A robust control algorithm is proposed to focus on the non-linearity and parameters' uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust...A robust control algorithm is proposed to focus on the non-linearity and parameters' uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust controller proposed does not need to design stable compensator in advance, is simple in design and has large scope of uncertainty applications. The feedback gains of the robust controller proposed are small, so it is easily implemented in engineering applications. Experimental research on the speed control under the different conditions is carried out for an EHPSCS. Experimental results show that the robust controller proposed has better robustness subject to parametric uncertainties, and adaptability of parameters' variation of control system itself and plant parameter variation.展开更多
This paper presents the development of a proportional-integral-derivative (PID)-based control method for application to active vehicle suspension systems (AVSS). This method uses an inner PID hydraulic actuator force ...This paper presents the development of a proportional-integral-derivative (PID)-based control method for application to active vehicle suspension systems (AVSS). This method uses an inner PID hydraulic actuator force control loop, in combination with an outer PID suspension travel control loop, to control a nonlinear half-car AVSS. Robustness to model uncertainty in the form of variation in suspension damping is tested, comparing performance of the AVSS with a passive vehicle suspension system (PVSS), with similar model parameters. Spectral analysis of suspension system model output data, obtained by performing a road input disturbance frequency sweep, provides frequency response plots for both nonlinear vehicle suspension systems and time domain vehicle responses to a sinusoidal road input disturbance on a smooth road. The results show the greater robustness of the AVSS over the PVSS to parametric uncertainty in the frequency and time domains.展开更多
An Electro-hydraulic loading system is designed based on a test-bed of tractor's hydraulic steering by-wire. To simulate the steering resistance driving tractor in many kinds of soils and roads,the loading force i...An Electro-hydraulic loading system is designed based on a test-bed of tractor's hydraulic steering by-wire. To simulate the steering resistance driving tractor in many kinds of soils and roads,the loading force is controlled to make proportional and continuous variable by an electro-hydraulic proportional relief valve. A steering resistance loading test-bed is built to test three kinds of steering resistance including constant,step and sine style. Tire lateral resistance is also tested under different steering conditions. The result shows that the electro-hydraulic loading system has high stability and following performance. Besides,the system's steady state error is lower than 3. 1%,and it meets the test requirement of tractor's hydraulic steering by-wire.展开更多
公路边坡护坡骨架施工车是聚焦于公路边坡土壤开槽和水泥混凝土滑模的工程机械装备。针对公路边坡护坡骨架施工车旋转臂在边坡环境的运动控制问题,设计一种基于模糊多参数自适应比例积分微分(proportional integral derivative,PID)的...公路边坡护坡骨架施工车是聚焦于公路边坡土壤开槽和水泥混凝土滑模的工程机械装备。针对公路边坡护坡骨架施工车旋转臂在边坡环境的运动控制问题,设计一种基于模糊多参数自适应比例积分微分(proportional integral derivative,PID)的位置反馈控制策略。考虑到非对称液压缸两腔的差异,采用面积差异等效建模法建立阀控非对称液压缸的线性数学模型。通过定义模糊子集、选取隶属函数、建立模糊规则,使用模糊多参数自适应PID控制算法,实现旋转臂非对称液压缸位置控制。仿真和试验结果表明,基于面积差异等效数学模型的模糊多参数自适应PID能够有效地提高液压缸位置跟踪控制精度,验证了所提控制算法的有效性。展开更多
Most automatic steering systems for large tractors are designed with hydraulic systems that run on either constant flow or constant pressure. Such designs are limited in adaptability and applicability. Moreover, their...Most automatic steering systems for large tractors are designed with hydraulic systems that run on either constant flow or constant pressure. Such designs are limited in adaptability and applicability. Moreover, their control valves can unload in the neutral position and eventually lead to serious hydraulic leakage over long operation periods. In response to the problems noted above, a multifunctional automatic hydraulic steering circuit is presented. The system design is composed of a 5-way-3-position proportional directional valve, two pilot-controlled check valves, a pressure-compensated directional valve, a pressurecompensated flow regulator valve, a load shuttle valve, and a check valve, among other components. It is adaptable to most open-center systems with constant flow supply and closed-center systems with load feedback. The design maintains the lowest pressure under load feedback and stays at the neutral position during unloading, thus meeting the requirements for steering. The steering controller is based on proportional-integral-derivative(PID) running on a 51-microcontroller-unit master control chip. An experimental platform is developed to establish the basic characteristics of the system subject to stepwise inputs and sinusoidal tracking. Test results show that the system design demonstrates excellent control accuracy, fast response, and negligible leak during long operation periods.展开更多
基金This project is supported by Provincial Natural Science Foundation of Zhejiang(No.502088).
文摘A robust control algorithm is proposed to focus on the non-linearity and parameters' uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust controller proposed does not need to design stable compensator in advance, is simple in design and has large scope of uncertainty applications. The feedback gains of the robust controller proposed are small, so it is easily implemented in engineering applications. Experimental research on the speed control under the different conditions is carried out for an EHPSCS. Experimental results show that the robust controller proposed has better robustness subject to parametric uncertainties, and adaptability of parameters' variation of control system itself and plant parameter variation.
文摘This paper presents the development of a proportional-integral-derivative (PID)-based control method for application to active vehicle suspension systems (AVSS). This method uses an inner PID hydraulic actuator force control loop, in combination with an outer PID suspension travel control loop, to control a nonlinear half-car AVSS. Robustness to model uncertainty in the form of variation in suspension damping is tested, comparing performance of the AVSS with a passive vehicle suspension system (PVSS), with similar model parameters. Spectral analysis of suspension system model output data, obtained by performing a road input disturbance frequency sweep, provides frequency response plots for both nonlinear vehicle suspension systems and time domain vehicle responses to a sinusoidal road input disturbance on a smooth road. The results show the greater robustness of the AVSS over the PVSS to parametric uncertainty in the frequency and time domains.
基金Supported by National Natural Science Foundation of China(51175269)Jiangsu Provincial Science and Technology Support Program(Agriculture)(BE2012384)
文摘An Electro-hydraulic loading system is designed based on a test-bed of tractor's hydraulic steering by-wire. To simulate the steering resistance driving tractor in many kinds of soils and roads,the loading force is controlled to make proportional and continuous variable by an electro-hydraulic proportional relief valve. A steering resistance loading test-bed is built to test three kinds of steering resistance including constant,step and sine style. Tire lateral resistance is also tested under different steering conditions. The result shows that the electro-hydraulic loading system has high stability and following performance. Besides,the system's steady state error is lower than 3. 1%,and it meets the test requirement of tractor's hydraulic steering by-wire.
文摘公路边坡护坡骨架施工车是聚焦于公路边坡土壤开槽和水泥混凝土滑模的工程机械装备。针对公路边坡护坡骨架施工车旋转臂在边坡环境的运动控制问题,设计一种基于模糊多参数自适应比例积分微分(proportional integral derivative,PID)的位置反馈控制策略。考虑到非对称液压缸两腔的差异,采用面积差异等效建模法建立阀控非对称液压缸的线性数学模型。通过定义模糊子集、选取隶属函数、建立模糊规则,使用模糊多参数自适应PID控制算法,实现旋转臂非对称液压缸位置控制。仿真和试验结果表明,基于面积差异等效数学模型的模糊多参数自适应PID能够有效地提高液压缸位置跟踪控制精度,验证了所提控制算法的有效性。
基金Project supported by the Synergistic Innovation Center of Modern Agricultural Equipment and Technology,China(No.NZXT01201401)
文摘Most automatic steering systems for large tractors are designed with hydraulic systems that run on either constant flow or constant pressure. Such designs are limited in adaptability and applicability. Moreover, their control valves can unload in the neutral position and eventually lead to serious hydraulic leakage over long operation periods. In response to the problems noted above, a multifunctional automatic hydraulic steering circuit is presented. The system design is composed of a 5-way-3-position proportional directional valve, two pilot-controlled check valves, a pressure-compensated directional valve, a pressurecompensated flow regulator valve, a load shuttle valve, and a check valve, among other components. It is adaptable to most open-center systems with constant flow supply and closed-center systems with load feedback. The design maintains the lowest pressure under load feedback and stays at the neutral position during unloading, thus meeting the requirements for steering. The steering controller is based on proportional-integral-derivative(PID) running on a 51-microcontroller-unit master control chip. An experimental platform is developed to establish the basic characteristics of the system subject to stepwise inputs and sinusoidal tracking. Test results show that the system design demonstrates excellent control accuracy, fast response, and negligible leak during long operation periods.