A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevaryin...A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.展开更多
We reported the influence of interface trap density(Nt) on the electrical properties of amorphous InSnZnO based thin-film transistors,which were fabricated at different direct-current(DC) magnetron sputtering powe...We reported the influence of interface trap density(Nt) on the electrical properties of amorphous InSnZnO based thin-film transistors,which were fabricated at different direct-current(DC) magnetron sputtering powers.The device with the smallest Nt of 5.68×10^11 cm^-2 and low resistivity of 1.21×10^-3Ω·cm exhibited a turn-on voltage(V(ON)) of-3.60 V,a sub-threshold swing(S.S) of 0.16 V/dec and an on-off ratio(I(ON)/I(OFF)) of^8 x 10^8.With increasing Nt,the V(ON),S.S and I(ON)/I(OFF) were suppressed to-9.40 V,0.24 V/dec and 2.59×10^8,respectively.The V(TH) shift under negative gate bias stress has also been estimated to investigate the electrical stability of the devices.The result showed that the reduction in Nt contributes to an improvement in the electrical properties and stability.展开更多
Semiconductor materials with heterogeneous interfaces and twin structures generally demonstrate a higher concentration of carriers and better electrical stability.A variety of Cu-doped Co_(0.98)Cu_(x)Mn_(2.02−x)O_(4)(...Semiconductor materials with heterogeneous interfaces and twin structures generally demonstrate a higher concentration of carriers and better electrical stability.A variety of Cu-doped Co_(0.98)Cu_(x)Mn_(2.02−x)O_(4)(0≤x≤0.5)negative temperature coefficient(NTC)ceramics with dual phases and twin structures were successfully prepared in this study.Rietveld refinement indicates that the content of a cubic spinel phase increases with increasing Cu content.The addition of Cu can promote grain growth and densification.Atomic-level structural characterization reveals the evolution of twin morphology from large lamellae with internal fine lamellae(LIT lamellae)to large lamellae without internal fine lamellae(L lamellae)and the distribution of twin boundary defects.First-principles calculations reveal that the dual phases and twin structures have lower oxygen-vacancy formation energy than those in the case of the pure tetragonal and cubic spinel,thereby enhancing the transmission of carriers.Additionally,the three-dimensional charge-density difference shows that metal ions at the interface lose electrons and dwell in high valence states,thereby enhancing electrical stability of the NTC ceramics.Furthermore,the additional Cu ions engage in electron-exchange interactions with Mn and Co ions,thereby reducing resistivity.In comparison to previous Cu-containing systems,the Co_(0.98)Cu_(x)Mn_(2.02−x)O_(4)series exhibit superior stability(aging value≤2.84%),tunable room-temperature resistivity(ρ),and material constant(B)value(17.5Ω·cm≤ρ≤7325Ω·cm,2836 K≤B≤4315 K).These discoveries lay a foundation for designing and developing new NTC ceramics with ultra-high performance.展开更多
Polymeric-inorganic nanocomposite catalysts were synthesized by facile one-pot chemical polymerization of pyrrole in the presence of titanium dioxide nanoparticles. The electrical, optical, photovoltaic performance of...Polymeric-inorganic nanocomposite catalysts were synthesized by facile one-pot chemical polymerization of pyrrole in the presence of titanium dioxide nanoparticles. The electrical, optical, photovoltaic performance of dye sensitized solar cell(DSSC) and visible light driven photocatalytic activities of the nanocomposite were investigated. The prepared nanocomposite displays excellent photo-activity, attaining 100% degradation of methyl orange dye in 60 min under visible light source while 55% for pure TiO_2 under similar experimental conditions. The photovoltaic performance of the polypyrrole-titanium dioxide(PPy-TiO_2) nanocomposite has a 51.4% improvement with a photo-conversion efficiency of 8.07% as compared to pure TiO_2 based DSSC. By comparing the physical mixture of the PPy-TiO_2 nanocomposite and pristine TiO_2, the enhanced activity of the PPy-TiO_2 nanocomposite can be attributed to the reduced charge transfer resistance, outstanding electrical conductance of the PPy, the nano-sized structure of TiO_2 and their synergetic effect. Furthermore, the PPy-TiO_2 nanocomposite shows excellent electrical conductivity and isothermal stability under ambient conditions below 110?C.展开更多
Passive torque servo system (PTSS) simulates aerodynamic load and exerts the load on actuation system, but PTSS endures position coupling disturbance from active motion of actuation system, and this inherent disturb...Passive torque servo system (PTSS) simulates aerodynamic load and exerts the load on actuation system, but PTSS endures position coupling disturbance from active motion of actuation system, and this inherent disturbance is called extra torque. The most important issue for PTSS controller design is how to eliminate the influence of extra torque. Using backstepping technique, adaptive fuzzy torque control (AFTC) algorithm is proposed for PTSS in this paper, which reflects the essential characteristics of PTSS and guarantees transient tracking performance as well as final tracking accuracy. Takagi-Sugeno (T-S) fuzzy logic system is utilized to compensate parametric uncertainties and unstructured uncertainties. The output velocity of actuator identified model is introduced into AFTC aiming to eliminate extra torque. The closed-loop stability is studied using small gain theorem and the control system is proved to be semiglobally uniformly ultimately bounded. The proposed AFTC algorithm is applied to an electric load simulator (ELS), and the comparative experimental results indicate that AFTC controller is effective for PTSS.展开更多
The triboelectric nanogenerator(TENG)offers a novel approach to harness mechanical energy continuously and sustainably.It has emerged as a leading technology for converting mechanical energy into electricity.The deman...The triboelectric nanogenerator(TENG)offers a novel approach to harness mechanical energy continuously and sustainably.It has emerged as a leading technology for converting mechanical energy into electricity.The demand for self-powered wearable microelectronics and energy generation in extreme conditions underscores the need for efficient high-temperature operatable TENGs(HTO-TENGs).However,the operating environment temperature not only affects the storage and dissipation of electrons during triboelectrification,leading to decreased output performance of TENG and instability at high temperatures,but also damage to the mechanical stability and effective defects in most tribomaterials,resulting in a further reduction in TENG’s effective output power.Moreover,the unstable material properties of the triboelectric layer at high temperatures also restrict the use of the TENG in harsh environments.Therefore,it is imperative to consider the structural durability and electrical output stability of TENG when applying it in challenging working environments.This review aims to bridge this gap by providing a comprehensive overview of the current state and research advancements in HTO-TENG for the first time.Finally,this review presents insights into future research prospects and proposes design strategies to facilitate the rapid development of the field.展开更多
基金supported in part by the Nation Natural Science Foundation of China under Grant No.52175099China Postdoctoral Science Foundation under Grant No.2020M671494Jiangsu Planned Projects for Postdoctoral Research Funds under Grant No.2020Z179。
文摘A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.
文摘We reported the influence of interface trap density(Nt) on the electrical properties of amorphous InSnZnO based thin-film transistors,which were fabricated at different direct-current(DC) magnetron sputtering powers.The device with the smallest Nt of 5.68×10^11 cm^-2 and low resistivity of 1.21×10^-3Ω·cm exhibited a turn-on voltage(V(ON)) of-3.60 V,a sub-threshold swing(S.S) of 0.16 V/dec and an on-off ratio(I(ON)/I(OFF)) of^8 x 10^8.With increasing Nt,the V(ON),S.S and I(ON)/I(OFF) were suppressed to-9.40 V,0.24 V/dec and 2.59×10^8,respectively.The V(TH) shift under negative gate bias stress has also been estimated to investigate the electrical stability of the devices.The result showed that the reduction in Nt contributes to an improvement in the electrical properties and stability.
基金supported by the National Natural Science Foundation of China(Grant No.52002347)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.19KJB430039).
文摘Semiconductor materials with heterogeneous interfaces and twin structures generally demonstrate a higher concentration of carriers and better electrical stability.A variety of Cu-doped Co_(0.98)Cu_(x)Mn_(2.02−x)O_(4)(0≤x≤0.5)negative temperature coefficient(NTC)ceramics with dual phases and twin structures were successfully prepared in this study.Rietveld refinement indicates that the content of a cubic spinel phase increases with increasing Cu content.The addition of Cu can promote grain growth and densification.Atomic-level structural characterization reveals the evolution of twin morphology from large lamellae with internal fine lamellae(LIT lamellae)to large lamellae without internal fine lamellae(L lamellae)and the distribution of twin boundary defects.First-principles calculations reveal that the dual phases and twin structures have lower oxygen-vacancy formation energy than those in the case of the pure tetragonal and cubic spinel,thereby enhancing the transmission of carriers.Additionally,the three-dimensional charge-density difference shows that metal ions at the interface lose electrons and dwell in high valence states,thereby enhancing electrical stability of the NTC ceramics.Furthermore,the additional Cu ions engage in electron-exchange interactions with Mn and Co ions,thereby reducing resistivity.In comparison to previous Cu-containing systems,the Co_(0.98)Cu_(x)Mn_(2.02−x)O_(4)series exhibit superior stability(aging value≤2.84%),tunable room-temperature resistivity(ρ),and material constant(B)value(17.5Ω·cm≤ρ≤7325Ω·cm,2836 K≤B≤4315 K).These discoveries lay a foundation for designing and developing new NTC ceramics with ultra-high performance.
基金supports of this work by KFUPM through the project # R15-CW-11 (MIT-13103, 13104) under the Center of Excellence for Scientific Research Collaboration with MIT and the project # RG 1311
文摘Polymeric-inorganic nanocomposite catalysts were synthesized by facile one-pot chemical polymerization of pyrrole in the presence of titanium dioxide nanoparticles. The electrical, optical, photovoltaic performance of dye sensitized solar cell(DSSC) and visible light driven photocatalytic activities of the nanocomposite were investigated. The prepared nanocomposite displays excellent photo-activity, attaining 100% degradation of methyl orange dye in 60 min under visible light source while 55% for pure TiO_2 under similar experimental conditions. The photovoltaic performance of the polypyrrole-titanium dioxide(PPy-TiO_2) nanocomposite has a 51.4% improvement with a photo-conversion efficiency of 8.07% as compared to pure TiO_2 based DSSC. By comparing the physical mixture of the PPy-TiO_2 nanocomposite and pristine TiO_2, the enhanced activity of the PPy-TiO_2 nanocomposite can be attributed to the reduced charge transfer resistance, outstanding electrical conductance of the PPy, the nano-sized structure of TiO_2 and their synergetic effect. Furthermore, the PPy-TiO_2 nanocomposite shows excellent electrical conductivity and isothermal stability under ambient conditions below 110?C.
基金National High-tech Research and Development Program of China (2009AA04Z412)"111" ProjectBUAA Fund of Graduate Education and Development
文摘Passive torque servo system (PTSS) simulates aerodynamic load and exerts the load on actuation system, but PTSS endures position coupling disturbance from active motion of actuation system, and this inherent disturbance is called extra torque. The most important issue for PTSS controller design is how to eliminate the influence of extra torque. Using backstepping technique, adaptive fuzzy torque control (AFTC) algorithm is proposed for PTSS in this paper, which reflects the essential characteristics of PTSS and guarantees transient tracking performance as well as final tracking accuracy. Takagi-Sugeno (T-S) fuzzy logic system is utilized to compensate parametric uncertainties and unstructured uncertainties. The output velocity of actuator identified model is introduced into AFTC aiming to eliminate extra torque. The closed-loop stability is studied using small gain theorem and the control system is proved to be semiglobally uniformly ultimately bounded. The proposed AFTC algorithm is applied to an electric load simulator (ELS), and the comparative experimental results indicate that AFTC controller is effective for PTSS.
基金supported by the National Natural Sci-ence Foundation of China(No.52003074,52125205,U20A20166,52192614,52003073,and 62174049)the Project funded by China Postdoctoral Science Foundation(No.2020M680097)+5 种基金the Postdoctoral Fellowship Program of CPSF(No.GZC20230681)the Natural Science Foundation of Henan Province(No.202300410058)the National Sci-ence Fund for Excellent Young Scholars of Henan Province(No.222300420033)National key R&D program of China(2021YFB3200302 and 2021YFB3200304),Natural Science Foundation of BeijingMunicipality(Z180011 and 2222088)Shenzhen Science and Technology Program(grant number KQTD20170810105439418)the Fundamental Research Funds for the Central Universities.
文摘The triboelectric nanogenerator(TENG)offers a novel approach to harness mechanical energy continuously and sustainably.It has emerged as a leading technology for converting mechanical energy into electricity.The demand for self-powered wearable microelectronics and energy generation in extreme conditions underscores the need for efficient high-temperature operatable TENGs(HTO-TENGs).However,the operating environment temperature not only affects the storage and dissipation of electrons during triboelectrification,leading to decreased output performance of TENG and instability at high temperatures,but also damage to the mechanical stability and effective defects in most tribomaterials,resulting in a further reduction in TENG’s effective output power.Moreover,the unstable material properties of the triboelectric layer at high temperatures also restrict the use of the TENG in harsh environments.Therefore,it is imperative to consider the structural durability and electrical output stability of TENG when applying it in challenging working environments.This review aims to bridge this gap by providing a comprehensive overview of the current state and research advancements in HTO-TENG for the first time.Finally,this review presents insights into future research prospects and proposes design strategies to facilitate the rapid development of the field.