In the early time of oilfield development, insufficient production data and unclear understanding of oil production presented a challenge to reservoir engineers in devising effective development plans. To address this...In the early time of oilfield development, insufficient production data and unclear understanding of oil production presented a challenge to reservoir engineers in devising effective development plans. To address this challenge, this study proposes a method using data mining technology to search for similar oil fields and predict well productivity. A query system of 135 analogy parameters is established based on geological and reservoir engineering research, and the weight values of these parameters are calculated using a data algorithm to establish an analogy system. The fuzzy matter-element algorithm is then used to calculate the similarity between oil fields, with fields having similarity greater than 70% identified as similar oil fields. Using similar oil fields as sample data, 8 important factors affecting well productivity are identified using the Pearson coefficient and mean decrease impurity(MDI) method. To establish productivity prediction models, linear regression(LR), random forest regression(RF), support vector regression(SVR), backpropagation(BP), extreme gradient boosting(XGBoost), and light gradient boosting machine(Light GBM) algorithms are used. Their performance is evaluated using the coefficient of determination(R^(2)), explained variance score(EV), mean squared error(MSE), and mean absolute error(MAE) metrics. The Light GBM model is selected to predict the productivity of 30 wells in the PL field with an average error of only 6.31%, which significantly improves the accuracy of the productivity prediction and meets the application requirements in the field. Finally, a software platform integrating data query,oil field analogy, productivity prediction, and knowledge base is established to identify patterns in massive reservoir development data and provide valuable technical references for new reservoir development.展开更多
The immune system operates as a complex organization with distinct roles and functions. Excitingly we recognized the similarities between the cellular dynamics of the immune system and our lives, activities, and behav...The immune system operates as a complex organization with distinct roles and functions. Excitingly we recognized the similarities between the cellular dynamics of the immune system and our lives, activities, and behaviors. Observing the immune system can guide how to respond to various daily situations, including when to react, tolerate, or ignore. Recognizing this analogy between our lives and the immune system should motivate us to adopt a wisdom-based approach when investigating the mechanisms and future discoveries related to this system and to deepen our understanding of this complex system with newfound respect. In this context, the present review examines several integral biological processes of the immune system by drawing parallels between them and human life, activities, and behaviors to learn how we must behave based on the insights offered by this complex organization. The literature search was conducted in international databases such as PubMed/MEDLINE and Google Scholar search engine using English equivalent keywords from 1998 up to April 2023. The search strategy used the following subject heading terms: Immune system, analogy, human life, cellular dynamics, memory, tolerance, and ignorance. In conclusion, the immune system is a complex organization comprising various cells interacting within specific sites and networks, communicating, drawing experiences, and learning how to tolerate certain conditions that make it share certain similarities with human life.展开更多
Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely co...Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely control the position and force through advanced sensors and innovative control algorithms.One of the promising approaches to improve control accuracy for EHA systems is applying classical to modern control algorithms,in which the proportional–inte-gral–derivative(PID)algorithm,fuzzy logic controller,and a hybrid of these methods are popular options.In this paper,we developed a novel version of the fuzzy control algorithm and linear feedback control method,namely fuzzy lin-ear feedback control,to improve the control performance.To achieve the highest performance,wefirst designed a mathematical EHA model based on the Matlab/Simulink software packages thanks to the selected parameters,which are similar to a real EHA system.Then,we respectively applied PID,fuzzy PID(FPID),and fuzzy linear feedback control(FLFC)before comparing them to have a full view of the outstanding advantages of the proposed algorithm.The simulation results showed that the proposed FLFC algorithm is approximately 99%and 77%super-ior in performance to the PID and feedback control algorithms,respectively.展开更多
Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonethel...Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.展开更多
Araneiforms are spider-like ground patterns that are widespread in the southern polar regions of Mars.A gas erosion process driven by the seasonal sublimation of CO_(2) ice was proposed as an explanation for their for...Araneiforms are spider-like ground patterns that are widespread in the southern polar regions of Mars.A gas erosion process driven by the seasonal sublimation of CO_(2) ice was proposed as an explanation for their formation,which cannot occur on Earth due to the high climatic temperature.In this study,we propose an alternative mechanism that attrib-utes the araneiform formation to the erosion of upwelling salt water from the subsurface,relying on the identification of the first terrestrial analog found in a playa of the Qaidam Basin on the northern Tibetan Plateau.Morphological analysis indicates that the structures in the Qaidam Basin have fractal features comparable to araneiforms on Mars.A numerical model is developed to investigate the araneiform formation driven by the water-diffusion mechanism.The simulation res-ults indicate that the water-diffusion process,under varying ground conditions,may be responsible for the diverse aranei-form morphologies observed on both Earth and Mars.Our numerical simulations also demonstrate that the orientations of the saltwater diffusion networks are controlled by pre-existing polygonal cracks,which is consistent with observations of araneiforms on Mars and Earth.Our study thus suggests that a saltwater-related origin of the araneiform is possible and has significant implications for water searches on Mars.展开更多
This paper presents an analogical study between electromagnetic and elastic wave fields,with a one-to-one correspondence principle established regarding the basic wave equations,the physical quantities and the differe...This paper presents an analogical study between electromagnetic and elastic wave fields,with a one-to-one correspondence principle established regarding the basic wave equations,the physical quantities and the differential operations.Using the electromagnetic-to-elastic substitution,the analogous relations of the conservation laws of energy and momentum are investigated between these two physical fields.Moreover,the energy-based and momentum-based reciprocity theorems for an elastic wave are also derived in the time-harmonic state,which describe the interaction between two elastic wave systems from the perspectives of energy and momentum,respectively.The theoretical results obtained in this analysis can not only improve our understanding of the similarities of these two linear systems,but also find potential applications in relevant fields such as medical imaging,non-destructive evaluation,acoustic microscopy,seismology and exploratory geophysics.展开更多
In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional t...In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems.展开更多
In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To ...In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To address this issue,the application of a virtual synchronous generator(VSG)in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator(AVSG)control strategy for the interface DC/DC converter of the battery in the microgrid.Besides,a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control.Firstly,a theoretical analysis is conducted on the various components of the DC microgrid,the structure of analogous virtual synchronous generator,and the control structure’s main parameters related to the DC microgrid’s inertial behavior.Secondly,the voltage change rate tracking coefficient is introduced to adjust the change of the virtual capacitance and damping coefficient flexibility,which further strengthens the inertia trend of the DC microgrid.Additionally,a small-signal modeling approach is used to analyze the approximate range of the AVSG’s main parameters ensuring system stability.Finally,conduct a simulation analysis by building the model of the DC microgrid system with photovoltaic(PV)and battery energy storage(BES)in MATLAB/Simulink.Simulation results from different scenarios have verified that the AVSG control introduces fixed inertia and damping into the droop control of the battery,resulting in a certain level of inertia enhancement.Furthermore,the additional adaptive control strategy built upon the AVSG control provides better and flexible inertial support for the DC microgrid,further enhances the stability of the DC bus voltage,and has a more positive impact on the battery performance.展开更多
Image analogy is a kind of Chinese traditional thinking mode.The paper had introduced application of image analogy in Chinese ancient culture at length,then explained the concept of image analogy in modern sense,and f...Image analogy is a kind of Chinese traditional thinking mode.The paper had introduced application of image analogy in Chinese ancient culture at length,then explained the concept of image analogy in modern sense,and finally interpreted image analogy as gardening thought of bionics.It was considered that image analogy could be divided into "tangibility" analogy and "intangibility" analogy."Tangibility" referred to external appearance,structure and color of matters."Intangibility" referred to emotion,connotation,culture,spirit and so on.By taking the gardening thought of "Tortoise City" and "One Pond and Three Hills" for example,"tangibility" analogy was illustrated.Prospect bionics of bamboo's spirit had been explained by taking Yangzhou parks for example,bionics of sound landscape explained by taking Humble Administrator's Garden as an example,and connotation bionics of poetic conception explained by taking Suzhou Lion Forest as an example.At last,enlightenments of image analogy on modern garden had been summarized from the perspectives of idea,constructing methods and culture.展开更多
A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surf...A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. The PID gain parameters are optimized by the genetic algorithm (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experimental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as compared with the classical PID controller and the compensator controller.展开更多
Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantit...Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantitative information on a large number of fractures, based on which the accuracy of subsurface fracture characterization can be improved. Here we take the tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy, a case study of the Chang6t~ Formation of the Upper Triassic Yanchang Group of the Wangyao Oilfield in the Ordos Basin of China. An outcrop at the edge of the basin is a suitable analog for the reservoir, but the prerequisite is that they must have equivalent previous stress fields, similar final structural characteristics, relative timing and an identical depositional environment and diagenesis. The relationship among fracture density, rock type and bed thickness based on the outcrop is one of the most important fracture distribution models, and can be used to interpret fracture density in individual wells quantitatively. Fracture orientation, dip, geometry and scale, also should be described and measured in the outcrop, and can be used together with structure restoration and single well fracture density interpretation to guide fracture intensity prediction on bed surfaces and to constrain the construction of the 3D fracture geometry model of the subsurface reservoir. The application of the above principles shows the outcrop-based tectonic fracture models of the target ultra-low permeability sandstone reservoir are consistent with fractures inferred from microseismic interpretation and tracer tests. This illustrated that the fracture modeling based on the outcrop analogy is reliable and can reduce the uncertainty in stochastic fracture modeling.展开更多
The research on the driving principle and economization of energy of electro-hydraulic hammer is discussed. By means of the balance chart of energy, the method and formulas to calculate every level efficiency and the ...The research on the driving principle and economization of energy of electro-hydraulic hammer is discussed. By means of the balance chart of energy, the method and formulas to calculate every level efficiency and the total efficiency of steam drived hammer are formed.With the aid of actual data of plants,the actual efficiency of steam drived hammer is got. The working principle and the driving system of electro-hydraulic hammer are introduced. The procedure of energy energy of this hammer is analyzed. The utilization ratio of energy of this type of hammer is got. It is shown that the efficiency of electro-hydraulic hammer is 7 times as much as that of steam drived hammer.展开更多
The existing research of the electro-hydraulic vibrator mainly focuses on system stability, working frequency width and output waveform distortion. However, this high frequency performance of the electro-hydraulic vib...The existing research of the electro-hydraulic vibrator mainly focuses on system stability, working frequency width and output waveform distortion. However, this high frequency performance of the electro-hydraulic vibrator is difficult to be improved greatly due to fast insufficiently frequency response of the servo valve itself and limited compensation capability of the control structure in the vibrator system. In this paper, to realize high frequency vibration, an improved two-dimensional valve (here within defined as a 2D valve) as a main control component is adopted to the parallel connection with a servo valve to control the electro-hydraulic vibrator, Because the output waveforms of this electro-hydraulic vibrator are incapable to be verified through timely feedback as in the conventional electro-hydraulic servo system, the analysis to the output waveform becomes crucial to the design and control of the electro-hydraulic vibrator. The mathematical models of hydraulic actuation mechanism and the orifice area of the parallel valves connection are established first. And then the vibration process is divided into two sections in terms of the direction of the flow, the analytical expression of the excited waveform is solved. Based on relationships exist between working states and the control parameters the analytical results, the vibration boundary positions and the are derived. Finally an experimental system was built to validate the theoretical analysis. It is verified that this electro-hydraulic vibration system could achieve high working frequency, up to 2 000 Hz. The excited waveform is similar to the sinnsoidal waveform. And the ascent and decent slopes of the waveforms are somewhat asymmetrical. This asymmetry is not only caused by the change of the direction of the elastic force but also dependent on the bias position of the vibration. Consequentky the distortion of effective working waveform is less tha~ 10%. This electro-hydraulic vibrator controlled by the multiple valves could not only greatly enhance the working frequency but also precisely control the vibration characteristic variables such as waveform shape.展开更多
A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant no...A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant nonlinearity exist in the volume control electro-hydraulic servo system,the ILC(iterative learning control) method is applied to tracking the displacement curve of the hydraulic press slider.In order to improve the convergence speed and precision of ILC,a fuzzy ILC algorithm that utilizes the fuzzy strategy to adaptively adjust the iterative learning gains is put forward.The simulation and experimental researches are carried out to investigate the convergence speed and precision of the fuzzy ILC for hydraulic press slider position tracking.The results show that the fuzzy ILC can raise the iterative learning speed enormously,and realize the tracking control of slider displacement curve with rapid response speed and high control precision.In experiment,the maximum tracking error 0.02 V is achieved through 12 iterations only.展开更多
The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response ca...The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response capability of the servo valve itself.To counteract such restriction,a novel scheme for an electro-hydraulic vibrator,controlled by a two-dimensional valve(2D valve) and a bias valve in parallel,is therefore proposed.The frequency,amplitude and offset are independently controlled by rotary speed,axial sliding of the spool of the 2D valve and axial sliding of the spool of the bias valve.The principle of separate control was presented and the regulation approach of frequency,amplitude and offset was discussed.A mathematical model of the hydraulic power mechanism for the proposed vibration exciter was established to investigate the relationship between the amplitude and the axial sliding of the 2D valve' spool,as well as that between the offset and the axial sliding of the bias valve's spool at various frequencies.An experimental system was built to validate the theoretical analysis.It is verified that the 2D exciter is capable of working smoothly in a frequency range of 5- 200 Hz.And its frequency,amplitude and offset can be controlled respectively by either closed loop or open loop method.There is a linear relationship between the output amplitude and the spool axial opening of the 2D valve until a point when the flow rate becomes saturate and the amplitude remains constant.The offset displacement of the cylinder's piston is linearly proportional to the axial displacement of the spool of the bias valve,when the valve opening is less than 25%.Thereafter,the slop of the offset curve decreases and tends to saturate.The proposed electro-hydraulic vibration controlled by the 2D valve not only facilitates the realization of high-frequency electro-hydraulic vibration,the high-accuracy of vibration can also be achieved by means of independent controls to the frequency,amplitude and offset.展开更多
Most current researches working on improving stiffness focus on the application of control theories.But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated,so...Most current researches working on improving stiffness focus on the application of control theories.But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated,so the control action is lagged.Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms.In this paper,the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed.On this basis,the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward.And a scheme using double servo valves to realize flow feedforward compensation is presented,in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time.The two valves are arranged in parallel to control the cylinder jointly.Furthermore,the model of flow compensation is derived,by which the product of the amplitude and width of the valve’s pulse command signal can be calculated.And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations.Using the proposed scheme,simulations and experiments at different positions with different force changes are conducted.The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time.That is,system dynamic load stiffness is evidently raised.This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.展开更多
Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large outpu...Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large output power,displacement and thrust,as well as good workload adaptation and multi-controllable parameters.Based on the domestic and overseas development of high-frequency EHVE,dividing them into servo-valve controlled vibration equipment and rotary-valve controlled vibration equipment.The research status and progress of high-frequency electro-hydraulic vibration control technology(EHVCT)are discussed,from the perspective of vibration waveform control and vibration controller.The problems of current electro-hydraulic vibration system bandwidth and waveform distortion control,stability control,offset control and complex vibration waveform generation in high-frequency vibration conditions are pointed out.Combining the existing rotary-valve controlled high-frequency electro-hydraulic vibration method,a new twin-valve independently controlled high-frequency electro-hydraulic vibration method is proposed to break through the limitations of current electro-hydraulic vibration technology in terms of system frequency bandwidth and waveform distortion.The new method can realize independent adjustment and control of vibration waveform frequency,amplitude and offset under high-frequency vibration conditions,and provide a new idea for accurate simulation of high-frequency vibration waveform.展开更多
A nonlinear controller based on an extended second-order disturbance observer is presented to track desired position for an electro-hydraulic single-rod actuator in the presence of both external disturbances and param...A nonlinear controller based on an extended second-order disturbance observer is presented to track desired position for an electro-hydraulic single-rod actuator in the presence of both external disturbances and parameter uncertainties. The proposed extended second-order disturbance observer deals with not only the external perturbations, but also parameter uncertainties which are commonly regarded as lumped disturbances in previous researches. Besides, the outer position tracking loop is designed with cylinder load pressure as output; and the inner pressure control loop provides the hydraulic actuator the characteristic of a force generator. The stability of the closed-loop system is provided based on Lyapunov theory. The performance of the controller is verified through simulations and experiments. The results demonstrate that the proposed nonlinear position tracking controller, together with the extended second-order disturbance observer, gives an excellent tracking performance in the presence of parameter uncertainties and external disturbance.展开更多
Dynamic modeling of a parallel manipulator(PM) is an important issue. A complete PM system is actually composed of multiple physical domains. As PMs are widely used in various fields, the importance of modeling the ...Dynamic modeling of a parallel manipulator(PM) is an important issue. A complete PM system is actually composed of multiple physical domains. As PMs are widely used in various fields, the importance of modeling the global dynamic model of the PM system becomes increasingly prominent. Currently there lacks further research in global dynamic modeling. A unified modeling approach for the multi-energy domains PM system is proposed based on bond graph and a global dynamic model of the 3-UPS/S parallel stabilized platform involving mechanical and electrical-hydraulic elements is built. Firstly, the screw bond graph theory is improved based on the screw theory, the modular joint model is modeled and the normalized dynamic model of the mechanism is established. Secondly, combined with the electro-hydraulic servo system model built by traditional bond graph, the global dynamic model of the system is obtained, and then the motion, force and power of any element can be obtained directly. Lastly, the experiments and simulations of the driving forces, pressure and flow are performed, and the results show that, the theoretical calculation results of the driving forces are in accord with the experimental ones, and the pressure and flow of the first limb and the third limb are symmetry with each other. The results are reasonable and verify the correctness and effectiveness of the model and the method. The proposed dynamic modeling method provides a reference for modeling of other multi-energy domains system which contains complex PM.展开更多
基金supported by the National Natural Science Fund of China (No.52104049)the Science Foundation of China University of Petroleum,Beijing (No.2462022BJRC004)。
文摘In the early time of oilfield development, insufficient production data and unclear understanding of oil production presented a challenge to reservoir engineers in devising effective development plans. To address this challenge, this study proposes a method using data mining technology to search for similar oil fields and predict well productivity. A query system of 135 analogy parameters is established based on geological and reservoir engineering research, and the weight values of these parameters are calculated using a data algorithm to establish an analogy system. The fuzzy matter-element algorithm is then used to calculate the similarity between oil fields, with fields having similarity greater than 70% identified as similar oil fields. Using similar oil fields as sample data, 8 important factors affecting well productivity are identified using the Pearson coefficient and mean decrease impurity(MDI) method. To establish productivity prediction models, linear regression(LR), random forest regression(RF), support vector regression(SVR), backpropagation(BP), extreme gradient boosting(XGBoost), and light gradient boosting machine(Light GBM) algorithms are used. Their performance is evaluated using the coefficient of determination(R^(2)), explained variance score(EV), mean squared error(MSE), and mean absolute error(MAE) metrics. The Light GBM model is selected to predict the productivity of 30 wells in the PL field with an average error of only 6.31%, which significantly improves the accuracy of the productivity prediction and meets the application requirements in the field. Finally, a software platform integrating data query,oil field analogy, productivity prediction, and knowledge base is established to identify patterns in massive reservoir development data and provide valuable technical references for new reservoir development.
文摘The immune system operates as a complex organization with distinct roles and functions. Excitingly we recognized the similarities between the cellular dynamics of the immune system and our lives, activities, and behaviors. Observing the immune system can guide how to respond to various daily situations, including when to react, tolerate, or ignore. Recognizing this analogy between our lives and the immune system should motivate us to adopt a wisdom-based approach when investigating the mechanisms and future discoveries related to this system and to deepen our understanding of this complex system with newfound respect. In this context, the present review examines several integral biological processes of the immune system by drawing parallels between them and human life, activities, and behaviors to learn how we must behave based on the insights offered by this complex organization. The literature search was conducted in international databases such as PubMed/MEDLINE and Google Scholar search engine using English equivalent keywords from 1998 up to April 2023. The search strategy used the following subject heading terms: Immune system, analogy, human life, cellular dynamics, memory, tolerance, and ignorance. In conclusion, the immune system is a complex organization comprising various cells interacting within specific sites and networks, communicating, drawing experiences, and learning how to tolerate certain conditions that make it share certain similarities with human life.
基金supported by Research Foundation funded by Thu Dau Mot University。
文摘Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely control the position and force through advanced sensors and innovative control algorithms.One of the promising approaches to improve control accuracy for EHA systems is applying classical to modern control algorithms,in which the proportional–inte-gral–derivative(PID)algorithm,fuzzy logic controller,and a hybrid of these methods are popular options.In this paper,we developed a novel version of the fuzzy control algorithm and linear feedback control method,namely fuzzy lin-ear feedback control,to improve the control performance.To achieve the highest performance,wefirst designed a mathematical EHA model based on the Matlab/Simulink software packages thanks to the selected parameters,which are similar to a real EHA system.Then,we respectively applied PID,fuzzy PID(FPID),and fuzzy linear feedback control(FLFC)before comparing them to have a full view of the outstanding advantages of the proposed algorithm.The simulation results showed that the proposed FLFC algorithm is approximately 99%and 77%super-ior in performance to the PID and feedback control algorithms,respectively.
基金This work was supported by the National Natural Science Foundation of China(52373306,52172233,and 51832004)the Natural Science Foundation of Hubei Province(2023AFA053)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021CXLH0007).
文摘Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB41000000)the Fundamental Research Funds for the Central Universities(WK2080000144)。
文摘Araneiforms are spider-like ground patterns that are widespread in the southern polar regions of Mars.A gas erosion process driven by the seasonal sublimation of CO_(2) ice was proposed as an explanation for their formation,which cannot occur on Earth due to the high climatic temperature.In this study,we propose an alternative mechanism that attrib-utes the araneiform formation to the erosion of upwelling salt water from the subsurface,relying on the identification of the first terrestrial analog found in a playa of the Qaidam Basin on the northern Tibetan Plateau.Morphological analysis indicates that the structures in the Qaidam Basin have fractal features comparable to araneiforms on Mars.A numerical model is developed to investigate the araneiform formation driven by the water-diffusion mechanism.The simulation res-ults indicate that the water-diffusion process,under varying ground conditions,may be responsible for the diverse aranei-form morphologies observed on both Earth and Mars.Our numerical simulations also demonstrate that the orientations of the saltwater diffusion networks are controlled by pre-existing polygonal cracks,which is consistent with observations of araneiforms on Mars and Earth.Our study thus suggests that a saltwater-related origin of the araneiform is possible and has significant implications for water searches on Mars.
基金funded by the National Natural Science Foundation of China(Grant No.12404507)the Natural Science Research of Jiangsu Higher Education Institutions of China(Grant No.24KJB140013)the Scientific Startup Foundation of Nanjing Normal University(Grant No.184080H201B49).
文摘This paper presents an analogical study between electromagnetic and elastic wave fields,with a one-to-one correspondence principle established regarding the basic wave equations,the physical quantities and the differential operations.Using the electromagnetic-to-elastic substitution,the analogous relations of the conservation laws of energy and momentum are investigated between these two physical fields.Moreover,the energy-based and momentum-based reciprocity theorems for an elastic wave are also derived in the time-harmonic state,which describe the interaction between two elastic wave systems from the perspectives of energy and momentum,respectively.The theoretical results obtained in this analysis can not only improve our understanding of the similarities of these two linear systems,but also find potential applications in relevant fields such as medical imaging,non-destructive evaluation,acoustic microscopy,seismology and exploratory geophysics.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2022R1C1C1011058)。
文摘In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems.
基金funded by the National Natural Science Foundation of China(52067013),and the Provincial Natural Science Foundation of Gansu(20JR5RA395).
文摘In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To address this issue,the application of a virtual synchronous generator(VSG)in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator(AVSG)control strategy for the interface DC/DC converter of the battery in the microgrid.Besides,a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control.Firstly,a theoretical analysis is conducted on the various components of the DC microgrid,the structure of analogous virtual synchronous generator,and the control structure’s main parameters related to the DC microgrid’s inertial behavior.Secondly,the voltage change rate tracking coefficient is introduced to adjust the change of the virtual capacitance and damping coefficient flexibility,which further strengthens the inertia trend of the DC microgrid.Additionally,a small-signal modeling approach is used to analyze the approximate range of the AVSG’s main parameters ensuring system stability.Finally,conduct a simulation analysis by building the model of the DC microgrid system with photovoltaic(PV)and battery energy storage(BES)in MATLAB/Simulink.Simulation results from different scenarios have verified that the AVSG control introduces fixed inertia and damping into the droop control of the battery,resulting in a certain level of inertia enhancement.Furthermore,the additional adaptive control strategy built upon the AVSG control provides better and flexible inertial support for the DC microgrid,further enhances the stability of the DC bus voltage,and has a more positive impact on the battery performance.
文摘Image analogy is a kind of Chinese traditional thinking mode.The paper had introduced application of image analogy in Chinese ancient culture at length,then explained the concept of image analogy in modern sense,and finally interpreted image analogy as gardening thought of bionics.It was considered that image analogy could be divided into "tangibility" analogy and "intangibility" analogy."Tangibility" referred to external appearance,structure and color of matters."Intangibility" referred to emotion,connotation,culture,spirit and so on.By taking the gardening thought of "Tortoise City" and "One Pond and Three Hills" for example,"tangibility" analogy was illustrated.Prospect bionics of bamboo's spirit had been explained by taking Yangzhou parks for example,bionics of sound landscape explained by taking Humble Administrator's Garden as an example,and connotation bionics of poetic conception explained by taking Suzhou Lion Forest as an example.At last,enlightenments of image analogy on modern garden had been summarized from the perspectives of idea,constructing methods and culture.
文摘A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. The PID gain parameters are optimized by the genetic algorithm (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experimental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as compared with the classical PID controller and the compensator controller.
基金supported by Open Fund (PLC201203) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology)Major Project of Education Department in Sichuan Province (13ZA0177)
文摘Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantitative information on a large number of fractures, based on which the accuracy of subsurface fracture characterization can be improved. Here we take the tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy, a case study of the Chang6t~ Formation of the Upper Triassic Yanchang Group of the Wangyao Oilfield in the Ordos Basin of China. An outcrop at the edge of the basin is a suitable analog for the reservoir, but the prerequisite is that they must have equivalent previous stress fields, similar final structural characteristics, relative timing and an identical depositional environment and diagenesis. The relationship among fracture density, rock type and bed thickness based on the outcrop is one of the most important fracture distribution models, and can be used to interpret fracture density in individual wells quantitatively. Fracture orientation, dip, geometry and scale, also should be described and measured in the outcrop, and can be used together with structure restoration and single well fracture density interpretation to guide fracture intensity prediction on bed surfaces and to constrain the construction of the 3D fracture geometry model of the subsurface reservoir. The application of the above principles shows the outcrop-based tectonic fracture models of the target ultra-low permeability sandstone reservoir are consistent with fractures inferred from microseismic interpretation and tracer tests. This illustrated that the fracture modeling based on the outcrop analogy is reliable and can reduce the uncertainty in stochastic fracture modeling.
文摘The research on the driving principle and economization of energy of electro-hydraulic hammer is discussed. By means of the balance chart of energy, the method and formulas to calculate every level efficiency and the total efficiency of steam drived hammer are formed.With the aid of actual data of plants,the actual efficiency of steam drived hammer is got. The working principle and the driving system of electro-hydraulic hammer are introduced. The procedure of energy energy of this hammer is analyzed. The utilization ratio of energy of this type of hammer is got. It is shown that the efficiency of electro-hydraulic hammer is 7 times as much as that of steam drived hammer.
基金supported by National Natural Science Foundation of China(Grant No.50675204)Zhejiang Provincial Natural Science Foundation of China(Grant No.D1080667)
文摘The existing research of the electro-hydraulic vibrator mainly focuses on system stability, working frequency width and output waveform distortion. However, this high frequency performance of the electro-hydraulic vibrator is difficult to be improved greatly due to fast insufficiently frequency response of the servo valve itself and limited compensation capability of the control structure in the vibrator system. In this paper, to realize high frequency vibration, an improved two-dimensional valve (here within defined as a 2D valve) as a main control component is adopted to the parallel connection with a servo valve to control the electro-hydraulic vibrator, Because the output waveforms of this electro-hydraulic vibrator are incapable to be verified through timely feedback as in the conventional electro-hydraulic servo system, the analysis to the output waveform becomes crucial to the design and control of the electro-hydraulic vibrator. The mathematical models of hydraulic actuation mechanism and the orifice area of the parallel valves connection are established first. And then the vibration process is divided into two sections in terms of the direction of the flow, the analytical expression of the excited waveform is solved. Based on relationships exist between working states and the control parameters the analytical results, the vibration boundary positions and the are derived. Finally an experimental system was built to validate the theoretical analysis. It is verified that this electro-hydraulic vibration system could achieve high working frequency, up to 2 000 Hz. The excited waveform is similar to the sinnsoidal waveform. And the ascent and decent slopes of the waveforms are somewhat asymmetrical. This asymmetry is not only caused by the change of the direction of the elastic force but also dependent on the bias position of the vibration. Consequentky the distortion of effective working waveform is less tha~ 10%. This electro-hydraulic vibrator controlled by the multiple valves could not only greatly enhance the working frequency but also precisely control the vibration characteristic variables such as waveform shape.
基金Project(2007AA04Z144) supported by the National High-Tech Research and Development Program of ChinaProject(2007421119) supported by the China Postdoctoral Science Foundation
文摘A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant nonlinearity exist in the volume control electro-hydraulic servo system,the ILC(iterative learning control) method is applied to tracking the displacement curve of the hydraulic press slider.In order to improve the convergence speed and precision of ILC,a fuzzy ILC algorithm that utilizes the fuzzy strategy to adaptively adjust the iterative learning gains is put forward.The simulation and experimental researches are carried out to investigate the convergence speed and precision of the fuzzy ILC for hydraulic press slider position tracking.The results show that the fuzzy ILC can raise the iterative learning speed enormously,and realize the tracking control of slider displacement curve with rapid response speed and high control precision.In experiment,the maximum tracking error 0.02 V is achieved through 12 iterations only.
基金supported by National Natural Science Foundation of China(Grant No.50675204)Zhejiang Provincial Natural Science Foundation of China(Grant No.D1080667)Open Foundation of the State Key Lab of Fluid Power Transmission and Control of Zhejiang University,China(Grant No.GZKF-2008005)
文摘The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response capability of the servo valve itself.To counteract such restriction,a novel scheme for an electro-hydraulic vibrator,controlled by a two-dimensional valve(2D valve) and a bias valve in parallel,is therefore proposed.The frequency,amplitude and offset are independently controlled by rotary speed,axial sliding of the spool of the 2D valve and axial sliding of the spool of the bias valve.The principle of separate control was presented and the regulation approach of frequency,amplitude and offset was discussed.A mathematical model of the hydraulic power mechanism for the proposed vibration exciter was established to investigate the relationship between the amplitude and the axial sliding of the 2D valve' spool,as well as that between the offset and the axial sliding of the bias valve's spool at various frequencies.An experimental system was built to validate the theoretical analysis.It is verified that the 2D exciter is capable of working smoothly in a frequency range of 5- 200 Hz.And its frequency,amplitude and offset can be controlled respectively by either closed loop or open loop method.There is a linear relationship between the output amplitude and the spool axial opening of the 2D valve until a point when the flow rate becomes saturate and the amplitude remains constant.The offset displacement of the cylinder's piston is linearly proportional to the axial displacement of the spool of the bias valve,when the valve opening is less than 25%.Thereafter,the slop of the offset curve decreases and tends to saturate.The proposed electro-hydraulic vibration controlled by the 2D valve not only facilitates the realization of high-frequency electro-hydraulic vibration,the high-accuracy of vibration can also be achieved by means of independent controls to the frequency,amplitude and offset.
基金supported by National Natural Science Foundation of China(Grant No.51075291)Shanxi Scholarship Council of China(Grant No.2012-076)
文摘Most current researches working on improving stiffness focus on the application of control theories.But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated,so the control action is lagged.Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms.In this paper,the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed.On this basis,the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward.And a scheme using double servo valves to realize flow feedforward compensation is presented,in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time.The two valves are arranged in parallel to control the cylinder jointly.Furthermore,the model of flow compensation is derived,by which the product of the amplitude and width of the valve’s pulse command signal can be calculated.And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations.Using the proposed scheme,simulations and experiments at different positions with different force changes are conducted.The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time.That is,system dynamic load stiffness is evidently raised.This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.
基金Supported by National Natural Science Foundation of China.(Grant Nos.51605431,51675472)
文摘Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large output power,displacement and thrust,as well as good workload adaptation and multi-controllable parameters.Based on the domestic and overseas development of high-frequency EHVE,dividing them into servo-valve controlled vibration equipment and rotary-valve controlled vibration equipment.The research status and progress of high-frequency electro-hydraulic vibration control technology(EHVCT)are discussed,from the perspective of vibration waveform control and vibration controller.The problems of current electro-hydraulic vibration system bandwidth and waveform distortion control,stability control,offset control and complex vibration waveform generation in high-frequency vibration conditions are pointed out.Combining the existing rotary-valve controlled high-frequency electro-hydraulic vibration method,a new twin-valve independently controlled high-frequency electro-hydraulic vibration method is proposed to break through the limitations of current electro-hydraulic vibration technology in terms of system frequency bandwidth and waveform distortion.The new method can realize independent adjustment and control of vibration waveform frequency,amplitude and offset under high-frequency vibration conditions,and provide a new idea for accurate simulation of high-frequency vibration waveform.
基金Project(51221004)supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of ChinaProject(2012AA041801)supproted by the High-tech Research and Development Program of China
文摘A nonlinear controller based on an extended second-order disturbance observer is presented to track desired position for an electro-hydraulic single-rod actuator in the presence of both external disturbances and parameter uncertainties. The proposed extended second-order disturbance observer deals with not only the external perturbations, but also parameter uncertainties which are commonly regarded as lumped disturbances in previous researches. Besides, the outer position tracking loop is designed with cylinder load pressure as output; and the inner pressure control loop provides the hydraulic actuator the characteristic of a force generator. The stability of the closed-loop system is provided based on Lyapunov theory. The performance of the controller is verified through simulations and experiments. The results demonstrate that the proposed nonlinear position tracking controller, together with the extended second-order disturbance observer, gives an excellent tracking performance in the presence of parameter uncertainties and external disturbance.
基金Supported by National Natural Science Foundation of China(Grant Nos.51275438,51405421)Hebei Provincial Natural Science Foundation of China(Grant No.E2015203101)
文摘Dynamic modeling of a parallel manipulator(PM) is an important issue. A complete PM system is actually composed of multiple physical domains. As PMs are widely used in various fields, the importance of modeling the global dynamic model of the PM system becomes increasingly prominent. Currently there lacks further research in global dynamic modeling. A unified modeling approach for the multi-energy domains PM system is proposed based on bond graph and a global dynamic model of the 3-UPS/S parallel stabilized platform involving mechanical and electrical-hydraulic elements is built. Firstly, the screw bond graph theory is improved based on the screw theory, the modular joint model is modeled and the normalized dynamic model of the mechanism is established. Secondly, combined with the electro-hydraulic servo system model built by traditional bond graph, the global dynamic model of the system is obtained, and then the motion, force and power of any element can be obtained directly. Lastly, the experiments and simulations of the driving forces, pressure and flow are performed, and the results show that, the theoretical calculation results of the driving forces are in accord with the experimental ones, and the pressure and flow of the first limb and the third limb are symmetry with each other. The results are reasonable and verify the correctness and effectiveness of the model and the method. The proposed dynamic modeling method provides a reference for modeling of other multi-energy domains system which contains complex PM.