期刊文献+
共找到767,582篇文章
< 1 2 250 >
每页显示 20 50 100
Nonlinear Modeling and Identification of the Electro-hydraulic Control System of an Excavator Arm Using BONL Model 被引量:1
1
作者 YAN Jun LI Bo +2 位作者 GUO Gang ZENG Yonghua ZHANG Meijun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第6期1212-1221,共10页
Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based o... Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based on theoretical state space model, and the parameters identification is hard due to its demand on internal states measurement. Moreover, there are also some hard-to-model nonlinearities in theoretical model, which needs to be overcome. Modeling and identification of the electro-hydraulic control system of an excavator arm based on block-oriented nonlinear(BONL) models is investigated. The nonlinear state space model of the system is built first, and field tests are carried out to reveal the nonlinear characteristics of the system. Based on the physic insight into the system, three BONL models are adopted to describe the highly nonlinear system. The Hammerstein model is composed of a two-segment polynomial nonlinearity followed by a linear dynamic subsystem. The Hammerstein-Wiener(H-W) model is represented by the Hammerstein model in cascade with another single polynomial nonlinearity. A novel Pseudo-Hammerstein-Wiener(P-H-W) model is developed by replacing the single polynomial of the H-W model by a non-smooth backlash function. The key term separation principle is applied to simplify the BONL models into linear-in-parameters struc^tres. Then, a modified recursive least square algorithm(MRLSA) with iterative estimation of internal variables is developed to identify the all the parameters simultaneously. The identification results demonstrate that the BONL models with two-segment polynomial nonlinearities are able to capture the system behavior, and the P-H-W model has the best prediction accuracy. Comparison experiments show that the velocity prediction error of the P-H-W model is reduced by 14%, 30% and 75% to the H-W model, Hammerstein model, and extended auto-regressive (ARX) model, respectively. This research is helpful in controller design, system monitoring and diagnosis. 展开更多
关键词 electro-hydraulic control system BACKLASH Pseudo-Hammerstein-Wiener model nonlinear identification recursive least square algorithm
下载PDF
Fuzzy Feedback Control for Electro-Hydraulic Actuators
2
作者 Tan Nguyen Van Huy Q.Tran +2 位作者 Vinh Xuan Ha Cheolkeun Ha Phu Huynh Minh 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2441-2456,共16页
Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely co... Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely control the position and force through advanced sensors and innovative control algorithms.One of the promising approaches to improve control accuracy for EHA systems is applying classical to modern control algorithms,in which the proportional–inte-gral–derivative(PID)algorithm,fuzzy logic controller,and a hybrid of these methods are popular options.In this paper,we developed a novel version of the fuzzy control algorithm and linear feedback control method,namely fuzzy lin-ear feedback control,to improve the control performance.To achieve the highest performance,wefirst designed a mathematical EHA model based on the Matlab/Simulink software packages thanks to the selected parameters,which are similar to a real EHA system.Then,we respectively applied PID,fuzzy PID(FPID),and fuzzy linear feedback control(FLFC)before comparing them to have a full view of the outstanding advantages of the proposed algorithm.The simulation results showed that the proposed FLFC algorithm is approximately 99%and 77%super-ior in performance to the PID and feedback control algorithms,respectively. 展开更多
关键词 electro-hydraulic actuator FUZZY PID feedback control
下载PDF
PID Controller Optimization by GA and Its Performances on the Electro-hydraulic Servo Control System 被引量:22
3
作者 Karam M. Elbayomy 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第4期378-384,共7页
A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surf... A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. The PID gain parameters are optimized by the genetic algorithm (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experimental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as compared with the classical PID controller and the compensator controller. 展开更多
关键词 PID controller electro-hydraulic servo control system genetic controller GA
下载PDF
Separate Control of High Frequency Electro-hydraulic Vibration Exciter 被引量:7
4
作者 JIA Wen'ang RUAN Jian REN Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第2期293-302,共10页
The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response ca... The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response capability of the servo valve itself.To counteract such restriction,a novel scheme for an electro-hydraulic vibrator,controlled by a two-dimensional valve(2D valve) and a bias valve in parallel,is therefore proposed.The frequency,amplitude and offset are independently controlled by rotary speed,axial sliding of the spool of the 2D valve and axial sliding of the spool of the bias valve.The principle of separate control was presented and the regulation approach of frequency,amplitude and offset was discussed.A mathematical model of the hydraulic power mechanism for the proposed vibration exciter was established to investigate the relationship between the amplitude and the axial sliding of the 2D valve' spool,as well as that between the offset and the axial sliding of the bias valve's spool at various frequencies.An experimental system was built to validate the theoretical analysis.It is verified that the 2D exciter is capable of working smoothly in a frequency range of 5- 200 Hz.And its frequency,amplitude and offset can be controlled respectively by either closed loop or open loop method.There is a linear relationship between the output amplitude and the spool axial opening of the 2D valve until a point when the flow rate becomes saturate and the amplitude remains constant.The offset displacement of the cylinder's piston is linearly proportional to the axial displacement of the spool of the bias valve,when the valve opening is less than 25%.Thereafter,the slop of the offset curve decreases and tends to saturate.The proposed electro-hydraulic vibration controlled by the 2D valve not only facilitates the realization of high-frequency electro-hydraulic vibration,the high-accuracy of vibration can also be achieved by means of independent controls to the frequency,amplitude and offset. 展开更多
关键词 control valves electro-hydraulic system vibration exciter dynamics characteristics
下载PDF
Present Status and Prospect of High-Frequency Electro-hydraulic Vibration Control Technology 被引量:7
5
作者 Yi Liu Tao Wang +1 位作者 Guofang Gong Rujun Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第6期1-16,共16页
Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large outpu... Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large output power,displacement and thrust,as well as good workload adaptation and multi-controllable parameters.Based on the domestic and overseas development of high-frequency EHVE,dividing them into servo-valve controlled vibration equipment and rotary-valve controlled vibration equipment.The research status and progress of high-frequency electro-hydraulic vibration control technology(EHVCT)are discussed,from the perspective of vibration waveform control and vibration controller.The problems of current electro-hydraulic vibration system bandwidth and waveform distortion control,stability control,offset control and complex vibration waveform generation in high-frequency vibration conditions are pointed out.Combining the existing rotary-valve controlled high-frequency electro-hydraulic vibration method,a new twin-valve independently controlled high-frequency electro-hydraulic vibration method is proposed to break through the limitations of current electro-hydraulic vibration technology in terms of system frequency bandwidth and waveform distortion.The new method can realize independent adjustment and control of vibration waveform frequency,amplitude and offset under high-frequency vibration conditions,and provide a new idea for accurate simulation of high-frequency vibration waveform. 展开更多
关键词 electro-hydraulic vibration equipment HIGH-FREQUENCY Vibration control Vibration waveform Twin-valve
下载PDF
Output Waveform Analysis of an Electro-hydraulic Vibrator Controlled by the Multiple Valves 被引量:10
6
作者 REN Yan RUAN Jian JIA Wen'ang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期186-197,共12页
The existing research of the electro-hydraulic vibrator mainly focuses on system stability, working frequency width and output waveform distortion. However, this high frequency performance of the electro-hydraulic vib... The existing research of the electro-hydraulic vibrator mainly focuses on system stability, working frequency width and output waveform distortion. However, this high frequency performance of the electro-hydraulic vibrator is difficult to be improved greatly due to fast insufficiently frequency response of the servo valve itself and limited compensation capability of the control structure in the vibrator system. In this paper, to realize high frequency vibration, an improved two-dimensional valve (here within defined as a 2D valve) as a main control component is adopted to the parallel connection with a servo valve to control the electro-hydraulic vibrator, Because the output waveforms of this electro-hydraulic vibrator are incapable to be verified through timely feedback as in the conventional electro-hydraulic servo system, the analysis to the output waveform becomes crucial to the design and control of the electro-hydraulic vibrator. The mathematical models of hydraulic actuation mechanism and the orifice area of the parallel valves connection are established first. And then the vibration process is divided into two sections in terms of the direction of the flow, the analytical expression of the excited waveform is solved. Based on relationships exist between working states and the control parameters the analytical results, the vibration boundary positions and the are derived. Finally an experimental system was built to validate the theoretical analysis. It is verified that this electro-hydraulic vibration system could achieve high working frequency, up to 2 000 Hz. The excited waveform is similar to the sinnsoidal waveform. And the ascent and decent slopes of the waveforms are somewhat asymmetrical. This asymmetry is not only caused by the change of the direction of the elastic force but also dependent on the bias position of the vibration. Consequentky the distortion of effective working waveform is less tha~ 10%. This electro-hydraulic vibrator controlled by the multiple valves could not only greatly enhance the working frequency but also precisely control the vibration characteristic variables such as waveform shape. 展开更多
关键词 2D valves hydraulic multiple-valve system electro-hydraulic vibrator excited waveform
下载PDF
Parameter-dependent vibration-attenuation controller design for electro-hydraulic actuated linear structural systems 被引量:1
7
作者 Weng Falu Mao Weijie 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第1期73-82,共10页
The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping a... The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping and stiffness matrices is investigated in this paper. First, by introducing a linear varying parameter, the nonlinear system is described as a linear parameter varying (LPV) model. Second, based on this LPV model, an LMI-based condition for the system to be asymptotically stabilized is deduced. By solving these LMIs, a parameter-dependent controller is established for the closed- loop system to be stable with a prescribed level of disturbance attenuation. The condition is also extended to the uncertain case. Finally, some numerical simulations demonstrate the satisfying performance of the proposed controller. 展开更多
关键词 structural system electro-hydraulic servo system robust stabilization vibration attenuation parameter-dependent controller
下载PDF
Barrier Lyapunov functions-based dynamic surface control with tracking error constraints for ammunition manipulator electro-hydraulic system 被引量:1
8
作者 Shou-Cheng Nie Lin-Fang Qian +2 位作者 Long-Miao Chen Ling-Fei Tian Quan Zou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期836-845,共10页
This paper focuses on the dynamic tracking control of ammunition manipulator system. A standard state space model for the ammunition manipulator electro-hydraulic system(AMEHS) with inherent nonlinearities and uncerta... This paper focuses on the dynamic tracking control of ammunition manipulator system. A standard state space model for the ammunition manipulator electro-hydraulic system(AMEHS) with inherent nonlinearities and uncertainties considered was established. To simultaneously suppress the violation of tracking error constraints and the complexity of differential explosion, a barrier Lyapunov functionsbased dynamic surface control(BLF-DSC) method was proposed for the position tracking control of the ammunition manipulator. Theoretical analysis prove the stability of the closed-loop overall system and the tracking error converges to a prescribed neighborhood asymptotically. The effectiveness and dynamic tracking performance of the proposed control strategy is validated via simulation and experimental results. 展开更多
关键词 Ammunition manipulator electro-hydraulic system Error constraints Tracking control
下载PDF
PI-type Iterative Learning Control for Nonlinear Electro-hydraulic Servo Vibrating System 被引量:3
9
作者 LUO Xiaohui ZHU Yuquan HU Junhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期451-455,共5页
For the electro-hydraulic servo vibrating system(ESVS) with the characteristics of non-linearity and repeating motion, a novel method, PI-type iterative learning control(ILC), is proposed on the basis of tradition... For the electro-hydraulic servo vibrating system(ESVS) with the characteristics of non-linearity and repeating motion, a novel method, PI-type iterative learning control(ILC), is proposed on the basis of traditional PID control. By using memory ability of computer, the method keeps last time's tracking error of the system and then applies the error information to the next time's control process. At the same time, a forgetting factor and a D-type learning law of feedforward fuzzy-inferring referenced displacement error under the optimal objective are employed to enhance the systemic robustness and tracking accuracy. The results of simulation and test reveal that the algorithm has a trait of high repeating precision, and could restrain the influence of nonlinear factors like leaking, external disturbance, aerated oil, etc. Compared with traditional PID control, it could better meet the requirement of nonlinear electro -hydraulic servo vibrating system. 展开更多
关键词 electro-hydraulic vibrating system PI iterative learning forgetting factor fuzzy inference
下载PDF
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:1
10
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 Adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
下载PDF
Continuous rotary motor electro-hydraulic servo system based on the improved repetitive controller 被引量:1
11
作者 王晓晶 姜继海 李尚义 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第5期731-734,共4页
In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction ... In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction interference to the performance of continuous rotary electro-hydraulic servo motor.The mathematic model of the electro-hydraulic position servo system of the continuous rotary motor was established,and the compound control method was adopted based on the repetitive control,feed forward and PID to suppress the friction interference.Through the simulation,the result confirms that the compound control method decreases the tracking error of the system,increases the robust performance of the system and improves the performance of the continuous rotary electro-hydraulic servo motor. 展开更多
关键词 continuous rotary electro-hydraulic servo motor repetitive control interference suppression
下载PDF
HYBRID FUZZY CONTROL FOR ELECTRO-HYDRAULIC ACTIVE DAMPING SUSPENSION 被引量:2
12
作者 Wang Qingfeng Yang Botao Tu HuagangState Key Laboratory of Fluid Power Transmission and Control, Zhejiang University,Hangzhou 310027, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第3期228-232,共5页
A new control scheme, the hybrid fuzzy control method, for active dampingsuspension system is presented. The scheme is the result of effective combination of the statisticaloptimal control method based on the statisti... A new control scheme, the hybrid fuzzy control method, for active dampingsuspension system is presented. The scheme is the result of effective combination of the statisticaloptimal control method based on the statistical property of suspension system, with the bang-bangcontrol method based on the real-time characteristics of suspension system. Computer simulations areperformed to compare the effectiveness of hybrid fuzzy control scheme with that of optimal dampingcontrol, bang-bang control, and passive suspension. It takes the effects of time-variant factorsinto full account. The superiority of the proposed hybrid fuzzy control scheme for active dampingsuspension to the passive suspension is verified in the experiment study. 展开更多
关键词 Semi-active suspension Hybrid fuzzy control SIMULATION EXPERIMENT
下载PDF
CONTROL STRATEGY FOR ELECTRO-HYDRAULIC POSITION SERVO SYSTEM WITH GENERALIZED PULSE CODE MODULATION 被引量:1
13
作者 LIU Rong PAN Huachen CHEN Ying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期50-53,共4页
A hybrid control strategy has been designed and developed for the electro-hydraulic posi-tion servo control system with generalized Pulse code modulation (GPCM), which is suitable for the area where the work conditi... A hybrid control strategy has been designed and developed for the electro-hydraulic posi-tion servo control system with generalized Pulse code modulation (GPCM), which is suitable for the area where the work condition is poor and a large flow rate is required. It is difficult to control the GPCM system because the system is discrete. With consideration of the stability and speediness of the GPCM position servo control system, a control strategy is developed through the theoretical and ex-perimental analyses. The control strategy integrates the merits of Bang-Bang control, PID control and fuzzy control. With this hybrid control strategy, the electro hydraulic control system has good per-formances, and the servo control is carried out with GPCM through on-off valves. 展开更多
关键词 Generalized pulse code modulation (GPCM) Position control Electro hydraulic control
下载PDF
VARIABLE STRUCTURE CONTROL APPLIED IN ELECTRO-HYDRAULIC SERVO SYSTEM WITH ANN 被引量:6
14
作者 YAO Jianjun WANG Xiancheng +1 位作者 WU Zhenshun HAN Junwei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期32-36,共5页
The variable structure control (VSC) theory is applied to the electro-hydraulic servo system here. The VSC control law is achieved using Lyapunov method and pole placement. To eliminate the chattering phenomena, a s... The variable structure control (VSC) theory is applied to the electro-hydraulic servo system here. The VSC control law is achieved using Lyapunov method and pole placement. To eliminate the chattering phenomena, a saturation function is adopted. The proposed VSC approach is fairly robust to load disturbance and system parameter variation. Since the distortion. including phase lag and amplitude attenuation occurs in the system sinusoid response, the amplitude and phase control (APC) algorithm, based on Adaline neural network and using LMS algorithm, is developed for distortion cancellation. The APC controller is simple and can on-line adjust, thus it gives accurate tracking. 展开更多
关键词 Variable structure control (VSC) Adaline neural network Pole placement LMS algorithm Amplitude and phase control (APC)
下载PDF
Angular Position Controller and Its Design Model Verification for the Electro-Hydraulic Servo Control System 被引量:1
15
作者 KARAM M. Elbayomy 《Computer Aided Drafting,Design and Manufacturing》 2007年第1期60-65,共6页
The angular position controller is system (EHSAS) to control the output of the rotary applied to electro-hydraulic servo actuator actuator. It works as a compensator based on the frequency response of the EHSAS. Its... The angular position controller is system (EHSAS) to control the output of the rotary applied to electro-hydraulic servo actuator actuator. It works as a compensator based on the frequency response of the EHSAS. Its design model is verified on the state-space model of EHSAS by using simulation program SIMULINK. Real data used to test the system. Simulation results give a good agreement for the controller and also for the state-space model. 展开更多
关键词 angular position controller electro-hydraulic servo control system design model state-space model SIMULINK
下载PDF
ELECTRO-HYDRAULIC COMPOUND CONTROL METHOD AND CHARACTERISTIC OF CONTROL FOR TENSION SYSTEM WITH HIGH INERTIA LOADS 被引量:2
16
作者 ZHONG Tianyu WANG Qingfeng +1 位作者 LI Yanmin GONG Fangyou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期391-395,共5页
Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which... Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which can obtain optimal dynamic damping ratio through real-time altering pressure-flow gain of the throttle control unit, improve the dynamic characteristic of tension follow-up control for the tension system with high inertia loads. Moreover, the characteristic when the cable linear velocity variation causes change of tension is investigated, and a compound control strategy is proposed. The theoretical analysis and experimental results show that the electro-hydraulic compound control circuit is effective and the characteristic of the compound control strategy is satisfactory. 展开更多
关键词 High inertia loads Tension control system Compound control strategy
下载PDF
FORCE FEEDBACK MODEL OF ELECTRO-HYDRAULIC SERVO TELE-OPERATION ROBOT BASED ON VELOCITY CONTROL
17
作者 GONG Mingde ZHAO Dingxuan ZHANG Hongyan JIA Cuiling 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期1-5,共5页
The tele-operation robotic system which consists of an excavator as the construction robot, and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas. In order ... The tele-operation robotic system which consists of an excavator as the construction robot, and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas. In order to accomplish a precise task, the operator needs to feel a realistic sense of task force brought about from a feedback force between the fork glove of slave robot and unfamiliar environment. A novel force feedback model is proposed based on velocity control of cylinder to determine environment force acting on fork glove. Namely, the feedback force is formed by the error of displacement of joystick with velocity and driving force of piston, and the gain is calculated by the driving force and threshold of driving force of hydraulic cylinder. Moreover, the variable gain improved algorithm is developed to overcome the defect for grasping soft object. Experimental results for fork glove freedom of robotic system are provided to demonstrate the developed algorithm is available for grasping soft object. 展开更多
关键词 Construction robot Tele-operation Bilateral electro-hydraulic servo control Velocity control Force feedback model
下载PDF
Communication Resource-Efficient Vehicle Platooning Control With Various Spacing Policies 被引量:2
18
作者 Xiaohua Ge Qing-Long Han +1 位作者 Xian-Ming Zhang Derui Ding 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期362-376,共15页
Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical cha... Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results. 展开更多
关键词 Automated vehicles constant time headway spacing constant spacing cooperative adaptive cruise control event-triggered communication vehicle platooning
下载PDF
Dynamic Simulation and Valve Structure Optimization of an Electro-Hydraulic Clutch Shift Control System in an Automatic Transmission 被引量:1
19
作者 韩笑 刘艳芳 +1 位作者 徐向阳 唐树晗 《Journal of Donghua University(English Edition)》 EI CAS 2015年第5期842-850,共9页
The electro-hydraulic clutch control system controls the transferred torque of gear-shifting clutches in clutch-to-clutch transmissions. A nonlinear dynamic model of an electro-hydraulic clutch shift control system is... The electro-hydraulic clutch control system controls the transferred torque of gear-shifting clutches in clutch-to-clutch transmissions. A nonlinear dynamic model of an electro-hydraulic clutch shift control system is presented. The mechanical and fluid subsystems of all valves are investigated, including their interactions. Model validation of the electro-hydraulic valve system is performed by comparing the simulated and measured pressure curves. The dynamic characteristics of the electro-hydraulic clutch shift control system with different supply pressures and different fluid temperatures are simulated and evaluated. It is found that pipes which are often ignored between the electro-hydraulic valve system and the clutch piston,have strong influence on clutch piston chamber pressures. In order to satisfy the required time and reduce the fluctuation of the clutch piston chamber pressures,the orifices' diameters and valve structure are optimized. 展开更多
关键词 clutch shift control system hydraulic valve dynamic characteristic simulation study
下载PDF
Sliding Mode Control of Hydraulic Pressure in Electro-Hydraulic Brake System Based on the Linearization of Higher-Order Model 被引量:2
20
作者 Qiping Chen Haoyu Sun +2 位作者 Ning Wang Zhi Niu Rui Wan 《Fluid Dynamics & Materials Processing》 EI 2020年第3期513-524,共12页
The possibility to enhance the stability and robustness of electrohydraulic brake(EHB)systems is considered a subject of great importance in the automotive field.In such a context,the present study focuses on an actua... The possibility to enhance the stability and robustness of electrohydraulic brake(EHB)systems is considered a subject of great importance in the automotive field.In such a context,the present study focuses on an actuator with a four-way sliding valve and a hydraulic cylinder.A 4-order nonlinear mathematical model is introduced accordingly.Through the linearization of the feedback law of the high order EHB model,a sliding mode control method is proposed for the hydraulic pressure.The hydraulic pressure tracking controls are simulated and analyzed by MATLAB/Simulink soft considering separately different conditions,i.e.,a sine wave,a square wave and a square wave with superimposed sine disturbance.The results show that the proposed strategy can track the target within 0.25 s,and the mean observed error is less than 1.2 bar.Moreover,with such a strategy,faster response and less overshoot are possible,which should be regarded as significant advantages. 展开更多
关键词 EHB hydraulic pressure feedback linearization sliding mode control
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部