Pulse electro-coagulation flotation was used to treat oil wastewater of high oil content.Different operational conditions were examined,including current density,reactive time,electrode distance,pH and pole switching ...Pulse electro-coagulation flotation was used to treat oil wastewater of high oil content.Different operational conditions were examined,including current density,reactive time,electrode distance,pH and pole switching time.Orthogonal tests were carried out to identify the optimal operational conditions for this technique.Considering the treatment cost and efficiency together,the optimal operational conditions were an electrode distance of 3.3 cm,pH of 4,current density of 49.38 mA/cm2,reaction time of 15 min and pole switching time of 10 s.The removal efficiency of oil wastewater under normal conditions reached up to 96.21%.The influences of different factors on removal efficiency were in the following decreasing sequence:pH> current density > pole switching time > reactive time > board distance.展开更多
Background:Bipolar electro-coagulation has a reported efficacy in treating epilepsy involving functional cortex by pure electro-coagulation or combination with resection.However,the mechanisms of bipolar electro-coag...Background:Bipolar electro-coagulation has a reported efficacy in treating epilepsy involving functional cortex by pure electro-coagulation or combination with resection.However,the mechanisms of bipolar electro-coagulation are not completely known.We studied the acute cortical blood flow and histological changes after bipolar electro-coagulation in 24 patients with intractable temporal lobe epilepsy.Methods:Twenty-four patients were consecutively enrolled,and divided into three groups according to the date of admission.The regional cortical blood flow (rCBF),electrocorticography,the depth of cortex damage,and acute histological changes (H and E staining,neuronal staining and neurofilament (NF) staining) were analyzed before and after the operation.The t-test analysis was used to compare the rCBF before and after the operation.Results:The rCBF after coagulation was significantly reduced (P 〈 0.05).The spikes were significantly reduced after electro-coagulation.For the temporal cortex,the depth of cortical damage with output power of 2-9 W after electro-coagulation was 0.34 ± 0.03,0.48 ± 0.06,0.69 ± 0.06,0.84 ± 0.09,0.98 ± 0.08,1.10 ± 0.1 l,1.11 ± 0.09,and 1.22 ± 0.11 mm,respectively.Coagulation with output power of 4-5 W completely damaged the neurons and NF protein in the molecular layer,external granular layer,and external pyramidal layer.Conclusions:The electro-coagulation not only destroyed the neurons and NF protein,but also reduced the rCBF.We concluded that the injuries caused by electro-coagulation would prevent horizontal synchronization and spread of epileptic discharges,and partially destroy the epileptic focus.展开更多
基金Funded by the Natural Science Foundation of Chongqing(No.2006BB6183)
文摘Pulse electro-coagulation flotation was used to treat oil wastewater of high oil content.Different operational conditions were examined,including current density,reactive time,electrode distance,pH and pole switching time.Orthogonal tests were carried out to identify the optimal operational conditions for this technique.Considering the treatment cost and efficiency together,the optimal operational conditions were an electrode distance of 3.3 cm,pH of 4,current density of 49.38 mA/cm2,reaction time of 15 min and pole switching time of 10 s.The removal efficiency of oil wastewater under normal conditions reached up to 96.21%.The influences of different factors on removal efficiency were in the following decreasing sequence:pH> current density > pole switching time > reactive time > board distance.
文摘Background:Bipolar electro-coagulation has a reported efficacy in treating epilepsy involving functional cortex by pure electro-coagulation or combination with resection.However,the mechanisms of bipolar electro-coagulation are not completely known.We studied the acute cortical blood flow and histological changes after bipolar electro-coagulation in 24 patients with intractable temporal lobe epilepsy.Methods:Twenty-four patients were consecutively enrolled,and divided into three groups according to the date of admission.The regional cortical blood flow (rCBF),electrocorticography,the depth of cortex damage,and acute histological changes (H and E staining,neuronal staining and neurofilament (NF) staining) were analyzed before and after the operation.The t-test analysis was used to compare the rCBF before and after the operation.Results:The rCBF after coagulation was significantly reduced (P 〈 0.05).The spikes were significantly reduced after electro-coagulation.For the temporal cortex,the depth of cortical damage with output power of 2-9 W after electro-coagulation was 0.34 ± 0.03,0.48 ± 0.06,0.69 ± 0.06,0.84 ± 0.09,0.98 ± 0.08,1.10 ± 0.1 l,1.11 ± 0.09,and 1.22 ± 0.11 mm,respectively.Coagulation with output power of 4-5 W completely damaged the neurons and NF protein in the molecular layer,external granular layer,and external pyramidal layer.Conclusions:The electro-coagulation not only destroyed the neurons and NF protein,but also reduced the rCBF.We concluded that the injuries caused by electro-coagulation would prevent horizontal synchronization and spread of epileptic discharges,and partially destroy the epileptic focus.