Electronic technology,based on signal conversion induced by voltage stimulation,forms the core foundation of the state-of-the-art intelligent devices,tools,and equipment.Such conversions are inherently binary and limi...Electronic technology,based on signal conversion induced by voltage stimulation,forms the core foundation of the state-of-the-art intelligent devices,tools,and equipment.Such conversions are inherently binary and limited because they rely solely on voltage,which presents challenges for many emerging frontier applications.Here,a two-dimensional ordered conjugated system of reduced graphene oxide/polypyrrole(rGO/PPy)has been developed.Multi-stimulus response signal adapters have been constructed,utilizing the electrical anisotropy inherent in the rGO/PPy system.This electrical anisotropy,derived from the quasi-two-dimensional geometry of rGO/PPy,enables the device to produce distinct electrical signals in response to various stimuli.With effective responses to light and pressure,the two most common input stimuli other than voltage,it can output quaternary/denary signals and visual optical signals,as well as enables information encryption using passive devices.Furthermore,the signal adapter demonstrates high cyclic stability under repeated pressure and/or light loading.The successful development of this low-cost,scalable signal adapter paves the way for the next-generation of intelligent systems,promising advancements in human-computer interaction,electronic skin,biological implant equipment,and related fields.展开更多
The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa i...The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa in a frequency range of 10-1 Hz–106 Hz. The measured electrical conductivity along the ⊥ [001] axis direction decreases with increasing pressure, and the activation energy and activation volume of charge carriers are determined to be 1.04 ± 0.06 e V and 2.51 ± 0.19 cm~3/mole, respectively. The electrical conductivity of K-feldspar is highly anisotropic, and its value along the⊥ [001] axis is approximately three times higher than that along the ⊥ [100] axis. At 2.0 GPa, the diffusion coefficient of ionic potassium is obtained from the electrical conductivity data using the Nernst–Einstein equation. The measured electrical conductivity and calculated diffusion coefficient of potassium suggest that the main conduction mechanism is of ionic conduction, therefore the dominant charge carrier is transferred between normal lattice potassium positions and adjacent interstitial sites along the thermally activated electric field.展开更多
Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when...Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production.展开更多
In fractured reservoirs, the fractures not but also form the main flow channels which connect productivity of reservoirs. However, because of the only provide the storage space for hydrocarbons, the pores of the matri...In fractured reservoirs, the fractures not but also form the main flow channels which connect productivity of reservoirs. However, because of the only provide the storage space for hydrocarbons, the pores of the matrix, so fractures dominate the heterogeneity and randomness of the distribution of fractures, exploration and evaluation of fractured reservoirs is still one of the most difficult problems in the oil industry. In recent years, seismic anisotropy has been applied to the assessment of fractured formations, whereas electrical anisotropy which is more intense in fractured formations than seismic anisotropy has not been studied or used so extensively. In this study, fractured reservoir models which considered multiple sets of fractures with smooth and partly closed, rough surfaces were established based on the fractures and pore network, and the vertical and horizontal electrical resistivities were derived as a function of the matrix and fracture porosities according to Ohm's law. By using the anisotropic resistivity equations, variations of the electrical anisotropy of three types of fractured models under the conditions of free pressure and confining pressure were analyzed through the variations of the exerted pressure, matrix porosity, fracture aperture and formation water resistivity. The differences of the vertical and horizontal resistivities and the anisotropy between the connected and non-connected fractures were also analyzed. It is known from the simulated results that an increase of the confining pressure causes a decrease of electrical anisotropy because of the elasticity of the closed fractures and the decrease of the fracture aperture. For a fixed fracture porosity, the higher the matrix porosity, the weaker the electrical anisotropy in the rock formation.展开更多
Fractured hydrate-bearing reservoirs show significantly anisotropic geophysical properties. The joint application of seismic and electromagnetic explorations is expected to accurately assess hydrate resources in the f...Fractured hydrate-bearing reservoirs show significantly anisotropic geophysical properties. The joint application of seismic and electromagnetic explorations is expected to accurately assess hydrate resources in the fractured reservoirs. However, the anisotropic joint elastic-electrical properties in such reservoirs that are the key to the successful application of the joint explorations, remain poorly understood. To obtain such knowledge, we designed and implemented dedicated laboratory experiments to study the anisotropic joint elastic-electrical properties in fractured artificial silica sandstones (with fracture density of about 6.2%, porosity of approximately 25.7%, and mean grainsize of 0.089 mm) with evolving methane hydrate. The experimental results showed that the anisotropic compressional wave velocities respectively increased and decreased with the forming and dissociating hydrate, and the variation in the increasing trend and the decreasing extent of the velocity perpendicular to the fractures were more significant than that parallel to the fractures, respectively. The experimental results also showed that the overall decreasing trend of the electrical conductivity parallel to the fractures was steeper than that perpendicular to the fractures during hydrate formation, and the general variations of the two conductivities with complex trend were similar during hydrate dissociation. The variations in the elastic and electrical anisotropic parameters with forming and dissociating hydrate were also found to be distinct. Interpretation of the experimental results suggested that the hydrate binding to the grains evolved to bridge the surfaces of fractures when saturation exceeded 10% during hydrate formation, and the bridging hydrate gradually evolved to floating in fractures during dissociation. The experimental results further showed that the anisotropic velocities and electrical conductivities were correlated with approximately consistent trends of different slopes during hydrate formation, and the joint elastic-electrical anisotropic parameters exhibited a sharp peak at the hydrate saturation of about 10%. The results suggested that the anisotropic joint properties can be employed not only to accurately estimate hydrate saturation but also possibly to identify hydrate distribution in the fractures.展开更多
ased on the known crystal data , we used the EHMACC(EHMO/CO) methodto calculate the twotlimensional energy band of both undoped and heavily iodine-doped polyacetylene (PA). The results show that (1 ) I-doping obviousl...ased on the known crystal data , we used the EHMACC(EHMO/CO) methodto calculate the twotlimensional energy band of both undoped and heavily iodine-doped polyacetylene (PA). The results show that (1 ) I-doping obviously reducesthe niagnitudes of Eg , Egi; (2) in the conducting process along the direction per-pendicular to PA chain , the P-type AO of iodine plays a very important role, i- e. ,the conducting bridge to transport the charge between the two neighbor PA chains.I-doping reniarkably increases σ_T value while the conducting process will reduce theratio magnitude of σ/σ. Therefore, heavily I-doping makes PA change fromsimeconductor to conductor which obviously has 2-D conductive ability.展开更多
Since the ocean bottom is a sedimentary environment wherein stratification is well developed, the use of an anisotropic model is best for studying its geology. Beginning with Maxwell's equations for an anisotropic mo...Since the ocean bottom is a sedimentary environment wherein stratification is well developed, the use of an anisotropic model is best for studying its geology. Beginning with Maxwell's equations for an anisotropic model, we introduce scalar potentials based on the divergence-free characteristic of the electric and magnetic (EM) fields. We then continue the EM fields down into the deep earth and upward into the seawater and couple them at the ocean bottom to the transmitting source. By studying both the DC apparent resistivity curves and their polar plots, we can resolve the anisotropy of the ocean bottom. Forward modeling of a high-resistivity thin layer in an anisotropic half-space demonstrates that the marine DC resistivity method in shallow water is very sensitive to the resistive reservoir but is not influenced by airwaves. As such, it is very suitable for oil and gas exploration in shallowwater areas but, to date, most modeling algorithms for studying marine DC resistivity are based on isotropic models. In this paper, we investigate one-dimensional anisotropic forward modeling for marine DC resistivity method, prove the algorithm to have high accuracy, and thus provide a theoretical basis for 2D and 3D forward modeling.展开更多
A hypothetical electric and magnetic induction tensor is considered in an anisotropic medium. The sources are magnetic dipoles. In such a medium, constitute parameters can be calculated by combining electric and magne...A hypothetical electric and magnetic induction tensor is considered in an anisotropic medium. The sources are magnetic dipoles. In such a medium, constitute parameters can be calculated by combining electric and magnetic field measurements. Constitutive parameters are not a scalar in this case. They are tensors, so parameters have at least both horizontal and vertical components in a uniaxial medium. These calculated parameters from the field measurement are horizontal and vertical conductivity, permittivity, and magnetic permeability. Operating frequency range is also quite large. It is up to 4 GHz. A hypothetical instrument should measure gradient fields both electric and magnetic types as well.展开更多
Two-dimensional anisotropic materials have been widely concerned by researchers because of their great application potential in the field of polarized detector devices and optical elements,which is a very important an...Two-dimensional anisotropic materials have been widely concerned by researchers because of their great application potential in the field of polarized detector devices and optical elements,which is a very important and popular research direction at present.As a IV-V two-dimensional material,silicon phosphide(SiP)has obvious in-plane anisotropy and exhibits excellent optical and electrical anisotropy properties.Herein,the optical anisotropy of SiP is studied by spectrometric ellipsometry measurements and polarization-resolved optical microscopy,and its electrical anisotropy is tested by SiP-based field-effect transistor.In addition,the normal and anisotropic photoelectric performance of SiP is shown by fabricating a photodetector and measuring it.In various measurements,SiP exhibits obvious anisotropy and good photoelectric performance.This work provides basic optical,electrical,and photoelectric performance information of SiP,and lays a foundation for further study of SiP and applications of SiP-based devices.展开更多
In-plane anisotropy(IPA)due to asymmetry in lattice structures provides an additional parameter for the precise tuning of characteristic polarization-dependent properties in two-dimensional(2D)materials,but the narrow...In-plane anisotropy(IPA)due to asymmetry in lattice structures provides an additional parameter for the precise tuning of characteristic polarization-dependent properties in two-dimensional(2D)materials,but the narrow range within which such method can modulate properties hinders significant development of related devices.Herein we present a novel periodic phase engineering strategy that can remarkably enhance the intrinsic IPA obtainable from minor variations in asymmetric structures.By introducing alternant monoclinic and rutile phases in 2D VO_(2)single crystals through the regulation of interfacial thermal strain,the IPA in electrical conductivity can be reversibly modulated in a range spanning two orders of magnitude,reaching an unprecedented IPA of 113.Such an intriguing local phase engineering in 2D materials can be well depicted and predicted by a theoretical model consisting of phase transformation,thermal expansion,and friction force at the interface,creating a frame-work applicable to other 2D materials.Ultimately,the considerable adjustability and reversibility of the presented strategy provide opportunities for future polarization-dependent photoelectric and optoelectronic devices.展开更多
基金supported by Beijing Natural Science Foundation(2232069)the National Natural Science Foundation of China(21875266)the Research Start-up Fund of Ningbo University of Technology(2130011540030)。
文摘Electronic technology,based on signal conversion induced by voltage stimulation,forms the core foundation of the state-of-the-art intelligent devices,tools,and equipment.Such conversions are inherently binary and limited because they rely solely on voltage,which presents challenges for many emerging frontier applications.Here,a two-dimensional ordered conjugated system of reduced graphene oxide/polypyrrole(rGO/PPy)has been developed.Multi-stimulus response signal adapters have been constructed,utilizing the electrical anisotropy inherent in the rGO/PPy system.This electrical anisotropy,derived from the quasi-two-dimensional geometry of rGO/PPy,enables the device to produce distinct electrical signals in response to various stimuli.With effective responses to light and pressure,the two most common input stimuli other than voltage,it can output quaternary/denary signals and visual optical signals,as well as enables information encryption using passive devices.Furthermore,the signal adapter demonstrates high cyclic stability under repeated pressure and/or light loading.The successful development of this low-cost,scalable signal adapter paves the way for the next-generation of intelligent systems,promising advancements in human-computer interaction,electronic skin,biological implant equipment,and related fields.
基金Project supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant No.XDB 18010401)the Key Research Program of Frontier Sciences of CAS(Grant No.QYZDB-SSW-DQC009)+2 种基金the“135”Program of the Institute of Geochemistry of CASthe Hundred-Talent Program of CASthe National Natural Science Foundation of China(Grant Nos.41474078,41774099,and 41772042)
文摘The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa in a frequency range of 10-1 Hz–106 Hz. The measured electrical conductivity along the ⊥ [001] axis direction decreases with increasing pressure, and the activation energy and activation volume of charge carriers are determined to be 1.04 ± 0.06 e V and 2.51 ± 0.19 cm~3/mole, respectively. The electrical conductivity of K-feldspar is highly anisotropic, and its value along the⊥ [001] axis is approximately three times higher than that along the ⊥ [100] axis. At 2.0 GPa, the diffusion coefficient of ionic potassium is obtained from the electrical conductivity data using the Nernst–Einstein equation. The measured electrical conductivity and calculated diffusion coefficient of potassium suggest that the main conduction mechanism is of ionic conduction, therefore the dominant charge carrier is transferred between normal lattice potassium positions and adjacent interstitial sites along the thermally activated electric field.
基金supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities 2014QNA88the National Natural Science Foundation(No.41674133)
文摘Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production.
基金The authors also would like to acknowledge the support of the National Basic Research Program (973 Program) (2007CB209607) of ChinaNational High-tech R&D Program (863 Program) (2007AA060502)the Fundamental Research Project (07A10303) of CNPC
文摘In fractured reservoirs, the fractures not but also form the main flow channels which connect productivity of reservoirs. However, because of the only provide the storage space for hydrocarbons, the pores of the matrix, so fractures dominate the heterogeneity and randomness of the distribution of fractures, exploration and evaluation of fractured reservoirs is still one of the most difficult problems in the oil industry. In recent years, seismic anisotropy has been applied to the assessment of fractured formations, whereas electrical anisotropy which is more intense in fractured formations than seismic anisotropy has not been studied or used so extensively. In this study, fractured reservoir models which considered multiple sets of fractures with smooth and partly closed, rough surfaces were established based on the fractures and pore network, and the vertical and horizontal electrical resistivities were derived as a function of the matrix and fracture porosities according to Ohm's law. By using the anisotropic resistivity equations, variations of the electrical anisotropy of three types of fractured models under the conditions of free pressure and confining pressure were analyzed through the variations of the exerted pressure, matrix porosity, fracture aperture and formation water resistivity. The differences of the vertical and horizontal resistivities and the anisotropy between the connected and non-connected fractures were also analyzed. It is known from the simulated results that an increase of the confining pressure causes a decrease of electrical anisotropy because of the elasticity of the closed fractures and the decrease of the fracture aperture. For a fixed fracture porosity, the higher the matrix porosity, the weaker the electrical anisotropy in the rock formation.
基金financial supports received from the National Natural Science Foundation of China(42174136,41821002 and 41874151)the Shandong Provincial Natural Science Foundation,China(ZR2021JQ14).
文摘Fractured hydrate-bearing reservoirs show significantly anisotropic geophysical properties. The joint application of seismic and electromagnetic explorations is expected to accurately assess hydrate resources in the fractured reservoirs. However, the anisotropic joint elastic-electrical properties in such reservoirs that are the key to the successful application of the joint explorations, remain poorly understood. To obtain such knowledge, we designed and implemented dedicated laboratory experiments to study the anisotropic joint elastic-electrical properties in fractured artificial silica sandstones (with fracture density of about 6.2%, porosity of approximately 25.7%, and mean grainsize of 0.089 mm) with evolving methane hydrate. The experimental results showed that the anisotropic compressional wave velocities respectively increased and decreased with the forming and dissociating hydrate, and the variation in the increasing trend and the decreasing extent of the velocity perpendicular to the fractures were more significant than that parallel to the fractures, respectively. The experimental results also showed that the overall decreasing trend of the electrical conductivity parallel to the fractures was steeper than that perpendicular to the fractures during hydrate formation, and the general variations of the two conductivities with complex trend were similar during hydrate dissociation. The variations in the elastic and electrical anisotropic parameters with forming and dissociating hydrate were also found to be distinct. Interpretation of the experimental results suggested that the hydrate binding to the grains evolved to bridge the surfaces of fractures when saturation exceeded 10% during hydrate formation, and the bridging hydrate gradually evolved to floating in fractures during dissociation. The experimental results further showed that the anisotropic velocities and electrical conductivities were correlated with approximately consistent trends of different slopes during hydrate formation, and the joint elastic-electrical anisotropic parameters exhibited a sharp peak at the hydrate saturation of about 10%. The results suggested that the anisotropic joint properties can be employed not only to accurately estimate hydrate saturation but also possibly to identify hydrate distribution in the fractures.
文摘ased on the known crystal data , we used the EHMACC(EHMO/CO) methodto calculate the twotlimensional energy band of both undoped and heavily iodine-doped polyacetylene (PA). The results show that (1 ) I-doping obviously reducesthe niagnitudes of Eg , Egi; (2) in the conducting process along the direction per-pendicular to PA chain , the P-type AO of iodine plays a very important role, i- e. ,the conducting bridge to transport the charge between the two neighbor PA chains.I-doping reniarkably increases σ_T value while the conducting process will reduce theratio magnitude of σ/σ. Therefore, heavily I-doping makes PA change fromsimeconductor to conductor which obviously has 2-D conductive ability.
基金financially supported by the National Hi-tech Research and Development Program of China(863 Program)(No.2012AA09A20103)
文摘Since the ocean bottom is a sedimentary environment wherein stratification is well developed, the use of an anisotropic model is best for studying its geology. Beginning with Maxwell's equations for an anisotropic model, we introduce scalar potentials based on the divergence-free characteristic of the electric and magnetic (EM) fields. We then continue the EM fields down into the deep earth and upward into the seawater and couple them at the ocean bottom to the transmitting source. By studying both the DC apparent resistivity curves and their polar plots, we can resolve the anisotropy of the ocean bottom. Forward modeling of a high-resistivity thin layer in an anisotropic half-space demonstrates that the marine DC resistivity method in shallow water is very sensitive to the resistive reservoir but is not influenced by airwaves. As such, it is very suitable for oil and gas exploration in shallowwater areas but, to date, most modeling algorithms for studying marine DC resistivity are based on isotropic models. In this paper, we investigate one-dimensional anisotropic forward modeling for marine DC resistivity method, prove the algorithm to have high accuracy, and thus provide a theoretical basis for 2D and 3D forward modeling.
文摘A hypothetical electric and magnetic induction tensor is considered in an anisotropic medium. The sources are magnetic dipoles. In such a medium, constitute parameters can be calculated by combining electric and magnetic field measurements. Constitutive parameters are not a scalar in this case. They are tensors, so parameters have at least both horizontal and vertical components in a uniaxial medium. These calculated parameters from the field measurement are horizontal and vertical conductivity, permittivity, and magnetic permeability. Operating frequency range is also quite large. It is up to 4 GHz. A hypothetical instrument should measure gradient fields both electric and magnetic types as well.
基金the National Natural Science Foundation of China(Nos.62125404,62174155,62004193,12004375,and 51727809)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB43000000)the CAS-JSPS Cooperative Research Project(No.GJHZ2021131)the Youth Innovation Promotion Association of CAS(No.2022112).
文摘Two-dimensional anisotropic materials have been widely concerned by researchers because of their great application potential in the field of polarized detector devices and optical elements,which is a very important and popular research direction at present.As a IV-V two-dimensional material,silicon phosphide(SiP)has obvious in-plane anisotropy and exhibits excellent optical and electrical anisotropy properties.Herein,the optical anisotropy of SiP is studied by spectrometric ellipsometry measurements and polarization-resolved optical microscopy,and its electrical anisotropy is tested by SiP-based field-effect transistor.In addition,the normal and anisotropic photoelectric performance of SiP is shown by fabricating a photodetector and measuring it.In various measurements,SiP exhibits obvious anisotropy and good photoelectric performance.This work provides basic optical,electrical,and photoelectric performance information of SiP,and lays a foundation for further study of SiP and applications of SiP-based devices.
基金This work was supported by the National Natural Science Foundation of China(Grants No.51872100,21825103,and 51727809)the Institute for Basic Science(Grant No.IBS-R019-D1)of South Korea.
文摘In-plane anisotropy(IPA)due to asymmetry in lattice structures provides an additional parameter for the precise tuning of characteristic polarization-dependent properties in two-dimensional(2D)materials,but the narrow range within which such method can modulate properties hinders significant development of related devices.Herein we present a novel periodic phase engineering strategy that can remarkably enhance the intrinsic IPA obtainable from minor variations in asymmetric structures.By introducing alternant monoclinic and rutile phases in 2D VO_(2)single crystals through the regulation of interfacial thermal strain,the IPA in electrical conductivity can be reversibly modulated in a range spanning two orders of magnitude,reaching an unprecedented IPA of 113.Such an intriguing local phase engineering in 2D materials can be well depicted and predicted by a theoretical model consisting of phase transformation,thermal expansion,and friction force at the interface,creating a frame-work applicable to other 2D materials.Ultimately,the considerable adjustability and reversibility of the presented strategy provide opportunities for future polarization-dependent photoelectric and optoelectronic devices.