The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and...The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and low working gap was investigated by the Grey-Taguchi method.The influences of peak current,pulse on-time,pulse off-time and spark gap on electrode wear(EW),material removal rate(MRR) and working gap(WG) in the micro milling electrical discharge machining of Inconel 718 were analyzed.The experimental results show that the electrode wear decreases from 5.6×10-9 to 5.2×10-9 mm3/min,the material removal rate increases from 0.47×10-8 to 1.68×10-8 mm3/min,and the working gap decreases from 1.27 to 1.19 μm under optimal micro milling electrical discharge machining process parameters.Hence,it is clearly shown that multiple performance characteristics can be improved by using the Grey-Taguchi method.展开更多
This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface wi...This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface with Ti or other compressed powder electrode in a certain condition. This new revolutionary method is called Electrical Discharge Coating (EDC). The process of EDC begins with electrode wear during EDM,then a kind of hard carbide is created through the thermal and chemical reaction between the worn electrode material and the carbon particle decomposed from kerosene fluid under high temperature. The carbide is piled up on a workpiece quickly and becomes a hard layer of ceramic about 20 μm in several minutes. This paper studies the principle and process of EDC systemically by using Ti powder green compact electrode. In order to obtain a layer of compact ceramic film, it is very important to select proper electric pulse parameters, such as pulse width, pulse interval, peak current. Meantime, the electrode materials and its forming mode will effect the machining surface quality greatly. This paper presents a series of experiment results to study the EDC process by adopt different technology parameters. Experiments and analyses show that a compact TiC ceramic layer can be created on the surface of metal workpiece. The hardness of ceramic layer is more 3 times higher than the base body, and the hardness changes gradiently from surface to base body. The method will have a great future because many materials can be easily added to the electrode and then be coated on the workpiece surface. Gearing the parameters ceramic can be created with different thickness. The switch between deposition and removal process is carried out easily by changing the polarity, thus the gear to the thickness and shape of the composite ceramic layer is carried out easily. This kind of composite ceramic layer will be used to deal with the surface of the cutting tools or molds possibly, in order to lengthen their life. It also can be found wide application in the fields of surface repairing and strengthening of the ship or aircraft.展开更多
Titanium carbonitride (TiCN) coating was prepared on 45# carbon steel by electrical discharge coating (EDC), and the compositions, morphology and microstructure of the coating were studied. In addition, its friction a...Titanium carbonitride (TiCN) coating was prepared on 45# carbon steel by electrical discharge coating (EDC), and the compositions, morphology and microstructure of the coating were studied. In addition, its friction and wear behaviors relative to the physical vapor deposition (PVD) TiN coating were investigated. The results show that the TiCN coating features a thickness of 15μm with a primary phase of TiC 0.3 N 0.7 . The wear rates of the two coatings have no clear distinction at low applied loads. However, severe abrasive wear appears in the PVD TiN coating when the applied load exceeds 30 N, while the TiCN coating features better wear resistance. The abrasive wear with coating peelings is found to be the predominant wear mechanism at high applied loads.展开更多
In the electrical discharge plasma process, various chemical and physical processes can participate in the removal of contaminants. In this paper, the chemical and physical processes that occur as a result of the elec...In the electrical discharge plasma process, various chemical and physical processes can participate in the removal of contaminants. In this paper, the chemical and physical processes that occur as a result of the electrical discharge plasma are reviewed, and their possible roles in the degradation of contaminants are discussed. Measurement methods for the quantification of important reactive species and their advantages and shortcomings are presented. Approaches on how to enhance the diffusion of the reactive species in solution are examined. In addition, the formation of typical reactive species in different electrical discharge plasma is compared.展开更多
Gap debris as discharge product is closely related to machining process in electrical discharge machining(EDM). A lot of recent researches have focused on the relationship among debris size, surfaces texture, remove...Gap debris as discharge product is closely related to machining process in electrical discharge machining(EDM). A lot of recent researches have focused on the relationship among debris size, surfaces texture, remove rate, and machining stability. The study on statistical distribution of debris size contributes to the research, but it is still superficial currently. In order to obtain the distribution law of the debris particle size, laser particle size analyzer(LPSA) combined with scanning electron microscope(SEM) is used to analyze the EDM debris size. Firstly, the heating dried method is applied to obtain the debris particles. Secondly, the measuring range of LPSA is determined as 0.5–100 μm by SEM observation, and the frequency distribution histogram and the cumulative frequency distribution scattergram of debris size are obtained by using LPSA. Thirdly, according to the distribution characteristic of the frequency distribution histogram, the statistical distribution functions of lognormal, exponentially modified Gaussian(EMG), Gamma and Weibull are chosen to achieve curve fitting of the histogram. At last, the distribute law of the debris size is obtained by fitting results. Experiments with different discharge parameters are carried out on an EDM machine designed by the authors themselves, and the machining conditions are tool electrode of red-copper material, workpiece of ANSI 1045 material and working fluid of de-ionized water. The experimental results indicate that the debris sizes of all experiment sample truly obey the Weibull distribution. The obtained distribution law is significantly important for all the models established based on the debris particle size.展开更多
Electrical discharge machining (EDM) process, at present is still an experience process, wherein selected parameters are often far from the optimum, and at the same time selecting optimization parameters is costly and...Electrical discharge machining (EDM) process, at present is still an experience process, wherein selected parameters are often far from the optimum, and at the same time selecting optimization parameters is costly and time consuming. In this paper, artificial neural network (ANN) and genetic algorithm (GA) are used together to establish the parameter optimization model. An ANN model which adapts Levenberg-Marquardt algorithm has been set up to represent the relationship between material removal rate (MRR) and input parameters, and GA is used to optimize parameters, so that optimization results are obtained. The model is shown to be effective, and MRR is improved using optimized machining parameters.展开更多
Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the m...Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the metal material deposition. Up to now, the studies of micro EDM deposition process focused mainly on the researches of deposition process, namely the effects of discharge parameters in deposition process on the deposition rate or deposition quality. The research of the formation of micro structures with different discharge energy density still lacks. With proper conditions and only by the z-axis feeding in vertical direction, a novel shape of micro spiral structure can be deposited, with 0.11 mm in wire diameter, 0.20 mm in outside diameter, and 3.78 mm in height. Then some new deposition strategies including angular deposition and against the gravity deposition were also successful. In order to find the forming mechanism of the spiral structures, the numerical simulation of the transient temperature distribution on the discharge point was conducted by using the finite-element method(FEM). The results show that there are two major factors lead to the forming of the spiral structures. One is the different material removal form of tool electrode according with the discharge energy density, the other is the influenced degree of the movement of the removed material particles in the discharge gap. The more the energy density in single discharge is, the smaller the mass of the removed material particles is, and the easier the movements of which will be changed to form an order tendency. The fine texture characteristics of the deposited micro spiral structures were analyzed by the energy spectrum analysis and the metallographic analysis. It shows that the components of the deposited material are almost the same as those of the tool electrode. Moreover the deposited material has the brass metallic luster in the longitudinal profile and has compact bonding with the base material. This research is useful to understand the micro-process of micro EDM deposition better and helpful to increase the controllability of the new EDM method for fabrication of micro structures.展开更多
Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energ...Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energy utilization efficiency of ED-milling process, unstable arc discharge and stable arc discharge combined with normal discharge were implemented for material removal by adjusting servo control strategy. The influence of electrode rotating speed and dielectric flushing pressure on machining performance was investigated by experiments. It was found that the rotating of electrode could move the position of discharge plasma channel, and high pressure flushing could wash melted debris out the discharge gap effectively. Both electrode rotating motion and high pressure flushing are contributed to the improvement of machining efficiency.展开更多
Electrical discharge treatments of synthetic dyeing wastewater were carried out with two different systems: underwater pulsed electrical discharge (UPED) and underwater dielectric barrier discharge (UDBD). Reacti...Electrical discharge treatments of synthetic dyeing wastewater were carried out with two different systems: underwater pulsed electrical discharge (UPED) and underwater dielectric barrier discharge (UDBD). Reactive Blue 4 (RB4) and Acid Red 4 (AR4) were used as model contaminants for the synthetic wastewater. The performance of the aforementioned systems was compared with respect to the chromaticity removal and the energy requirement. The results showed that the present electrical discharge systems were very effective for degradation of the dyes. The dependences of the dye degradation rate on treatment time, initial dye concentration, electrical energy, and the type of working gas including air, 02, and N2 were examined. The change in the initial dye concentration did not largely affect the degradation of either RB4 or AR4. The energy delivered to the UPED system was only partially utilized for generating reactive species capable of degrading the dyes, leading to higher energy requirement than the UDBD system. Among the working gases, the best performance was observed with O2. As the degradation proceeded, the concentration of total dissolved solids and the solution conductivity kept increasing while pH showed a decreasing trend, revealing that the dyes were effectively mineralized.展开更多
Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the a...Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the axial wear of tool electrode can be compensated automatically by servo-keeping discharge gap, instead of the traditional methods that depend on experiential models or intermittent compensation. However, the effects of process parameters on 3D SSMEDM have not been reported up until now. In this study, the emphasis is laid on the effects of pulse duration, peak current, machining polarity, track style, track overlap, and scanning velocity on the 3D SSMEDM performances of machining efficiency, processing status, and surface accuracy. A series of experiments were carried out by machining a micro-rectangle cavity (900 μm×600 μm) on doped silicon. The experimental results were obtained as follows. Peak current plays a main role in machining efficiency and surface accuracy. Pulse duration affects obviously the stability of discharge state. The material removal rate of cathode processing is about 3/5 of that of anode processing. Compared with direction-parallel path, contour-parallel path is better in counteracting the lateral wear of tool electrode end. Scanning velocity should be selected moderately to avoid electric arc and short. Track overlap should be slightly less than the radius of tool electrode. In addition, a typical 3D micro structure of eye shape was machined based on the optimized process parameters. These results are beneficial to improve machining stability, accuracy, and efficiency in 3D SSMEDM.展开更多
Aiming at machining deeply small holes in TC4 alloy,a series of experiments were carried out on a self-developed multi-axis micro electrical discharge machining(micro-EDM)machine tool.To improve machining efficiency a...Aiming at machining deeply small holes in TC4 alloy,a series of experiments were carried out on a self-developed multi-axis micro electrical discharge machining(micro-EDM)machine tool.To improve machining efficiency and decrease relative wear of electrode in machining deeply small hole in TC4 alloy,many factors in micro-EDM,such as polarity,electrical parameters and supplying ways of working fluid were studied.Experimental results show that positive polarity machining is far superior to negative polarity machining;it is more optimal when open-circuit voltage,pulse width and pulse interval are 130 V,5μs and 15μs respectively on the self developed multi-axis micro-EDM machine tool;when flushing method is applied in micro-EDM,the machining efficiency is higher and relative wear of electrode is smaller.展开更多
The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studi...The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studied.Eight experiments were carried out in a wire EDM machine by varying pulse on time and wire tension.It is found that the material removal rate increases with the increase of pulse on time though the wire tension does not affect the material removal rate.It seems that the higher wire tension facilitates steady machining process,which generates low wear in wire electrode and better surface finish.The surface roughness does not change notably with the variation of pulse on time.The appearance of the machined surfaces is very similar under all the machining conditions.The machined surface contains solidified molten material,splash of materials and blisters.The increase of the pulse on time increases the wear of wire electrode due to the increase of heat input.The wear of wire electrode generates tapered slot which has higher kerf width at top side than that at bottom side.The higher electrode wear introduces higher taper.展开更多
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte...The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.展开更多
A new deposition method is described using micro electrical discharge machining (EDM) to deposit tool electrode material on workpiece in air. The basic principles of micro electrical discharge deposition (EDD) are...A new deposition method is described using micro electrical discharge machining (EDM) to deposit tool electrode material on workpiece in air. The basic principles of micro electrical discharge deposition (EDD) are analyzed and the realized conditions are predicted. With an ordinary EDM shaping machine, brass as the electrode, high-speed steel as the workpiece, a lot of experiments are carried out on micro EDD systematically and thoroughly. The effects of major processing parameters, such as the discharge current, discharge duration, pulse interval and working medium, are obtained, As a result, a micro cylinder with 0.19 mm in diameter and 7.35 mm in height is deposited. By exchanging the polarities of the electrode and workpiece the micro cylinder can be removed selectively. So the reversible machining of deposition and removal is achieved, which breaks through the constraint of traditional EDM. Measurements show that the deposited material is compact and close to workpiece base, whose components depend on the tool electrode, material.展开更多
The surface modification on the AA6082 Al?Mg?Si aging-hardenable aluminum alloy was investigated by electricaldischarge alloying (EDA) process. Kerosene, used as a dielectric fluid, was pyrolytically decomposed into c...The surface modification on the AA6082 Al?Mg?Si aging-hardenable aluminum alloy was investigated by electricaldischarge alloying (EDA) process. Kerosene, used as a dielectric fluid, was pyrolytically decomposed into carbon for the formationof a self-lubricated carbide layer on the aluminum alloy surface during EDA process. Transmission electron microscopy (TEM)image found that the self-lubricated carbide layer was a multi-phase material with carbides and graphite. As a result, theEDA-modified aluminum alloy had a negligible wear rate of ~2?10?4 mg/m (c. f. ~1.1?10?2 mg/m for aluminum alloy substrate).Notably, a new characteristic was found that the EDA-processed carbide layer was a soft magnet, which improved theelectromagnetic interference (EMI) shielding performance of the alloy.展开更多
Fly ash has congregated considerable attention as a potential reinforcement for aluminum matrix composites(AMCs)to enhance selective properties and reduce the cost of fabrication.However,poor machinability of such AMC...Fly ash has congregated considerable attention as a potential reinforcement for aluminum matrix composites(AMCs)to enhance selective properties and reduce the cost of fabrication.However,poor machinability of such AMCs limits their application.The present study focuses on the preparation of cenosphere fly ash reinforced Al6061alloys by compo casting method.X-ray diffraction analysis of the prepared AMCs exposes the presence of cenosphere particles without any formation of other intermetallic compounds.In this study,electrical discharge machining(EDM)was engaged to examine the machinability of the prepared metal matrix composite(MMCs).The measured performance characteristics for the various combinations of input process parameters were considered to be MRR,EWR and SR.Face centered central composite design(CCD)of response surface method(RSM)was employed to design the number of experimental trials required and a hybrid approach of grey-based response surface methodology(GRSM)was imposed for predicting the optimal combination of processing parameter in EDM process.Generous improvement was observed in the performance characteristics obtained by employing both the optimal setting of machining parameters.The optical3D surface profile graphs of the ED machined surface also revealed the improvement in surface quality and texture employing the optimal processing conditions proposed by hybrid GRSM approach.展开更多
Electrical discharge machining(EDM) is a promising non-traditional micro machining technology that offers a vast array of applications in the manufacturing industry. However, scale effects occur when machining at th...Electrical discharge machining(EDM) is a promising non-traditional micro machining technology that offers a vast array of applications in the manufacturing industry. However, scale effects occur when machining at the micro-scale, which can make it difficult to predict and optimize the machining performances of micro EDM. A new concept of "scale effects" in micro EDM is proposed, the scale effects can reveal the difference in machining performances between micro EDM and conventional macro EDM. Similarity theory is presented to evaluate the scale effects in micro EDM. Single factor experiments are conducted and the experimental results are analyzed by discussing the similarity difference and similarity precision. The results show that the output results of scale effects in micro EDM do not change linearly with discharge parameters. The values of similarity precision of machining time significantly increase when scaling-down the capacitance or open-circuit voltage. It is indicated that the lower the scale of the discharge parameter, the greater the deviation of non-geometrical similarity degree over geometrical similarity degree, which means that the micro EDM system with lower discharge energy experiences more scale effects. The largest similarity difference is 5.34 while the largest similarity precision can be as high as 114.03. It is suggested that the similarity precision is more effective in reflecting the scale effects and their fluctuation than similarity difference. Consequently, similarity theory is suitable for evaluating the scale effects in micro EDM. This proposed research offers engineering values for optimizing the machining parameters and improving the machining performances of micro EDM.展开更多
The surface performance of workpieces processed by electrical discharge machining in gas(dry EDM)was studied in this paper.Firstly,the composition,micro hardness and recast layer of electrical discharge machined(EDMed...The surface performance of workpieces processed by electrical discharge machining in gas(dry EDM)was studied in this paper.Firstly,the composition,micro hardness and recast layer of electrical discharge machined(EDMed)surface of 45 carbon steels in air were investigated through different test analysis methods.The results show that the workpiece surface EDMed in air contains a certain quantity of oxide,and oxidation occurs on the workpiece surface.Compared with the surface of workpieces processed in kerosene,fewer cracks exist on the dry EDMed workpiece surface,and the surface recast layer is thinner than that obtained by conventional EDM.The micro hardness of workpieces machined by dry EDM method is lower than that machined in kerosene,and higher than that of the matrix.In addition,experiments were conducted on the surface wear resistance of workpieces processed in air and kerosene using copper electrode and titanium alloy electrode.The results indicate that the surface wear resistance of workpieces processed in air can be improved,and it is related with tool material and dielectric.展开更多
Hard coatings are extensively required in industry for protecting mechanical/structural parts that withstand extremely high temperature,stress,chemical corrosion,and other hostile environments.Electrical discharge coa...Hard coatings are extensively required in industry for protecting mechanical/structural parts that withstand extremely high temperature,stress,chemical corrosion,and other hostile environments.Electrical discharge coating(EDC)is an emerging surface modification technology to produce such hard coatings by using electrical discharges to coat a layer of material on workpiece surface to modify and enhance the surface characteristics or create new surface functions.This paper presents a comprehensive overview of EDC technologies for various materials,and summarises the types and key parameters of EDC processes as well as the characteristics of resulting coatings.It provides a systematic summary of the fundamentals and key features of the EDC processes,as well as its applications and future trends.展开更多
One of the reasons for increased material removal rate in magnetic field assisted dry electrical discharge machining (EDM) is confinement of plasma due to Lorentz forces. This paper presents a mathematical model to ...One of the reasons for increased material removal rate in magnetic field assisted dry electrical discharge machining (EDM) is confinement of plasma due to Lorentz forces. This paper presents a mathematical model to evaluate the effect of external magnetic field on crater depth and diameter in single- and multiple-discharge EDM process. The model incorporates three main effects of the magnetic field, which include plasma confinement, mean free path reduction and pulsating magnetic field effects. Upon the application of an external magnetic field, Lorentz forces that are developed across the plasma column confine the plasma column. Also, the magnetic field reduces the mean free path of electrons due to an increase in the plasma pressure and cycloidal path taken by the electrons between the electrodes. As the mean free path of electrons reduces, more ionization occurs in plasma column and eventually an increase in the current density at the inter-electrode gap occurs. The model results for crater depth and its diameter in single discharge dry EDM process show an error of 9%-10% over the respective experimental values.展开更多
文摘The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and low working gap was investigated by the Grey-Taguchi method.The influences of peak current,pulse on-time,pulse off-time and spark gap on electrode wear(EW),material removal rate(MRR) and working gap(WG) in the micro milling electrical discharge machining of Inconel 718 were analyzed.The experimental results show that the electrode wear decreases from 5.6×10-9 to 5.2×10-9 mm3/min,the material removal rate increases from 0.47×10-8 to 1.68×10-8 mm3/min,and the working gap decreases from 1.27 to 1.19 μm under optimal micro milling electrical discharge machining process parameters.Hence,it is clearly shown that multiple performance characteristics can be improved by using the Grey-Taguchi method.
文摘This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface with Ti or other compressed powder electrode in a certain condition. This new revolutionary method is called Electrical Discharge Coating (EDC). The process of EDC begins with electrode wear during EDM,then a kind of hard carbide is created through the thermal and chemical reaction between the worn electrode material and the carbon particle decomposed from kerosene fluid under high temperature. The carbide is piled up on a workpiece quickly and becomes a hard layer of ceramic about 20 μm in several minutes. This paper studies the principle and process of EDC systemically by using Ti powder green compact electrode. In order to obtain a layer of compact ceramic film, it is very important to select proper electric pulse parameters, such as pulse width, pulse interval, peak current. Meantime, the electrode materials and its forming mode will effect the machining surface quality greatly. This paper presents a series of experiment results to study the EDC process by adopt different technology parameters. Experiments and analyses show that a compact TiC ceramic layer can be created on the surface of metal workpiece. The hardness of ceramic layer is more 3 times higher than the base body, and the hardness changes gradiently from surface to base body. The method will have a great future because many materials can be easily added to the electrode and then be coated on the workpiece surface. Gearing the parameters ceramic can be created with different thickness. The switch between deposition and removal process is carried out easily by changing the polarity, thus the gear to the thickness and shape of the composite ceramic layer is carried out easily. This kind of composite ceramic layer will be used to deal with the surface of the cutting tools or molds possibly, in order to lengthen their life. It also can be found wide application in the fields of surface repairing and strengthening of the ship or aircraft.
基金Project(51075075)supported by the National Natural Science Foundation of China
文摘Titanium carbonitride (TiCN) coating was prepared on 45# carbon steel by electrical discharge coating (EDC), and the compositions, morphology and microstructure of the coating were studied. In addition, its friction and wear behaviors relative to the physical vapor deposition (PVD) TiN coating were investigated. The results show that the TiCN coating features a thickness of 15μm with a primary phase of TiC 0.3 N 0.7 . The wear rates of the two coatings have no clear distinction at low applied loads. However, severe abrasive wear appears in the PVD TiN coating when the applied load exceeds 30 N, while the TiCN coating features better wear resistance. The abrasive wear with coating peelings is found to be the predominant wear mechanism at high applied loads.
基金funded by National Natural Science Foundation of China (Nos. 51608448 and 21737003)Young Talent Cultivation Scheme Funding of Northwest A&F University (No. Z109021802)the Fundamental Research Funds for the Central Universities (No. Z109021617) for their financial support in this research
文摘In the electrical discharge plasma process, various chemical and physical processes can participate in the removal of contaminants. In this paper, the chemical and physical processes that occur as a result of the electrical discharge plasma are reviewed, and their possible roles in the degradation of contaminants are discussed. Measurement methods for the quantification of important reactive species and their advantages and shortcomings are presented. Approaches on how to enhance the diffusion of the reactive species in solution are examined. In addition, the formation of typical reactive species in different electrical discharge plasma is compared.
基金supported by Research Fund for the Doctoral Program of Ministry of Education of China(Grant No.20090041110031)National Natural Science Foundation of China(Grant No.50575033)
文摘Gap debris as discharge product is closely related to machining process in electrical discharge machining(EDM). A lot of recent researches have focused on the relationship among debris size, surfaces texture, remove rate, and machining stability. The study on statistical distribution of debris size contributes to the research, but it is still superficial currently. In order to obtain the distribution law of the debris particle size, laser particle size analyzer(LPSA) combined with scanning electron microscope(SEM) is used to analyze the EDM debris size. Firstly, the heating dried method is applied to obtain the debris particles. Secondly, the measuring range of LPSA is determined as 0.5–100 μm by SEM observation, and the frequency distribution histogram and the cumulative frequency distribution scattergram of debris size are obtained by using LPSA. Thirdly, according to the distribution characteristic of the frequency distribution histogram, the statistical distribution functions of lognormal, exponentially modified Gaussian(EMG), Gamma and Weibull are chosen to achieve curve fitting of the histogram. At last, the distribute law of the debris size is obtained by fitting results. Experiments with different discharge parameters are carried out on an EDM machine designed by the authors themselves, and the machining conditions are tool electrode of red-copper material, workpiece of ANSI 1045 material and working fluid of de-ionized water. The experimental results indicate that the debris sizes of all experiment sample truly obey the Weibull distribution. The obtained distribution law is significantly important for all the models established based on the debris particle size.
基金Project supported by the National Natural Science Foundation of China (Nos. 50575128 and 50775128)the Outstanding Young Scientist Foundation of Shandong Province (No. 2005BS05004), China
文摘Electrical discharge machining (EDM) process, at present is still an experience process, wherein selected parameters are often far from the optimum, and at the same time selecting optimization parameters is costly and time consuming. In this paper, artificial neural network (ANN) and genetic algorithm (GA) are used together to establish the parameter optimization model. An ANN model which adapts Levenberg-Marquardt algorithm has been set up to represent the relationship between material removal rate (MRR) and input parameters, and GA is used to optimize parameters, so that optimization results are obtained. The model is shown to be effective, and MRR is improved using optimized machining parameters.
基金supported by National Natural Science Foundation of China(Grant No.50675049)
文摘Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the metal material deposition. Up to now, the studies of micro EDM deposition process focused mainly on the researches of deposition process, namely the effects of discharge parameters in deposition process on the deposition rate or deposition quality. The research of the formation of micro structures with different discharge energy density still lacks. With proper conditions and only by the z-axis feeding in vertical direction, a novel shape of micro spiral structure can be deposited, with 0.11 mm in wire diameter, 0.20 mm in outside diameter, and 3.78 mm in height. Then some new deposition strategies including angular deposition and against the gravity deposition were also successful. In order to find the forming mechanism of the spiral structures, the numerical simulation of the transient temperature distribution on the discharge point was conducted by using the finite-element method(FEM). The results show that there are two major factors lead to the forming of the spiral structures. One is the different material removal form of tool electrode according with the discharge energy density, the other is the influenced degree of the movement of the removed material particles in the discharge gap. The more the energy density in single discharge is, the smaller the mass of the removed material particles is, and the easier the movements of which will be changed to form an order tendency. The fine texture characteristics of the deposited micro spiral structures were analyzed by the energy spectrum analysis and the metallographic analysis. It shows that the components of the deposited material are almost the same as those of the tool electrode. Moreover the deposited material has the brass metallic luster in the longitudinal profile and has compact bonding with the base material. This research is useful to understand the micro-process of micro EDM deposition better and helpful to increase the controllability of the new EDM method for fabrication of micro structures.
基金Project(MSV-2013-09)supported by State Key Laboratory of Mechanical System and Vibration,China
文摘Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energy utilization efficiency of ED-milling process, unstable arc discharge and stable arc discharge combined with normal discharge were implemented for material removal by adjusting servo control strategy. The influence of electrode rotating speed and dielectric flushing pressure on machining performance was investigated by experiments. It was found that the rotating of electrode could move the position of discharge plasma channel, and high pressure flushing could wash melted debris out the discharge gap effectively. Both electrode rotating motion and high pressure flushing are contributed to the improvement of machining efficiency.
基金supported by the Ministry of Education, Science & Technology (MEST)the National Research Foundation of Korea (NRF)
文摘Electrical discharge treatments of synthetic dyeing wastewater were carried out with two different systems: underwater pulsed electrical discharge (UPED) and underwater dielectric barrier discharge (UDBD). Reactive Blue 4 (RB4) and Acid Red 4 (AR4) were used as model contaminants for the synthetic wastewater. The performance of the aforementioned systems was compared with respect to the chromaticity removal and the energy requirement. The results showed that the present electrical discharge systems were very effective for degradation of the dyes. The dependences of the dye degradation rate on treatment time, initial dye concentration, electrical energy, and the type of working gas including air, 02, and N2 were examined. The change in the initial dye concentration did not largely affect the degradation of either RB4 or AR4. The energy delivered to the UPED system was only partially utilized for generating reactive species capable of degrading the dyes, leading to higher energy requirement than the UDBD system. Among the working gases, the best performance was observed with O2. As the degradation proceeded, the concentration of total dissolved solids and the solution conductivity kept increasing while pH showed a decreasing trend, revealing that the dyes were effectively mineralized.
基金supported by National Natural Science Foundation of China (Grant No. 50905094)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA044204, Grant No. 2009AA044205)China Postdoctoral Science Foundation (Grant No. 20080440378, Grant No. 200902097)
文摘Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the axial wear of tool electrode can be compensated automatically by servo-keeping discharge gap, instead of the traditional methods that depend on experiential models or intermittent compensation. However, the effects of process parameters on 3D SSMEDM have not been reported up until now. In this study, the emphasis is laid on the effects of pulse duration, peak current, machining polarity, track style, track overlap, and scanning velocity on the 3D SSMEDM performances of machining efficiency, processing status, and surface accuracy. A series of experiments were carried out by machining a micro-rectangle cavity (900 μm×600 μm) on doped silicon. The experimental results were obtained as follows. Peak current plays a main role in machining efficiency and surface accuracy. Pulse duration affects obviously the stability of discharge state. The material removal rate of cathode processing is about 3/5 of that of anode processing. Compared with direction-parallel path, contour-parallel path is better in counteracting the lateral wear of tool electrode end. Scanning velocity should be selected moderately to avoid electric arc and short. Track overlap should be slightly less than the radius of tool electrode. In addition, a typical 3D micro structure of eye shape was machined based on the optimized process parameters. These results are beneficial to improve machining stability, accuracy, and efficiency in 3D SSMEDM.
基金Project(2006AA04Z323)supported by High-tech Research and Development Program of China。
文摘Aiming at machining deeply small holes in TC4 alloy,a series of experiments were carried out on a self-developed multi-axis micro electrical discharge machining(micro-EDM)machine tool.To improve machining efficiency and decrease relative wear of electrode in machining deeply small hole in TC4 alloy,many factors in micro-EDM,such as polarity,electrical parameters and supplying ways of working fluid were studied.Experimental results show that positive polarity machining is far superior to negative polarity machining;it is more optimal when open-circuit voltage,pulse width and pulse interval are 130 V,5μs and 15μs respectively on the self developed multi-axis micro-EDM machine tool;when flushing method is applied in micro-EDM,the machining efficiency is higher and relative wear of electrode is smaller.
文摘The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studied.Eight experiments were carried out in a wire EDM machine by varying pulse on time and wire tension.It is found that the material removal rate increases with the increase of pulse on time though the wire tension does not affect the material removal rate.It seems that the higher wire tension facilitates steady machining process,which generates low wear in wire electrode and better surface finish.The surface roughness does not change notably with the variation of pulse on time.The appearance of the machined surfaces is very similar under all the machining conditions.The machined surface contains solidified molten material,splash of materials and blisters.The increase of the pulse on time increases the wear of wire electrode due to the increase of heat input.The wear of wire electrode generates tapered slot which has higher kerf width at top side than that at bottom side.The higher electrode wear introduces higher taper.
基金Provincial Key Laboratory of Precision and Micro-Manufacturing Technology of Jiangsu,China(No.Z0601-052-02).
文摘The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.
基金This project is supported by National Natural Science Foundation of China (No.50275038).
文摘A new deposition method is described using micro electrical discharge machining (EDM) to deposit tool electrode material on workpiece in air. The basic principles of micro electrical discharge deposition (EDD) are analyzed and the realized conditions are predicted. With an ordinary EDM shaping machine, brass as the electrode, high-speed steel as the workpiece, a lot of experiments are carried out on micro EDD systematically and thoroughly. The effects of major processing parameters, such as the discharge current, discharge duration, pulse interval and working medium, are obtained, As a result, a micro cylinder with 0.19 mm in diameter and 7.35 mm in height is deposited. By exchanging the polarities of the electrode and workpiece the micro cylinder can be removed selectively. So the reversible machining of deposition and removal is achieved, which breaks through the constraint of traditional EDM. Measurements show that the deposited material is compact and close to workpiece base, whose components depend on the tool electrode, material.
文摘The surface modification on the AA6082 Al?Mg?Si aging-hardenable aluminum alloy was investigated by electricaldischarge alloying (EDA) process. Kerosene, used as a dielectric fluid, was pyrolytically decomposed into carbon for the formationof a self-lubricated carbide layer on the aluminum alloy surface during EDA process. Transmission electron microscopy (TEM)image found that the self-lubricated carbide layer was a multi-phase material with carbides and graphite. As a result, theEDA-modified aluminum alloy had a negligible wear rate of ~2?10?4 mg/m (c. f. ~1.1?10?2 mg/m for aluminum alloy substrate).Notably, a new characteristic was found that the EDA-processed carbide layer was a soft magnet, which improved theelectromagnetic interference (EMI) shielding performance of the alloy.
文摘Fly ash has congregated considerable attention as a potential reinforcement for aluminum matrix composites(AMCs)to enhance selective properties and reduce the cost of fabrication.However,poor machinability of such AMCs limits their application.The present study focuses on the preparation of cenosphere fly ash reinforced Al6061alloys by compo casting method.X-ray diffraction analysis of the prepared AMCs exposes the presence of cenosphere particles without any formation of other intermetallic compounds.In this study,electrical discharge machining(EDM)was engaged to examine the machinability of the prepared metal matrix composite(MMCs).The measured performance characteristics for the various combinations of input process parameters were considered to be MRR,EWR and SR.Face centered central composite design(CCD)of response surface method(RSM)was employed to design the number of experimental trials required and a hybrid approach of grey-based response surface methodology(GRSM)was imposed for predicting the optimal combination of processing parameter in EDM process.Generous improvement was observed in the performance characteristics obtained by employing both the optimal setting of machining parameters.The optical3D surface profile graphs of the ED machined surface also revealed the improvement in surface quality and texture employing the optimal processing conditions proposed by hybrid GRSM approach.
基金Supported by National Natural Science Foundation of China(Grant No.51375274)China Postdoctoral Science Foundation(Grant No.2014M561920)
文摘Electrical discharge machining(EDM) is a promising non-traditional micro machining technology that offers a vast array of applications in the manufacturing industry. However, scale effects occur when machining at the micro-scale, which can make it difficult to predict and optimize the machining performances of micro EDM. A new concept of "scale effects" in micro EDM is proposed, the scale effects can reveal the difference in machining performances between micro EDM and conventional macro EDM. Similarity theory is presented to evaluate the scale effects in micro EDM. Single factor experiments are conducted and the experimental results are analyzed by discussing the similarity difference and similarity precision. The results show that the output results of scale effects in micro EDM do not change linearly with discharge parameters. The values of similarity precision of machining time significantly increase when scaling-down the capacitance or open-circuit voltage. It is indicated that the lower the scale of the discharge parameter, the greater the deviation of non-geometrical similarity degree over geometrical similarity degree, which means that the micro EDM system with lower discharge energy experiences more scale effects. The largest similarity difference is 5.34 while the largest similarity precision can be as high as 114.03. It is suggested that the similarity precision is more effective in reflecting the scale effects and their fluctuation than similarity difference. Consequently, similarity theory is suitable for evaluating the scale effects in micro EDM. This proposed research offers engineering values for optimizing the machining parameters and improving the machining performances of micro EDM.
基金Sponsored by the Fund for the Doctoral Program of Higher Education (RFDP) (Grant No. CBQQ24403007)the Innovation Fund of HIT(Grant No.CBQQ18400018)
文摘The surface performance of workpieces processed by electrical discharge machining in gas(dry EDM)was studied in this paper.Firstly,the composition,micro hardness and recast layer of electrical discharge machined(EDMed)surface of 45 carbon steels in air were investigated through different test analysis methods.The results show that the workpiece surface EDMed in air contains a certain quantity of oxide,and oxidation occurs on the workpiece surface.Compared with the surface of workpieces processed in kerosene,fewer cracks exist on the dry EDMed workpiece surface,and the surface recast layer is thinner than that obtained by conventional EDM.The micro hardness of workpieces machined by dry EDM method is lower than that machined in kerosene,and higher than that of the matrix.In addition,experiments were conducted on the surface wear resistance of workpieces processed in air and kerosene using copper electrode and titanium alloy electrode.The results indicate that the surface wear resistance of workpieces processed in air can be improved,and it is related with tool material and dielectric.
基金Pay Jun Liew and Ching Yee Yap acknowledge the supportsfrom Universiti Teknikal Malaysia Melaka (UTeM) for thetechnical and financial supports through the grant PJP/2018/FKP(6A)/S01587.
文摘Hard coatings are extensively required in industry for protecting mechanical/structural parts that withstand extremely high temperature,stress,chemical corrosion,and other hostile environments.Electrical discharge coating(EDC)is an emerging surface modification technology to produce such hard coatings by using electrical discharges to coat a layer of material on workpiece surface to modify and enhance the surface characteristics or create new surface functions.This paper presents a comprehensive overview of EDC technologies for various materials,and summarises the types and key parameters of EDC processes as well as the characteristics of resulting coatings.It provides a systematic summary of the fundamentals and key features of the EDC processes,as well as its applications and future trends.
文摘One of the reasons for increased material removal rate in magnetic field assisted dry electrical discharge machining (EDM) is confinement of plasma due to Lorentz forces. This paper presents a mathematical model to evaluate the effect of external magnetic field on crater depth and diameter in single- and multiple-discharge EDM process. The model incorporates three main effects of the magnetic field, which include plasma confinement, mean free path reduction and pulsating magnetic field effects. Upon the application of an external magnetic field, Lorentz forces that are developed across the plasma column confine the plasma column. Also, the magnetic field reduces the mean free path of electrons due to an increase in the plasma pressure and cycloidal path taken by the electrons between the electrodes. As the mean free path of electrons reduces, more ionization occurs in plasma column and eventually an increase in the current density at the inter-electrode gap occurs. The model results for crater depth and its diameter in single discharge dry EDM process show an error of 9%-10% over the respective experimental values.