its mean particle size. When the mass fraction of TiB2 increases from 30% to 60%, the electrical resistivity of the coating at room temperature decreases from 31.2μΩ·m to 23.8μΩ·m. The electrical resistivity of the coating at 960℃ lowers from 76.1μΩ· m to 38.4μΩ·m with the decrease of TiB2 mean particle size from 12μm to 1μm. The kinds of carbonaceous fillers have great influence on the electrical resistivity of TiB2/C composite coating at 960℃, when the graphite, petroleum coke and anthracite are used as fillers, the electrical resistivities of the coating are 20.3μΩ·m, 53.7μΩ·m and 87.2μΩ·m, respectively. For the coating with petroleum coke filler, its electrical resistivity decreases with the increase of the mean particle size of petroleum coke filler. The electrical resistivity at 960℃ decreases from 56.2μΩ·m to 48.2μΩ·m with the mean particle size of petroleum coke increasing from 44μm to 1200μm. However, too big carbonaceous particle size has adverse influence on the abrasion resistance of coating. Its proper mean particle size is 420μm.展开更多
The electrical resistivity of Cu/Ta multilayers deposited by radio-frequency magnetron sputtering on a polyimide substrate was investigated as a function of monolayer thickness. It is found that the resistivity of the...The electrical resistivity of Cu/Ta multilayers deposited by radio-frequency magnetron sputtering on a polyimide substrate was investigated as a function of monolayer thickness. It is found that the resistivity of the multilayer increases with decreasing monolayer thickness from 500 nm to 10 nm. Two significant effects of layer interface scattering and grain boundary scattering were identified to dominate electronic transportation behavior in the Cu/Ta multilayers at different length scales. The electrical resistivity of the multilayer with monolayer thickness ranging from nanometer to submicron scales can be well described by a newly-proposed Fuchs-Sandheimair (F-S) and Mayadas-Shatzkes (M-S) combined model.展开更多
A convenient approach was proposed by which to evaluate and monitor the permeability of a rock fracture by verifying the quantitative correlation between the electrical resistivity and permeability at laboratory scale...A convenient approach was proposed by which to evaluate and monitor the permeability of a rock fracture by verifying the quantitative correlation between the electrical resistivity and permeability at laboratory scale.For this purpose,an electrical resistivity measurement system was applied to the laboratory experiments using artificial cells with the shape of a single rock fracture.Sixty experiments were conducted using rock fractures according to the geometry,aperture sizes,wavelengths,and roughness amplitudes.The overall negative relationship between the normalized electrical resistivity values and the aperture sizes directly linked with the permeability,was well fitted by the power-law function with a large determination coefficient(≈0.86).The effects of wavelength and roughness amplitude of the rock fracture on the electrical resistivity were also analyzed.Results showed that the electrical resistivity was slightly increased with decreasing wavelength and increasing roughness amplitude.An empirical model for evaluating the permeability of a rock fracture was proposed based on the experimental data.In the field,if the electrical resistivity of pore groundwater could be measured in advance,this empirical model could be applied effectively for simple,quick monitoring of the fracture permeability.Although uncertainty may be associated with the permeability estimation due to the limited control parameters considered in this research,this electrical resistivity approach could be helpful to monitor the rock permeability in deep underground facilities such as those used for radioactive waste repositories or forms of energy storage.展开更多
Crack potential and hydration processes of the cement pastes were monitored using an upto-date eccentric steel cracking frame(ESCF), associated with the non-contact electrical resistivity apparatus, independently. The...Crack potential and hydration processes of the cement pastes were monitored using an upto-date eccentric steel cracking frame(ESCF), associated with the non-contact electrical resistivity apparatus, independently. The objective of employing the ESCF is to give a new method determining cracks of concrete at early age. The findings indicate that the lowest water-cement ratio paste reveals highest resistivity values, compasses an earlier inflection point and obtained higher stress. The eccentric restrained cracking test exhibited that lower water-cement ratio paste cracked at the earliest time, accordingly confirms cracking tendency is the highest. Tensile strength test and stresses utilizing ABAQUS simulation was performed. The crack initiation ages obtained are consistent with the experimental program results, which indicates that ABAQUS numerical analysis can well be utilized to predict the crack tendency of cement.展开更多
To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information crite...To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information criterion(IC) and particle swarm optimization(PSO) is presented. In the proposed method, IC is applied to obtain the hidden layer structure by calculating the optimal IC value automatically and PSO algorithm is used to optimize the centers and widths of the radial basis functions in the hidden layer. Meanwhile, impacts of different information criteria to the inversion results are compared, and an implementation of the proposed ICPSO algorithm is given. The optimized neural network has one hidden layer with 261 nodes selected by AKAIKE's information criterion(AIC) and it is trained on 32 data sets and tested on another 8 synthetic data sets. Two complex synthetic examples are used to verify the feasibility and effectiveness of the proposed method with two learning stages. The results show that the proposed method has better performance and higher imaging quality than three-layer and four-layer back propagation neural networks(BPNNs) and traditional least square(LS) inversion.展开更多
The compressive strength development of Portland cement pastes was investigated by the electrical resistivity method and the maturity method.The experiments were carried out on the cement pastes with different water-c...The compressive strength development of Portland cement pastes was investigated by the electrical resistivity method and the maturity method.The experiments were carried out on the cement pastes with different water-cement ratios at different curing temperatures.The results show that the application of the maturity method has limitation to obtain the strength.It is found that both of the compressive strength and the electrical resistivity follow hyperbolic trend for all the mixes.The hyperbolic equation of each mix is obtained to estimate the ultimate resistivity value which can probably be reached.The relationship between electrical resistivity and compressive strength of the cement pastes is established based on the test results and interpreted by the empirical Archie equation and a strength-porosity equation.The relationship between the electrical resistivity after temperature correction and the compressive strength was linear and independent of curing temperature and water-cement ratio.展开更多
The glass transition behavior of La55A125-Ni10CU10 bulk metallic glass was investigated using elec-trical resistivity and differential-scanning calorimetry measurements. There are good agreements of the onset temperat...The glass transition behavior of La55A125-Ni10CU10 bulk metallic glass was investigated using elec-trical resistivity and differential-scanning calorimetry measurements. There are good agreements of the onset temperature (Tg-onset) and the end temperature (Tg-end) of the glass transition between the DSC curve and tempera-ture dependent electrical resistivity (TER) curve in the same heating rate. Kinetics of the glass transition is studied with the electrical resistivity data. The apparent activation energy of the glass transition (△Eg) is found to be 306.4 kJ.mol^-1. Fragility parameter D^* and VFT temper-ature To are 9.8 and 324.9 K, respectively.展开更多
文摘In Brazil and various regions globally, the initiation of landslides is frequently associated with rainfall;yet the spatial arrangement of geological structures and stratification considerably influences landslide occurrences. The multifaceted nature of these influences makes the surveillance of mass movements a highly intricate task, requiring an understanding of numerous interdependent variables. Recent years have seen an emergence in scholarly research aimed at integrating geophysical and geotechnical methodologies. The conjoint examination of geophysical and geotechnical data offers an enhanced perspective into subsurface structures. Within this work, a methodology is proposed for the synchronous analysis of electrical resistivity geophysical data and geotechnical data, specifically those extracted from the Light Dynamic Penetrometer (DPL) and Standard Penetration Test (SPT). This study involved a linear fitting process to correlate resistivity with N10/SPT N-values from DPL/SPT soundings, culminating in a 2D profile of N10/SPT N-values predicated on electrical profiles. The findings of this research furnish invaluable insights into slope stability by allowing for a two-dimensional representation of penetration resistance properties. Through the synthesis of geophysical and geotechnical data, this project aims to augment the comprehension of subsurface conditions, with potential implications for refining landslide risk evaluations. This endeavor offers insight into the formulation of more effective and precise slope management protocols and disaster prevention strategies.
文摘This research aims to address the pressing issue of failed and abandoned wells, causing water scarcity in Lapan Gwari Community, through an improved groundwater exploration approach integrating remote sensing and electrical resistivity soundings. The study area, located within the Zungeru Sheet 163 SE, spans Latitudes 9°30'00"N to 9°32'00"N and Longitudes 6°28'00" to 6°30'00". The surface geologic, structural, and hydrogeological mapping provided essential insights into the hydrogeological framework. Leveraging SRTM DEM data, thematic maps were created for geomorphology, slope, land use, lineament density, and drainage density. These datasets were then integrated using ArcGIS to develop a preliminary groundwater potential zones map. Further investigations were conducted using Vertical Electrical Sounding (VES) and Electrical Resistivity Imaging (2D VES) surveys at targeted locations identified by the preliminary map. Results show that the study area predominantly consists of crystalline rocks of the Nigerian Basement Complex, primarily comprising schist and granite with minor occurrences of quartz vein intrusions. Surface joint directions indicated a dominant NE-SW trend. The VES data revealed three to four geoelectric layers, encompassing the topsoil (1 to 5 m depth, resistivity: 100 Ωm to 300 Ωm), the weathered layer (in the 3-layer system) or fractured layer (in the 4-layer system), and the fresh basement rock characterized by infinite resistivity. The shallow weathered layers (3 to 30 m thickness) are believed to hold aquiferous potential. Hydrogeological interpretation, facilitated by 2D resistivity models, delineated water horizons trapped within clayey sand and weathered/fractured formations. Notably, the aquifer resistivity range was found to be between 3 - 35 m and 100 - 300 Ωm, signifying a promising aquifer positioned at depths of 40 to 88 m. This aligns with corroborative static water level measurements. Given this, we recommend drilling depths of a minimum of 80 m to ensure the acquisition of sufficient and sustainable water supplies. The final groundwater potential zones map derived from this study is expected to serve as an invaluable guide for prospective groundwater developers and relevant authorities in formulating effective water resource management plans. By effectively tackling water scarcity challenges in Lapan Gwari Community, this integrated approach demonstrates its potential for application in similar regions facing comparable hydrogeological concerns.
基金supported by the National Program on Key Basic Research Project of China(973 Program)(No.2013CB036002,No.2014CB046901)the National Major Scientific Equipment Developed Special Project(No.51327802)+3 种基金National Natural Science Foundation of China(No.51139004,No.41102183)the Research Fund for the Doctoral Program of Higher Education of China(No.20110131120070)Natural Science Foundation of Shandong Province(No.ZR2011EEQ013)the Graduate Innovation Fund of Shandong University(No.YZC12083)
文摘To minimize the number of solutions in 3D resistivity inversion, an inherent problem in inversion, the amount of data considered have to be large and prior constraints need to be applied. Geological and geophysical data regarding the extent of a geological anomaly are important prior information. We propose the use of shape constraints in 3D electrical resistivity inversion, Three weighted orthogonal vectors (a normal and two tangent vectors) were used to control the resistivity differences at the boundaries of the anomaly. The spatial shape of the anomaly and the constraints on the boundaries of the anomaly are thus established. We incorporated the spatial shape constraints in the objective function of the 3D resistivity inversion and constructed the 3D resistivity inversion equation with spatial shape constraints. Subsequently, we used numerical modeling based on prior spatial shape data to constrain the direction vectors and weights of the 3D resistivity inversion. We established a reasonable range between the direction vectors and weights, and verified the feasibility and effectiveness of using spatial shape prior constraints in reducing excessive structures and the number of solutions. We applied the prior spatially shape-constrained inversion method to locate the aquifer at the Guangzhou subway. The spatial shape constraints were taken from ground penetrating radar data. The inversion results for the location and shape of the aquifer agree well with drilling data, and the number of inversion solutions is significantly reduced.
基金funded by the National Basic Research Program of China(973 Program)(No.2013CB733203)the National Natural Science Foundation of China(No.41474055)
文摘The dynamic monitoring of landslides in engineering geology has focused on the correlation among landslide stability,rainwater infiltration,and subsurface hydrogeology.However,the understanding of this complicated correlation is still poor and inadequate.Thus,in this study,we investigated a typical landslide in southwestern China via time-lapse electrical resistivity tomography(TLERT) in November 2013 and August 2014.We studied landslide mechanisms based on the spatiotemporal characteristics of surface water infiltration and flow within the landslide body.Combined with borehole data,inverted resistivity models accurately defined the interface between Quaternary sediments and bedrock.Preferential flow pathways attributed to fracture zones and fissures were also delineated.In addition,we found that surface water permeates through these pathways into the slipping mass and drains away as fissure water in the fractured bedrock,probably causing the weakly weathered layer to gradually soften and erode,eventually leading to a landslide.Clearly,TLERT dynamic monitoring can provide precursory information of critical sliding and can be used in landslide stability analysis and prediction.
文摘The electrical resistivity characteristics of cement soil and flyash lime soil are investigated in the laboratory and the field. It is shown that the electrical resistivities of the cement soil and flyash lime soil are sensitive to water content, degree of saturation and unconfined strength. The cement soil and flyash lime soil with higher water content, greater degree of saturation, lower unconfined strength has lower electrical resistivity. Electrical resistivity is also correlated with additives. Based on the tests, it is concluded that the electrical resistivity method is available for checking the effectiveness of the soil improvement by the cement soil and flyash lime soil mixing pile in terms of engineering practice.
基金The Taishan Scholar Special Experts Project of Shandong Province under contract No.ts201712079the National Natural Science Foundation of China under contract No.41976074the National Key Research and Development Program of China under contract No.2018YFE0126400。
文摘Laboratory visual detection on the hydrate accumulation process provides an effective and low-cost method to uncover hydrate accumulation mechanisms in nature.However,the spatial hydrate distribution and its dynamic evolutionary behaviors are still not fully understood due to the lack of methods and experimental systems.Toward this goal,we built a two-dimensional electrical resistivity tomography(ERT)apparatus capable of measuring spatial and temporal characteristics of hydrate-bearing porous media.Beach sand(0.05–0.85 mm)was used to form artificial methane hydrate-bearing sediment.The experiments were conducted at 1°C under excess water conditions and the ERT data were acquired and analyzed.This study demonstrates the utility of the ERT method for hydrate mapping in laboratory-scale.The results indicate that the average electrical conductivity decreases nonlinearly with the formation of the hydrate.At some special time-intervals,the average conductivity fluctuates within a certain scope.The plane conductivity fields evolve heterogeneously and the local preferential hydrate-forming positions alternate throughout the experimental duration.We speculate that the combination of hydrate formation itself and salt-removal effect plays a dominant role in the spatial and temporal hydrate distribution,as well as geophysical parameters changing behaviors during hydrate accumulation.
基金Project(51105139)supported by the National Natural Science Foundation of ChinaProject(2010CB731706)supported by the National Basic Research Program of China
文摘The precipitation behavior and its influence on the electrical resistivity of the Al-0.96Mg2Si alloy during aging were investigated with in-situ resistivity measurement and transmission electron microscopy (TEM). The precipitates of the peak aged alloy include both β" and if, but the amount ratio of β" to β" varies with the aging temperature and time increasing. The precipitates during aging at 175 ℃ are dominated by needle-like β" phases (including pre-β" phase), the size of which increases with the time prolonging, but does not increase substantially after further aging. The evolution of electrical conductivity is directly related to such microstructural evolution. However, the hardness of the alloy stays at the peak value for a long term. When the alloy is aged at 195 ℃, the ratio of β" to β' becomes the main factor to influence relative resistivity (Ap) value. The higher the temperature is, the smaller the ratio is, and the faster the Ap value decreases. Moreover, the hardness peak drops with the decrease of the ratio. With the size and distribution parameters measured from TEM images, a semi-quantitative relationship between precipitates and the electrical resistivity was established.
基金supported by the National Natural Science Foundation of China(Grant No.41374118)the Research Fund for the Higher Education Doctoral Program of China(Grant No.20120162110015)+3 种基金the China Postdoctoral Science Foundation(Grant No.2015M580700)the Hunan Provincial Natural Science Foundation,the China(Grant No.2016JJ3086)the Hunan Provincial Science and Technology Program,China(Grant No.2015JC3067)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.15B138)
文摘Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter αk, which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.
基金Project(BK2011618) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject(51108288) supported by the National Natural Science Foundation of China
文摘The improvement of question soils with cement shows great technical, economic and environmental advantages. And interest in introducing electrical resistivity measurement to assess the quality of cement treated soils has increased markedly recently due to its economical, non-destructive, and relatively non-invasive advantages. This work aims to quantify the effect of cement content (aw), porosity (nt), and curing time(T) on the electrical resistivity (p) and unconfined compression strength (UCS) of cement treated soil. A series of electrical resistivity tests and UCS tests of cement treated soil specimen after various curing periods were carried out. A modified Archie empirical law was proposed taking into account the effect of cement content and curing period on the electrical resistivity of cement treated soil. The results show that nt/(aw·T) and nt/(aw·T^1/2) ratio are appropriate parameters to assess electrical resistivity and UCS of cement treated soil, respectively. Finally, the relationship between UCS and electrical resistivity was also established.
基金supported by National High-Tech R&D Program of China (Grant 2014AA06A612)the project of the China Geological Survey (Grants 1212011220263,1212010914049 and 1212011121273)
文摘The Panxi region is located in the frontal zone of positive squeezing subduction and side squeezing shearing between the Indian plate and the Eurasian plate. The long-period magnetotelluric (LMT) and broadband magnetotelluric (MT) techniques are both used to study the deep electrical conductivity structure in this region; magnetic and gravity surveys are also performed along the profile. According to the 2-D resistivity model along the Yanyuan-Yongshan profile, a high- conductivity layer (HCL) exists widely in the crust, and a high-resistivity block (HRB) exists widely in the upper mantle in general, as seen by the fact that a large HCL exists from the western Jinpingshan tectonic zone to the eastern Mabian tectonic zone in the crust, while the HRB found in the Panxi tectonic zone is of abnormally high resistivity in that background compared to both sides of Panxi tectonic zone. In addition, the gravity and magnetic field anomalies are of high value. Combined with geological data, the results indicate that there probably exists basic or ultrabasic rock with a large thickness in the lithosphere in the Panxi axial region, which indicates that fracture activity once occurred in the lithosphere. As a result, we can infer that the high-resistivity zone in the Panxi lithosphere is the eruption channel for Permian Emeishan basalt and the accumulation channel for basic and ultrabasic rock. The seismic sources along the profile are counted according to seismic record data. The results indicate that the most violent earthquake sources are located at the binding site of the HRB and the HCL, where the tectonic activity zone is generally acknowledged to be; however, the earthquakes occurring in the HCL are not so violent, which reflects the fact that the HCL is a plastic layer, and the fracture threshold of a plastic layer is low generally, making high stress difficult to accumulate but easy to release in the layer. As a result, a higher number of smaller earthquakes occurred in the HCL at Daliangshan tectonic zone, and violent earthquakes occurred at the binding site of high- and low-resistivity blocks at the Panxi tectonic zone.
文摘A non contacting electrical resistivity measurement device was used for measuring the electrical resistivity of cement paste incorporated with retarder.The hydration process was divided into dissolving period,setting period,hardening period.With the increase of the retarder,the dissolution time will increase.The setting time happens between minimum point time and inflexion point time based on the electrical resistivity curve.The strength isoline was proposed to predict the strength trend.
基金the National Natural Science Foundation of China(No.50778078)
文摘Electrical measurement was employed to investigate the early hydration characteristics of cement pastes with different dosages of superplasticizer in the same W/C ratio. The hyperbolic method was applied to analyze the electrical resistivity development. The peak point (Ph) on the hyperbolic curve could be easily read. The time (th) to reach the point Ph had strong relations with the setting time. th was delayed with the increment of the dosage of superplasticizer. The time th was used to plot the relationship between the initial setting time and final setting time. The hyperbolic equation was established to predict the ultimate resistivity. The retardation effect of the superplasticizer was confirmed in the same W/C ratio by setting time and isothermal heat evolution.
基金Project(20120162110015)supported by the Research Fund for the Doctoral Program of Higher Education,ChinaProject(41004053)supported by the National Natural Science Foundation of ChinaProject(12c0241)supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was presented,which was able to improve global search ability for resistivity tomography 2-D nonlinear inversion.In the proposed method,Tent equation was applied to obtain automatic parameter settings in DE and the restricted parameter Fcrit was used to enhance the ability of converging to global optimum.An implementation of proposed DE-BPNN was given,the network had one hidden layer with 52 nodes and it was trained on 36 datasets and tested on another 4 synthetic datasets.Two abnormity models were used to verify the feasibility and effectiveness of the proposed method,the results show that the proposed DE-BP algorithm has better performance than BP,conventional DE-BP and other chaotic DE-BP methods in stability and accuracy,and higher imaging quality than least square inversion.
基金Project(2005CB623703) supported by the State Key Fundamental Research and Development Programof China project(5JJ30103) supported by the Natural Science Foundation of Hunan Province
文摘The electrical resistivity of TiB2/C cathode composite coating at different temperatures was measured with the electrical conductivity test device; the effects of TiB2 content and kinds of carbonaceous fillers as well as their mean particle size on their electrical resistivities were investigated. The results show that electrical resistivity of the coating decreases with the increase of TiB2 content and the decrease of its mean particle size. When the mass fraction of TiB2 increases from 30% to 60%, the electrical resistivity of the coating at room temperature decreases from 31.2μΩ·m to 23.8μΩ·m. The electrical resistivity of the coating at 960℃ lowers from 76.1μΩ· m to 38.4μΩ·m with the decrease of TiB2 mean particle size from 12μm to 1μm. The kinds of carbonaceous fillers have great influence on the electrical resistivity of TiB2/C composite coating at 960℃, when the graphite, petroleum coke and anthracite are used as fillers, the electrical resistivities of the coating are 20.3μΩ·m, 53.7μΩ·m and 87.2μΩ·m, respectively. For the coating with petroleum coke filler, its electrical resistivity decreases with the increase of the mean particle size of petroleum coke filler. The electrical resistivity at 960℃ decreases from 56.2μΩ·m to 48.2μΩ·m with the mean particle size of petroleum coke increasing from 44μm to 1200μm. However, too big carbonaceous particle size has adverse influence on the abrasion resistance of coating. Its proper mean particle size is 420μm.
基金supported by the National Basic Research Program of China(No.2004CB619303)partially by the National Natural Science Foundation of China(No.50571103 and 50971125)(B.Zhang)appreciates the support from the Program for Changjiang Scholars and Innovative Research Team in Northeastern University(IRT0713)
文摘The electrical resistivity of Cu/Ta multilayers deposited by radio-frequency magnetron sputtering on a polyimide substrate was investigated as a function of monolayer thickness. It is found that the resistivity of the multilayer increases with decreasing monolayer thickness from 500 nm to 10 nm. Two significant effects of layer interface scattering and grain boundary scattering were identified to dominate electronic transportation behavior in the Cu/Ta multilayers at different length scales. The electrical resistivity of the multilayer with monolayer thickness ranging from nanometer to submicron scales can be well described by a newly-proposed Fuchs-Sandheimair (F-S) and Mayadas-Shatzkes (M-S) combined model.
基金supported by the National Research Foundation of Korea(KRF)grant funded by the Korea government(MSIT)(No.NRF-2019R1G1A1100517)the Basic Research and Development Project of the Korea Institute of Geoscience and Mineral Resources(KIGAM),which was funded by the Ministry of Science and ICT,Korea。
文摘A convenient approach was proposed by which to evaluate and monitor the permeability of a rock fracture by verifying the quantitative correlation between the electrical resistivity and permeability at laboratory scale.For this purpose,an electrical resistivity measurement system was applied to the laboratory experiments using artificial cells with the shape of a single rock fracture.Sixty experiments were conducted using rock fractures according to the geometry,aperture sizes,wavelengths,and roughness amplitudes.The overall negative relationship between the normalized electrical resistivity values and the aperture sizes directly linked with the permeability,was well fitted by the power-law function with a large determination coefficient(≈0.86).The effects of wavelength and roughness amplitude of the rock fracture on the electrical resistivity were also analyzed.Results showed that the electrical resistivity was slightly increased with decreasing wavelength and increasing roughness amplitude.An empirical model for evaluating the permeability of a rock fracture was proposed based on the experimental data.In the field,if the electrical resistivity of pore groundwater could be measured in advance,this empirical model could be applied effectively for simple,quick monitoring of the fracture permeability.Although uncertainty may be associated with the permeability estimation due to the limited control parameters considered in this research,this electrical resistivity approach could be helpful to monitor the rock permeability in deep underground facilities such as those used for radioactive waste repositories or forms of energy storage.
基金Funded by the National Natural Science Foundation of China(Nos.51778257 and 51478200)
文摘Crack potential and hydration processes of the cement pastes were monitored using an upto-date eccentric steel cracking frame(ESCF), associated with the non-contact electrical resistivity apparatus, independently. The objective of employing the ESCF is to give a new method determining cracks of concrete at early age. The findings indicate that the lowest water-cement ratio paste reveals highest resistivity values, compasses an earlier inflection point and obtained higher stress. The eccentric restrained cracking test exhibited that lower water-cement ratio paste cracked at the earliest time, accordingly confirms cracking tendency is the highest. Tensile strength test and stresses utilizing ABAQUS simulation was performed. The crack initiation ages obtained are consistent with the experimental program results, which indicates that ABAQUS numerical analysis can well be utilized to predict the crack tendency of cement.
基金Project(41374118)supported by the National Natural Science Foundation,ChinaProject(20120162110015)supported by Research Fund for the Doctoral Program of Higher Education,China+3 种基金Project(2015M580700)supported by the China Postdoctoral Science Foundation,ChinaProject(2016JJ3086)supported by the Hunan Provincial Natural Science Foundation,ChinaProject(2015JC3067)supported by the Hunan Provincial Science and Technology Program,ChinaProject(15B138)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information criterion(IC) and particle swarm optimization(PSO) is presented. In the proposed method, IC is applied to obtain the hidden layer structure by calculating the optimal IC value automatically and PSO algorithm is used to optimize the centers and widths of the radial basis functions in the hidden layer. Meanwhile, impacts of different information criteria to the inversion results are compared, and an implementation of the proposed ICPSO algorithm is given. The optimized neural network has one hidden layer with 261 nodes selected by AKAIKE's information criterion(AIC) and it is trained on 32 data sets and tested on another 8 synthetic data sets. Two complex synthetic examples are used to verify the feasibility and effectiveness of the proposed method with two learning stages. The results show that the proposed method has better performance and higher imaging quality than three-layer and four-layer back propagation neural networks(BPNNs) and traditional least square(LS) inversion.
基金Funding by the National Natural Science Foundation of China (Nos.50778078 and 51178202)the Doctoral Research Fund from Wuhan Institute of Technology
文摘The compressive strength development of Portland cement pastes was investigated by the electrical resistivity method and the maturity method.The experiments were carried out on the cement pastes with different water-cement ratios at different curing temperatures.The results show that the application of the maturity method has limitation to obtain the strength.It is found that both of the compressive strength and the electrical resistivity follow hyperbolic trend for all the mixes.The hyperbolic equation of each mix is obtained to estimate the ultimate resistivity value which can probably be reached.The relationship between electrical resistivity and compressive strength of the cement pastes is established based on the test results and interpreted by the empirical Archie equation and a strength-porosity equation.The relationship between the electrical resistivity after temperature correction and the compressive strength was linear and independent of curing temperature and water-cement ratio.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.FRFTP-09-026B)the Program for Changjiang Scholars and Innovative Research Team in University,the Specialized Research Fund for the Doctoral Program of Higher Education(No.20100006110013)the National Natural Science Foundation of China(No.51010001)
文摘The glass transition behavior of La55A125-Ni10CU10 bulk metallic glass was investigated using elec-trical resistivity and differential-scanning calorimetry measurements. There are good agreements of the onset temperature (Tg-onset) and the end temperature (Tg-end) of the glass transition between the DSC curve and tempera-ture dependent electrical resistivity (TER) curve in the same heating rate. Kinetics of the glass transition is studied with the electrical resistivity data. The apparent activation energy of the glass transition (△Eg) is found to be 306.4 kJ.mol^-1. Fragility parameter D^* and VFT temper-ature To are 9.8 and 324.9 K, respectively.