The angular position controller is system (EHSAS) to control the output of the rotary applied to electro-hydraulic servo actuator actuator. It works as a compensator based on the frequency response of the EHSAS. Its...The angular position controller is system (EHSAS) to control the output of the rotary applied to electro-hydraulic servo actuator actuator. It works as a compensator based on the frequency response of the EHSAS. Its design model is verified on the state-space model of EHSAS by using simulation program SIMULINK. Real data used to test the system. Simulation results give a good agreement for the controller and also for the state-space model.展开更多
Most current researches working on improving stiffness focus on the application of control theories.But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated,so...Most current researches working on improving stiffness focus on the application of control theories.But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated,so the control action is lagged.Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms.In this paper,the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed.On this basis,the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward.And a scheme using double servo valves to realize flow feedforward compensation is presented,in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time.The two valves are arranged in parallel to control the cylinder jointly.Furthermore,the model of flow compensation is derived,by which the product of the amplitude and width of the valve’s pulse command signal can be calculated.And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations.Using the proposed scheme,simulations and experiments at different positions with different force changes are conducted.The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time.That is,system dynamic load stiffness is evidently raised.This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.展开更多
A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surf...A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. The PID gain parameters are optimized by the genetic algorithm (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experimental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as compared with the classical PID controller and the compensator controller.展开更多
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass...Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting.展开更多
The mechanical characteristics of the electro-hydraulic servo system in thecentrifuge field are analyzed. The hydraulic pressure law in the centrifuge field indicates theexistence of the centrifuge hydraulic pressure....The mechanical characteristics of the electro-hydraulic servo system in thecentrifuge field are analyzed. The hydraulic pressure law in the centrifuge field indicates theexistence of the centrifuge hydraulic pressure. The mechanical characteristics of the slide-valveand the dual nozzle flapper valve are studied, and it is found that the centrifuge field can notonly increase the driving force or moment of the function units, but also decrease the stability ofthe components. Finally by applying Gauss minimum constraint principle, the dynamic model of theelectro-hydraulic vibrator in the centrifuge field is established, and the mechanical restriction ofthe system is also presented. The study will be helpful for the realization of the combinedvibration and centrifuge test system.展开更多
The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping a...The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping and stiffness matrices is investigated in this paper. First, by introducing a linear varying parameter, the nonlinear system is described as a linear parameter varying (LPV) model. Second, based on this LPV model, an LMI-based condition for the system to be asymptotically stabilized is deduced. By solving these LMIs, a parameter-dependent controller is established for the closed- loop system to be stable with a prescribed level of disturbance attenuation. The condition is also extended to the uncertain case. Finally, some numerical simulations demonstrate the satisfying performance of the proposed controller.展开更多
A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance i...A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance indexes in the coordinating optimization, while the tuning rate of boundary layer width (BLW) is employed as the optimization parameter. Based on the mathematical relationship between the BLW and steady-state error, an optimized BLW tuning rate is added to the nonlinear control term of SMVSC. Simulation experiment results applied to the positioning control of an electro-hydraulic servo system show the comprehensive superiority in dynamical and static state performance by using the proposed controller is better than that by using SMVSC without optimized BLW tuning rate. This succeeds in coordinately considering both chattering reduction and high-precision control realization in SMVSC.展开更多
Dynamic modeling of a parallel manipulator(PM) is an important issue. A complete PM system is actually composed of multiple physical domains. As PMs are widely used in various fields, the importance of modeling the ...Dynamic modeling of a parallel manipulator(PM) is an important issue. A complete PM system is actually composed of multiple physical domains. As PMs are widely used in various fields, the importance of modeling the global dynamic model of the PM system becomes increasingly prominent. Currently there lacks further research in global dynamic modeling. A unified modeling approach for the multi-energy domains PM system is proposed based on bond graph and a global dynamic model of the 3-UPS/S parallel stabilized platform involving mechanical and electrical-hydraulic elements is built. Firstly, the screw bond graph theory is improved based on the screw theory, the modular joint model is modeled and the normalized dynamic model of the mechanism is established. Secondly, combined with the electro-hydraulic servo system model built by traditional bond graph, the global dynamic model of the system is obtained, and then the motion, force and power of any element can be obtained directly. Lastly, the experiments and simulations of the driving forces, pressure and flow are performed, and the results show that, the theoretical calculation results of the driving forces are in accord with the experimental ones, and the pressure and flow of the first limb and the third limb are symmetry with each other. The results are reasonable and verify the correctness and effectiveness of the model and the method. The proposed dynamic modeling method provides a reference for modeling of other multi-energy domains system which contains complex PM.展开更多
Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real...Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.展开更多
For the primary mirror of a large-scale telescope, an electro-hydraulic position control system(EHPCS) is used in the primary mirror support system. The EHPCS helps the telescope improve imaging quality and requires a...For the primary mirror of a large-scale telescope, an electro-hydraulic position control system(EHPCS) is used in the primary mirror support system. The EHPCS helps the telescope improve imaging quality and requires a micron-level position control capability with a high convergence rate, high tracking accuracy, and stability over a wide mirror cell rotation region. In addition, the EHPCS parameters vary across different working conditions, thus rendering the system nonlinear. In this paper, we propose a robust closed-loop design for the position control system in a primary hydraulic support system. The control system is synthesized based on quantitative feedback theory. The parameter bounds are defined by system modeling and identified using the frequency response method. The proposed controller design achieves robust stability and a reference tracking performance by loop shaping in the frequency domain. Experiment results are included from the test rig for the primary mirror support system, showing the effectiveness of the proposed control design.展开更多
A novel electro-hydraulic servo control algorithm was introduced. The primary idea of this algorithm was to combine the notion of model prediction with the generic model control (GMC). The performance of the GMC al-...A novel electro-hydraulic servo control algorithm was introduced. The primary idea of this algorithm was to combine the notion of model prediction with the generic model control (GMC). The performance of the GMC al- gorithm was improved by receding optimization and feedback correction. By the predictive model of output errors of an electro-hydraulic servo control system based on the improved weighted least square support vector machines (WLS-SVM) to forecast and compensate the future sequence errors, the control precision and robustness were im- proved. The improved GMC based on the improved WLS-SVM was applied to an electro-hydraulic servo control sys- tem for hot strip rolling control systems. The simulation results showed the feasibility and effectiveness of the pres- ent algorithm.展开更多
The reliability and robustness of the electro-hydraulic servo control system for heavy-duty forging machine play an important role in forging processes. A mathematic model of 50 MN water press for free forging was cre...The reliability and robustness of the electro-hydraulic servo control system for heavy-duty forging machine play an important role in forging processes. A mathematic model of 50 MN water press for free forging was created in this research. The dynamic robust compensator integrating with PID control method is designed and applied to the mathematical model simulation. The simulated results approved that the dynamic robust compensator application restrains interference from extra load and improves the electro-hydraulic position servo control system accuracy and stability.展开更多
An eight-channel force loading system is presented, which adopts position control system and force control system switching model, small flow servo valve controlled capacious cylinder system scheme, intelligent PID al...An eight-channel force loading system is presented, which adopts position control system and force control system switching model, small flow servo valve controlled capacious cylinder system scheme, intelligent PID algorithm and distributed load approach. Through the analyses of the equivalent model of valve controlled cylinder force subsystem, a controller based on intelligent PID algorithm is designed, which is not sensitive to the variation of parameters such as environmental stiffness. According to the coupling of multiple load channels, a distributed load approach is employed in the superior monitor computer. Experimental results show that the system designed has high precision and robustness.展开更多
利用最小二乘支持向量机(Least Squares Support Vector Machines,LS-SVM),设计了一个电液位置伺服闭环控制系统的多故障诊断系统。利用系统的可测参量,建立了基于LS-SVM的电液位置伺服系统的全局故障检测模型和局部故障检测模型。在仿...利用最小二乘支持向量机(Least Squares Support Vector Machines,LS-SVM),设计了一个电液位置伺服闭环控制系统的多故障诊断系统。利用系统的可测参量,建立了基于LS-SVM的电液位置伺服系统的全局故障检测模型和局部故障检测模型。在仿真过程中发现,此方法的诊断准确度高,适用于闭环系统的单故障及多故障的检测及定位,仿真结果验证了该方法的有效性。展开更多
文摘The angular position controller is system (EHSAS) to control the output of the rotary applied to electro-hydraulic servo actuator actuator. It works as a compensator based on the frequency response of the EHSAS. Its design model is verified on the state-space model of EHSAS by using simulation program SIMULINK. Real data used to test the system. Simulation results give a good agreement for the controller and also for the state-space model.
基金supported by National Natural Science Foundation of China(Grant No.51075291)Shanxi Scholarship Council of China(Grant No.2012-076)
文摘Most current researches working on improving stiffness focus on the application of control theories.But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated,so the control action is lagged.Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms.In this paper,the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed.On this basis,the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward.And a scheme using double servo valves to realize flow feedforward compensation is presented,in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time.The two valves are arranged in parallel to control the cylinder jointly.Furthermore,the model of flow compensation is derived,by which the product of the amplitude and width of the valve’s pulse command signal can be calculated.And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations.Using the proposed scheme,simulations and experiments at different positions with different force changes are conducted.The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time.That is,system dynamic load stiffness is evidently raised.This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.
文摘A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. The PID gain parameters are optimized by the genetic algorithm (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experimental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as compared with the classical PID controller and the compensator controller.
基金supported by National Natural Science Foundation of China(Grant No.50835001)Research and Innovation Teams Foundation Project of Ministry of Education of China(Grant No.IRT0610)Liaoning Provincial Key Laboratory Foundation Project of China(Grant No.20060132)
文摘Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting.
基金This Project is supported by National Natural Science Foundation of China(No.19672047) and NSAF Foundation of China(No.10276032).
文摘The mechanical characteristics of the electro-hydraulic servo system in thecentrifuge field are analyzed. The hydraulic pressure law in the centrifuge field indicates theexistence of the centrifuge hydraulic pressure. The mechanical characteristics of the slide-valveand the dual nozzle flapper valve are studied, and it is found that the centrifuge field can notonly increase the driving force or moment of the function units, but also decrease the stability ofthe components. Finally by applying Gauss minimum constraint principle, the dynamic model of theelectro-hydraulic vibrator in the centrifuge field is established, and the mechanical restriction ofthe system is also presented. The study will be helpful for the realization of the combinedvibration and centrifuge test system.
基金National Natural Science Foundation Under Grant No.61074045,60721062the 973 Program 2006CB705400 of China
文摘The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping and stiffness matrices is investigated in this paper. First, by introducing a linear varying parameter, the nonlinear system is described as a linear parameter varying (LPV) model. Second, based on this LPV model, an LMI-based condition for the system to be asymptotically stabilized is deduced. By solving these LMIs, a parameter-dependent controller is established for the closed- loop system to be stable with a prescribed level of disturbance attenuation. The condition is also extended to the uncertain case. Finally, some numerical simulations demonstrate the satisfying performance of the proposed controller.
基金This work was supported by the Provincial Natural Science Foundation of Hunan(No.04JJ6033) the Research Foundation of Hunan Education Bureau (No.03C066).
文摘A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance indexes in the coordinating optimization, while the tuning rate of boundary layer width (BLW) is employed as the optimization parameter. Based on the mathematical relationship between the BLW and steady-state error, an optimized BLW tuning rate is added to the nonlinear control term of SMVSC. Simulation experiment results applied to the positioning control of an electro-hydraulic servo system show the comprehensive superiority in dynamical and static state performance by using the proposed controller is better than that by using SMVSC without optimized BLW tuning rate. This succeeds in coordinately considering both chattering reduction and high-precision control realization in SMVSC.
基金Supported by National Natural Science Foundation of China(Grant Nos.51275438,51405421)Hebei Provincial Natural Science Foundation of China(Grant No.E2015203101)
文摘Dynamic modeling of a parallel manipulator(PM) is an important issue. A complete PM system is actually composed of multiple physical domains. As PMs are widely used in various fields, the importance of modeling the global dynamic model of the PM system becomes increasingly prominent. Currently there lacks further research in global dynamic modeling. A unified modeling approach for the multi-energy domains PM system is proposed based on bond graph and a global dynamic model of the 3-UPS/S parallel stabilized platform involving mechanical and electrical-hydraulic elements is built. Firstly, the screw bond graph theory is improved based on the screw theory, the modular joint model is modeled and the normalized dynamic model of the mechanism is established. Secondly, combined with the electro-hydraulic servo system model built by traditional bond graph, the global dynamic model of the system is obtained, and then the motion, force and power of any element can be obtained directly. Lastly, the experiments and simulations of the driving forces, pressure and flow are performed, and the results show that, the theoretical calculation results of the driving forces are in accord with the experimental ones, and the pressure and flow of the first limb and the third limb are symmetry with each other. The results are reasonable and verify the correctness and effectiveness of the model and the method. The proposed dynamic modeling method provides a reference for modeling of other multi-energy domains system which contains complex PM.
文摘Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.
基金supported by the National Basic Research Program(973)of China(No.2013CB035400)the National High-Tech R&D Program(863)of China(No.2012AA041803)the National Natural Science Foundation of China(No.51221004)
文摘For the primary mirror of a large-scale telescope, an electro-hydraulic position control system(EHPCS) is used in the primary mirror support system. The EHPCS helps the telescope improve imaging quality and requires a micron-level position control capability with a high convergence rate, high tracking accuracy, and stability over a wide mirror cell rotation region. In addition, the EHPCS parameters vary across different working conditions, thus rendering the system nonlinear. In this paper, we propose a robust closed-loop design for the position control system in a primary hydraulic support system. The control system is synthesized based on quantitative feedback theory. The parameter bounds are defined by system modeling and identified using the frequency response method. The proposed controller design achieves robust stability and a reference tracking performance by loop shaping in the frequency domain. Experiment results are included from the test rig for the primary mirror support system, showing the effectiveness of the proposed control design.
基金Item Sponsored by National Development and Reform Commission Tech-Industry Project Foundation of China(High-Tech1899)
文摘A novel electro-hydraulic servo control algorithm was introduced. The primary idea of this algorithm was to combine the notion of model prediction with the generic model control (GMC). The performance of the GMC al- gorithm was improved by receding optimization and feedback correction. By the predictive model of output errors of an electro-hydraulic servo control system based on the improved weighted least square support vector machines (WLS-SVM) to forecast and compensate the future sequence errors, the control precision and robustness were im- proved. The improved GMC based on the improved WLS-SVM was applied to an electro-hydraulic servo control sys- tem for hot strip rolling control systems. The simulation results showed the feasibility and effectiveness of the pres- ent algorithm.
文摘The reliability and robustness of the electro-hydraulic servo control system for heavy-duty forging machine play an important role in forging processes. A mathematic model of 50 MN water press for free forging was created in this research. The dynamic robust compensator integrating with PID control method is designed and applied to the mathematical model simulation. The simulated results approved that the dynamic robust compensator application restrains interference from extra load and improves the electro-hydraulic position servo control system accuracy and stability.
文摘An eight-channel force loading system is presented, which adopts position control system and force control system switching model, small flow servo valve controlled capacious cylinder system scheme, intelligent PID algorithm and distributed load approach. Through the analyses of the equivalent model of valve controlled cylinder force subsystem, a controller based on intelligent PID algorithm is designed, which is not sensitive to the variation of parameters such as environmental stiffness. According to the coupling of multiple load channels, a distributed load approach is employed in the superior monitor computer. Experimental results show that the system designed has high precision and robustness.
文摘利用最小二乘支持向量机(Least Squares Support Vector Machines,LS-SVM),设计了一个电液位置伺服闭环控制系统的多故障诊断系统。利用系统的可测参量,建立了基于LS-SVM的电液位置伺服系统的全局故障检测模型和局部故障检测模型。在仿真过程中发现,此方法的诊断准确度高,适用于闭环系统的单故障及多故障的检测及定位,仿真结果验证了该方法的有效性。