期刊文献+
共找到533篇文章
< 1 2 27 >
每页显示 20 50 100
New Method to Improve Dynamic Stiffness of Electro-hydraulic Servo Systems 被引量:9
1
作者 BAI Yanhong QUAN Long 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期997-1005,共9页
Most current researches working on improving stiffness focus on the application of control theories.But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated,so... Most current researches working on improving stiffness focus on the application of control theories.But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated,so the control action is lagged.Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms.In this paper,the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed.On this basis,the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward.And a scheme using double servo valves to realize flow feedforward compensation is presented,in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time.The two valves are arranged in parallel to control the cylinder jointly.Furthermore,the model of flow compensation is derived,by which the product of the amplitude and width of the valve’s pulse command signal can be calculated.And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations.Using the proposed scheme,simulations and experiments at different positions with different force changes are conducted.The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time.That is,system dynamic load stiffness is evidently raised.This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems. 展开更多
关键词 electro-hydraulic servo system flow feedforward compensation dynamic load stiffness double-valve actuation
下载PDF
PID Controller Optimization by GA and Its Performances on the Electro-hydraulic Servo Control System 被引量:22
2
作者 Karam M. Elbayomy 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第4期378-384,共7页
A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surf... A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. The PID gain parameters are optimized by the genetic algorithm (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experimental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as compared with the classical PID controller and the compensator controller. 展开更多
关键词 PID controller electro-hydraulic servo control system genetic controller GA
下载PDF
Fuzzy iterative learning control of electro-hydraulic servo system for SRM direct-drive volume control hydraulic press 被引量:17
3
作者 郑建明 赵升吨 魏树国 《Journal of Central South University》 SCIE EI CAS 2010年第2期316-322,共7页
A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant no... A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant nonlinearity exist in the volume control electro-hydraulic servo system,the ILC(iterative learning control) method is applied to tracking the displacement curve of the hydraulic press slider.In order to improve the convergence speed and precision of ILC,a fuzzy ILC algorithm that utilizes the fuzzy strategy to adaptively adjust the iterative learning gains is put forward.The simulation and experimental researches are carried out to investigate the convergence speed and precision of the fuzzy ILC for hydraulic press slider position tracking.The results show that the fuzzy ILC can raise the iterative learning speed enormously,and realize the tracking control of slider displacement curve with rapid response speed and high control precision.In experiment,the maximum tracking error 0.02 V is achieved through 12 iterations only. 展开更多
关键词 hydraulic press volume control electro-hydraulic servo iterative learning control fuzzy control
下载PDF
Modeling,Simulation and Experiment of Electro-hydraulic Screw Down Servo System of Seamless Tube Rolling Mill 被引量:4
4
作者 XU Xiaoqing QUAN Long +1 位作者 LI Bin GUO Jibao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期113-120,共8页
Electro-hydraulic screw down servo system(HSDS) is widely used in seamless tube rolling mill in western companies.But in Chinese companies,mechanical screw down system(MSDS) is popularly equipped and has a serious... Electro-hydraulic screw down servo system(HSDS) is widely used in seamless tube rolling mill in western companies.But in Chinese companies,mechanical screw down system(MSDS) is popularly equipped and has a serious disadvantage that the roller would often be locked when it is overloaded.For the purpose of designing the first set of domestic twin-roller,four-cylinder and six-framework electro-hydraulic HSDS of seamless tube rolling mill,an experiment system that can simulate the process of seamless tube rolling is constructed.A digital simulation model of the experiment system is built with AMESim software and validated by comparing the simulation results with experiment results.The sudden load response of the screw piston position is studied with the built model and the experiment system.To improve the HSDS's positioning accuracy with large load,a hybrid control scheme of combining load disturbance feedforward compensation(LDFC) method based on servo valve's pressure-stroke feature and anti-saturation integral control(ASIC) is proposed.Both results of simulation and experiment indicate that the transient response time of the single-roller HSDS with the proposed scheme decreases from 0.65 s to less than 0.2 s without static error.To improve the system dynamic stiffness and production qualified rate,a flow rate feedforward compensation(FFC) control strategy based on oil compressibility to dynamic position error is proposed.This FFC strategy is validated with experiments in which the transient error caused by sudden load is reduced to less than 25% of that without FFC.By extending the simulation model to HSDS of a twin-roller,four-cylinder rolling mill,analyzing the mill deformation,and applying the LDFC,ASIC and FFC to the HSDS,the dynamic performance and positioning accuracy of compensated multi-roller HSDS at biting moment are predicted.The research results provide a theoretical and experimental basis for the design of HSDS of seamless steel tube rolling mill. 展开更多
关键词 tube rolling mill servo system digital simulation load stiffness
下载PDF
Characteristics Prediction Method of Electro-hydraulic Servo Valve Based on Rough Set and Adaptive Neuro-fuzzy Inference System 被引量:11
5
作者 JIA Zhenyuan MA Jianwei WANG Fuji LIU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期200-208,共9页
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass... Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting. 展开更多
关键词 characteristics prediction rough set adaptive neuro-fuzzy inference system electro-hydraulic servo valve artificial neural networks
下载PDF
Compensation for secondary uncertainty in electro-hydraulic servo system by gain adaptive sliding mode variable structure control 被引量:11
6
作者 张友旺 桂卫华 《Journal of Central South University of Technology》 EI 2008年第2期256-263,共8页
Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employe... Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively. 展开更多
关键词 electro-hydraulic servo system adaptive dynamic recurrent fuzzy neural network(ADRFNN) gain adaptive slidingmode variable structure control(GASMVSC) secondary uncertainty
下载PDF
High precise control method for a new type of Piezoelectric electro-hydraulic servo valve 被引量:2
7
作者 周淼磊 田彦涛 +1 位作者 高巍 杨志刚 《Journal of Central South University of Technology》 EI 2007年第6期832-837,共6页
A new type of piezoelectric electro-hydraulic servo valve system was proposed. And then multilayer piezoelectric actuator based on new piezoelectric ceramic material was used as the electricity-machine converter of th... A new type of piezoelectric electro-hydraulic servo valve system was proposed. And then multilayer piezoelectric actuator based on new piezoelectric ceramic material was used as the electricity-machine converter of the proposed piezoelectric electro-hydraulic servo valve. The proposed piezoelectric electro-hydraulic servo valve has ascendant performance compared with conventional ones. But the system is of high nonlinearity and uncertainty, it cannot achieve favorable control performance by conventional control method. To develop an efficient way to control piezoelectric electro-hydraulic servo valve system, a high-precise fuzzy control method with hysteresis nonlinear model in feedforward loop was proposed. The control method is separated into two parts: a feedforward loop with Preisach hysteresis nonlinear model and a feedback loop with high-precise fuzzy control. Experimental results show that the hysteresis loop and the maximum output hysteresis by the PID control method are 4.22% and 2.11 μm, respectively; the hysteresis loop and the maximum output hysteresis by the proposed control method respectively are 0.74% and 0.37 μm, respectively; the maximum tracking error by the PID control method for sine wave reference signal is about 5.02%, the maximum tracking error by the proposed control method for sine wave reference signal is about 0.85%. 展开更多
关键词 piezoelectric electro-hydraulic servo valve hysteresis nonlinearity Preisach model fuzzy control
下载PDF
Research on improved active disturbance rejection control of continuous rotary motor electro-hydraulic servo system 被引量:5
8
作者 WANG Xiao-jing FENG Ya-ming SUN Yu-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3733-3743,共11页
In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynam... In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application. 展开更多
关键词 continuous rotary electro-hydraulic servo motor active disturbance rejection control(ADRC) fast tracking differentiator(TD) non-linear state error feedback(NLSEF) extended state observer(ESO) grey wolf algorithm
下载PDF
ELECTRO-HYDRAULIC SERVO SYSTEM IN THE CENTRIFUGE FIELD 被引量:1
9
作者 DongLonglei YanGuirong LiRonglin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期237-242,共6页
The mechanical characteristics of the electro-hydraulic servo system in thecentrifuge field are analyzed. The hydraulic pressure law in the centrifuge field indicates theexistence of the centrifuge hydraulic pressure.... The mechanical characteristics of the electro-hydraulic servo system in thecentrifuge field are analyzed. The hydraulic pressure law in the centrifuge field indicates theexistence of the centrifuge hydraulic pressure. The mechanical characteristics of the slide-valveand the dual nozzle flapper valve are studied, and it is found that the centrifuge field can notonly increase the driving force or moment of the function units, but also decrease the stability ofthe components. Finally by applying Gauss minimum constraint principle, the dynamic model of theelectro-hydraulic vibrator in the centrifuge field is established, and the mechanical restriction ofthe system is also presented. The study will be helpful for the realization of the combinedvibration and centrifuge test system. 展开更多
关键词 electro-hydraulic servo system Centrifuge field Mechanical characteristics
下载PDF
Delay Compensation Observer with Sliding Mode Controller for Rotary Electro-hydraulic Servo System 被引量:1
10
作者 ZAKARYA Omar KHALID Hussein +1 位作者 WANG Xingsong ORELAJA Olusyi Adwale 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第S01期49-56,共8页
The hip’s lower limb exoskeleton essential and most important function is to support human’s payload as well as to enhance and assist human’s motion. It utilizes an electro-hydraulic servo manipulator which is requ... The hip’s lower limb exoskeleton essential and most important function is to support human’s payload as well as to enhance and assist human’s motion. It utilizes an electro-hydraulic servo manipulator which is required to achieve precise trajectory tracking and positioning operations. Nevertheless,these tasks require precise and robust control,which is very difficult to attain due to the inherent nonlinear dynamic behavior of the electro-hydraulic system caused by flow-pressure characteristics and fluid volume control variations of the servo valve. The sliding mode controller(SMC)is a widely used nonlinear robust controller,yet uncertainties and delay in the output degrade the closed-loop system performance and cause system instability. This work proposes a robust controller scheme that counts for the output delay and the inherent parameter uncertainties. Namely,a sliding mode controller enhanced by time-delay compensating observer for a typical electro-hydraulic servo system is adapted. SMC is utilized for its robustness against servo system parameters’ uncertainty whereas a time-delay observer estimates the variable states of the controller(velocity and acceleration). The main contribution of this paper is improving on the closed loop performance of the electro hydraulic servo system and mitigating the delay time effects. Simulation results prove the robustness of this controller,which forces the position to track the desired path regardless of the changes of the amount of transport delay of the system’s states. The performance of the proposed controller is validated by repeating the simulation analysis while varying the amount of delay time. 展开更多
关键词 sliding mode controller rotary electro-hydraulic servo system delay compensating observer transport delay
下载PDF
Self-correcting wavelet neural network control of continuous rotary electro-hydraulic servo motor 被引量:2
11
作者 Wang Xiaojing Li Chunhui Peng Yiwen 《High Technology Letters》 EI CAS 2021年第1期26-37,共12页
In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the... In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the transfer function of electro-hydraulic servo system,a kind of Pol-Ind friction model is proposed.The parameters of Pol-Ind friction model are identified and the accurate mathematical model of friction torque is obtained by experiment.The self-correcting wavelet neural network(WNN)controller is proposed,and Adam optimization algorithm is used to perform gradient optimization on scale factor and displacement factor in wavelet basis function,so as to improve the speed and precision of parameter optimization.Through comparative simulation analysis,it is clearly that the self-correcting WNN controller can effectively improve the frequency response and tracking accuracy of continuous rotary motor electro-hydraulic servo system. 展开更多
关键词 continuous rotary electro-hydraulic servo motor Pol-Ind friction model self correcting wavelet neural network(WNN) Adam optimization algorithm
下载PDF
Continuous rotary motor electro-hydraulic servo system based on the improved repetitive controller 被引量:1
12
作者 王晓晶 姜继海 李尚义 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第5期731-734,共4页
In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction ... In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction interference to the performance of continuous rotary electro-hydraulic servo motor.The mathematic model of the electro-hydraulic position servo system of the continuous rotary motor was established,and the compound control method was adopted based on the repetitive control,feed forward and PID to suppress the friction interference.Through the simulation,the result confirms that the compound control method decreases the tracking error of the system,increases the robust performance of the system and improves the performance of the continuous rotary electro-hydraulic servo motor. 展开更多
关键词 continuous rotary electro-hydraulic servo motor repetitive control interference suppression
下载PDF
Angular Position Controller and Its Design Model Verification for the Electro-Hydraulic Servo Control System 被引量:1
13
作者 KARAM M. Elbayomy 《Computer Aided Drafting,Design and Manufacturing》 2007年第1期60-65,共6页
The angular position controller is system (EHSAS) to control the output of the rotary applied to electro-hydraulic servo actuator actuator. It works as a compensator based on the frequency response of the EHSAS. Its... The angular position controller is system (EHSAS) to control the output of the rotary applied to electro-hydraulic servo actuator actuator. It works as a compensator based on the frequency response of the EHSAS. Its design model is verified on the state-space model of EHSAS by using simulation program SIMULINK. Real data used to test the system. Simulation results give a good agreement for the controller and also for the state-space model. 展开更多
关键词 angular position controller electro-hydraulic servo control system design model state-space model SIMULINK
下载PDF
FORCE FEEDBACK MODEL OF ELECTRO-HYDRAULIC SERVO TELE-OPERATION ROBOT BASED ON VELOCITY CONTROL
14
作者 GONG Mingde ZHAO Dingxuan ZHANG Hongyan JIA Cuiling 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期1-5,共5页
The tele-operation robotic system which consists of an excavator as the construction robot, and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas. In order ... The tele-operation robotic system which consists of an excavator as the construction robot, and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas. In order to accomplish a precise task, the operator needs to feel a realistic sense of task force brought about from a feedback force between the fork glove of slave robot and unfamiliar environment. A novel force feedback model is proposed based on velocity control of cylinder to determine environment force acting on fork glove. Namely, the feedback force is formed by the error of displacement of joystick with velocity and driving force of piston, and the gain is calculated by the driving force and threshold of driving force of hydraulic cylinder. Moreover, the variable gain improved algorithm is developed to overcome the defect for grasping soft object. Experimental results for fork glove freedom of robotic system are provided to demonstrate the developed algorithm is available for grasping soft object. 展开更多
关键词 Construction robot Tele-operation Bilateral electro-hydraulic servo control Velocity control Force feedback model
下载PDF
Numerical simulation and experimental study on the leakage of continuous rotary electro-hydraulic servo motor
15
作者 Wang Xiaojing Peng Yiwen Li Chunhui 《High Technology Letters》 EI CAS 2021年第3期272-281,共10页
In order to study the influence of inlet and outlet pressure difference and triangular buffer groove on the internal leakage of continuous rotary electro-hydraulic servo motor,the flow field model of motor with and wi... In order to study the influence of inlet and outlet pressure difference and triangular buffer groove on the internal leakage of continuous rotary electro-hydraulic servo motor,the flow field model of motor with and without triangular groove is established respectively.The mesh model is divided.The pressure distribution of the internal flow field under different pressure difference is analyzed by Fluent.Then,the gap leakage under different pressure difference is calculated,and the leakage curve is obtained.Finally,continuous rotary electro-hydraulic servo motor experimental system is built to conduct the internal leakage test,and the leakage under different pressure difference is measured and compared with the simulation results.The results show that the occurrence of leakage in the motor can be reduced by setting the triangular buffer groove on the flow plate,the simulation and experimental results are consistent.It can be concluded that the larger the pressure difference between the inlet and the outlet of the motor,the larger the gap leakage.The research lays foundation for the application of continuous rotary electro-hydraulic servo motor. 展开更多
关键词 continuous rotary electro-hydraulic servo motor internal leakage FLUENT triangular buffer groove
下载PDF
Coordinating optimization-based sliding mode variable structure control for electro-hydraulic servo system
16
作者 Yong YANG An LUO Hua HAN 《控制理论与应用(英文版)》 EI 2006年第2期168-174,共7页
A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance i... A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance indexes in the coordinating optimization, while the tuning rate of boundary layer width (BLW) is employed as the optimization parameter. Based on the mathematical relationship between the BLW and steady-state error, an optimized BLW tuning rate is added to the nonlinear control term of SMVSC. Simulation experiment results applied to the positioning control of an electro-hydraulic servo system show the comprehensive superiority in dynamical and static state performance by using the proposed controller is better than that by using SMVSC without optimized BLW tuning rate. This succeeds in coordinately considering both chattering reduction and high-precision control realization in SMVSC. 展开更多
关键词 Sliding mode variable structure control(SMVSC) Varying boundary layer Chattering reduction Steady-state performance Coordinating optimization(CO) electro-hydraulic servo system (EHSS)
下载PDF
Analysis on Static Pressure Bearing Seal Characteristics of Guide Sleeve of Electro-hydraulic Servo Cylinder
17
作者 SHAO Junpeng XU Longfei SUN Guitao 《International Journal of Plant Engineering and Management》 2019年第3期140-156,共17页
As a typical bionic walking robot, hydraulic quadruped robot has attracted much attention because of its high mobility, strong load capacity and steady motion. The electro-hydraulic servo cylinder, as its power actuat... As a typical bionic walking robot, hydraulic quadruped robot has attracted much attention because of its high mobility, strong load capacity and steady motion. The electro-hydraulic servo cylinder, as its power actuator, requires low friction, good lateral load resistance and high speed motion. The electro-hydraulic servo cylinder hydrostatic bearing seal guide sleeve is taken as the research object in this paper. By using Fluent software to analyze and contrast the film characteristics of rectangular and I-shaped oil chamber of hydrostatic bearing seal guide sleeve, the relationship between piston rod moving speed, eccentricity, oil film carrying capacity, friction force and leakage volume, as well as the relationship between oil feed flow and oil film bearing capacity, friction force, inlet pressure and leakage volume were analyzed. This study provides a theoretical basis for optimizing the static pressure bearing seal parameters. 展开更多
关键词 hydraulic QUADRUPED robot electro-hydraulic servo cylinder static pressure bearing seal guide SLEEVE CHARACTERISTICS of oil film Fluent simulation ANALYSIS
下载PDF
Study on Oil Cavity Number of Hydrostatic Guide Sleeve of Electro-hydraulic Servo Cylinder
18
作者 SHAO Junpeng XU Longfei SUN Guitao 《International Journal of Plant Engineering and Management》 2019年第4期219-230,共12页
The electro-hydraulic servo drive hydraulic cylinder has many unique advantages, such as fast response, high load stiffness, high control power, strong anti-eccentric load ability and so on, so it has been widely used... The electro-hydraulic servo drive hydraulic cylinder has many unique advantages, such as fast response, high load stiffness, high control power, strong anti-eccentric load ability and so on, so it has been widely used in industrial control. Based on the guide sleeve of hydrostatic seal of hydraulic cylinder, the reasonable number of oil chamber of guide sleeve is studied in this paper. ICEM CFD software and FLUENT simulation software are used to calculate and analyze the number of different oil chambers of guide sleeve of hydrostatic seal. The temperature field of piston rod with different moving speed, different initial pressure of oil chamber and oil film under different number of oil chambers is analyzed. The relationship between the pressure field and temperature field provides a better basis for optimizing the design of hydrostatic guide sleeve and helps to improve the servo drive cylinder. 展开更多
关键词 electro-hydraulic servo hydraulic cylinder hydrostatic seal guide sleeve number of oil chambers pressure field temperature field
下载PDF
Multi-Channel Force Control System for Static Loading
19
作者 陈彩可 王军政 +1 位作者 马立玲 李金仓 《Journal of Beijing Institute of Technology》 EI CAS 2003年第S1期1-6,共6页
An eight-channel force loading system is presented, which adopts position control system and force control system switching model, small flow servo valve controlled capacious cylinder system scheme, intelligent PID al... An eight-channel force loading system is presented, which adopts position control system and force control system switching model, small flow servo valve controlled capacious cylinder system scheme, intelligent PID algorithm and distributed load approach. Through the analyses of the equivalent model of valve controlled cylinder force subsystem, a controller based on intelligent PID algorithm is designed, which is not sensitive to the variation of parameters such as environmental stiffness. According to the coupling of multiple load channels, a distributed load approach is employed in the superior monitor computer. Experimental results show that the system designed has high precision and robustness. 展开更多
关键词 electro-hydraulic servo loading system static force loading force control
下载PDF
Global Dynamic Modeling of Electro-Hydraulic 3-UPS/S Parallel Stabilized Platform by Bond Graph 被引量:11
20
作者 ZHANG Lijie GUO Fei +1 位作者 LI Yongquan LU Wenjuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第6期1176-1185,共10页
Dynamic modeling of a parallel manipulator(PM) is an important issue. A complete PM system is actually composed of multiple physical domains. As PMs are widely used in various fields, the importance of modeling the ... Dynamic modeling of a parallel manipulator(PM) is an important issue. A complete PM system is actually composed of multiple physical domains. As PMs are widely used in various fields, the importance of modeling the global dynamic model of the PM system becomes increasingly prominent. Currently there lacks further research in global dynamic modeling. A unified modeling approach for the multi-energy domains PM system is proposed based on bond graph and a global dynamic model of the 3-UPS/S parallel stabilized platform involving mechanical and electrical-hydraulic elements is built. Firstly, the screw bond graph theory is improved based on the screw theory, the modular joint model is modeled and the normalized dynamic model of the mechanism is established. Secondly, combined with the electro-hydraulic servo system model built by traditional bond graph, the global dynamic model of the system is obtained, and then the motion, force and power of any element can be obtained directly. Lastly, the experiments and simulations of the driving forces, pressure and flow are performed, and the results show that, the theoretical calculation results of the driving forces are in accord with the experimental ones, and the pressure and flow of the first limb and the third limb are symmetry with each other. The results are reasonable and verify the correctness and effectiveness of the model and the method. The proposed dynamic modeling method provides a reference for modeling of other multi-energy domains system which contains complex PM. 展开更多
关键词 screw bond graph multi-energy domains 3-UPS/S parallel mechanism electro-hydraulic servo system
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部