Background: A major cause of mortality and disability on a global scale is myocardial infarction (MI). These days, the most reliable way to detect and measure MI is via cardiovascular magnetic resonance imaging (CMR)....Background: A major cause of mortality and disability on a global scale is myocardial infarction (MI). These days, the most reliable way to detect and measure MI is via cardiovascular magnetic resonance imaging (CMR). Aims and Objectives: To evaluate the effectiveness of the Electrocardiogram DETERMINE Score in predicting the severity of coronary artery disease (CAD) in patients who have experienced an Acute Myocardial Infarction (AMI) & to assess improvements in left ventricular function at 6 months following coronary artery bypass grafting (CABG). Subjects and Methods: This Observational cohort study was done at the Cardiology and Radiology department and cardiac surgery department, Al-Azhar university hospitals and Helwan University hospital. The study involved 700 cases who patients diagnosed with Acute Myocardial Infarction and fulfilled specific criteria for selection. Result: There was highly statistically significant relation between Myocardial infarction size and ECG Marker Score as mean infarct size elevated When the number of ECG markers increased. There was a highly statistically significant relation between myocardial infarct segments, myocardial infarction size and improvement of cardiac function 6 months post-CABG. Conclusion: The study found that larger myocardial infarctions corresponded with higher DETERMINE Scores. It concluded that an ECG-based score better estimates infarct size than LVEF alone. Additionally, there was a significant statistical correlation between the size and segmentation of myocardial infarction and better cardiac function six months after CABG.展开更多
Aslanger’s sign,also known as the arterial pulse tapping artifact or electromechanical association artifact,is an electrocardiographic artifact caused by arterial pulsation at the site where the limb leads of the sta...Aslanger’s sign,also known as the arterial pulse tapping artifact or electromechanical association artifact,is an electrocardiographic artifact caused by arterial pulsation at the site where the limb leads of the standard 12-lead electrocardiogram near the radial or posterior tibial arteries are positioned,particularly in hyperdynamic states.[1–8]It occurs in every cardiac cycle with a constant coupling interval between the QRS complex and artifact.This synchronization with the underlying heart rhythm makes it less likely to be recognized as an artifact compared to unsynchronized artifacts,such as those caused by limb movement and inadequate contact between the electrode and skin.[1,2,7,8]Almost all reported cases of Aslanger’s sign exhibit an unusual waveform morphology in all 12 leads except one of the standard 12-lead electrocardiogram.This sign is often confused with an electrocardiographic finding commonly observed during acute coronary events.展开更多
Electrocardiogram(ECG)is a low-cost,simple,fast,and non-invasive test.It can reflect the heart’s electrical activity and provide valuable diagnostic clues about the health of the entire body.Therefore,ECG has been wi...Electrocardiogram(ECG)is a low-cost,simple,fast,and non-invasive test.It can reflect the heart’s electrical activity and provide valuable diagnostic clues about the health of the entire body.Therefore,ECG has been widely used in various biomedical applications such as arrhythmia detection,disease-specific detection,mortality prediction,and biometric recognition.In recent years,ECG-related studies have been carried out using a variety of publicly available datasets,with many differences in the datasets used,data preprocessing methods,targeted challenges,and modeling and analysis techniques.Here we systematically summarize and analyze the ECGbased automatic analysis methods and applications.Specifically,we first reviewed 22 commonly used ECG public datasets and provided an overview of data preprocessing processes.Then we described some of the most widely used applications of ECG signals and analyzed the advanced methods involved in these applications.Finally,we elucidated some of the challenges in ECG analysis and provided suggestions for further research.展开更多
Arrhythmia has been classified using a variety of methods.Because of the dynamic nature of electrocardiogram(ECG)data,traditional handcrafted approaches are difficult to execute,making the machine learning(ML)solution...Arrhythmia has been classified using a variety of methods.Because of the dynamic nature of electrocardiogram(ECG)data,traditional handcrafted approaches are difficult to execute,making the machine learning(ML)solutions more appealing.Patients with cardiac arrhythmias can benefit from competent monitoring to save their lives.Cardiac arrhythmia classification and prediction have greatly improved in recent years.Arrhythmias are a category of conditions in which the heart's electrical activity is abnormally rapid or sluggish.Every year,it is one of the main reasons of mortality for both men and women,worldwide.For the classification of arrhythmias,this work proposes a novel technique based on optimized feature selection and optimized K-nearest neighbors(KNN)classifier.The proposed method makes advantage of the UCI repository,which has a 279-attribute high-dimensional cardiac arrhythmia dataset.The proposed approach is based on dividing cardiac arrhythmia patients into 16 groups based on the electrocardiography dataset’s features.The purpose is to design an efficient intelligent system employing the dipper throated optimization method to categorize cardiac arrhythmia patients.This method of comprehensive arrhythmia classification outperforms earlier methods presented in the literature.The achieved classification accuracy using the proposed approach is 99.8%.展开更多
Electrocardiogram(ECG)signal is a measure of the heart’s electrical activity.Recently,ECG detection and classification have benefited from the use of computer-aided systems by cardiologists.The goal of this paper is ...Electrocardiogram(ECG)signal is a measure of the heart’s electrical activity.Recently,ECG detection and classification have benefited from the use of computer-aided systems by cardiologists.The goal of this paper is to improve the accuracy of ECG classification by combining the Dipper Throated Optimization(DTO)and Differential Evolution Algorithm(DEA)into a unified algorithm to optimize the hyperparameters of neural network(NN)for boosting the ECG classification accuracy.In addition,we proposed a new feature selection method for selecting the significant feature that can improve the overall performance.To prove the superiority of the proposed approach,several experimentswere conducted to compare the results achieved by the proposed approach and other competing approaches.Moreover,statistical analysis is performed to study the significance and stability of the proposed approach using Wilcoxon and ANOVA tests.Experimental results confirmed the superiority and effectiveness of the proposed approach.The classification accuracy achieved by the proposed approach is(99.98%).展开更多
文摘Background: A major cause of mortality and disability on a global scale is myocardial infarction (MI). These days, the most reliable way to detect and measure MI is via cardiovascular magnetic resonance imaging (CMR). Aims and Objectives: To evaluate the effectiveness of the Electrocardiogram DETERMINE Score in predicting the severity of coronary artery disease (CAD) in patients who have experienced an Acute Myocardial Infarction (AMI) & to assess improvements in left ventricular function at 6 months following coronary artery bypass grafting (CABG). Subjects and Methods: This Observational cohort study was done at the Cardiology and Radiology department and cardiac surgery department, Al-Azhar university hospitals and Helwan University hospital. The study involved 700 cases who patients diagnosed with Acute Myocardial Infarction and fulfilled specific criteria for selection. Result: There was highly statistically significant relation between Myocardial infarction size and ECG Marker Score as mean infarct size elevated When the number of ECG markers increased. There was a highly statistically significant relation between myocardial infarct segments, myocardial infarction size and improvement of cardiac function 6 months post-CABG. Conclusion: The study found that larger myocardial infarctions corresponded with higher DETERMINE Scores. It concluded that an ECG-based score better estimates infarct size than LVEF alone. Additionally, there was a significant statistical correlation between the size and segmentation of myocardial infarction and better cardiac function six months after CABG.
文摘Aslanger’s sign,also known as the arterial pulse tapping artifact or electromechanical association artifact,is an electrocardiographic artifact caused by arterial pulsation at the site where the limb leads of the standard 12-lead electrocardiogram near the radial or posterior tibial arteries are positioned,particularly in hyperdynamic states.[1–8]It occurs in every cardiac cycle with a constant coupling interval between the QRS complex and artifact.This synchronization with the underlying heart rhythm makes it less likely to be recognized as an artifact compared to unsynchronized artifacts,such as those caused by limb movement and inadequate contact between the electrode and skin.[1,2,7,8]Almost all reported cases of Aslanger’s sign exhibit an unusual waveform morphology in all 12 leads except one of the standard 12-lead electrocardiogram.This sign is often confused with an electrocardiographic finding commonly observed during acute coronary events.
基金Supported by the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization(U1909208)the Science and Technology Major Project of Changsha(kh2202004)the Changsha Municipal Natural Science Foundation(kq2202106).
文摘Electrocardiogram(ECG)is a low-cost,simple,fast,and non-invasive test.It can reflect the heart’s electrical activity and provide valuable diagnostic clues about the health of the entire body.Therefore,ECG has been widely used in various biomedical applications such as arrhythmia detection,disease-specific detection,mortality prediction,and biometric recognition.In recent years,ECG-related studies have been carried out using a variety of publicly available datasets,with many differences in the datasets used,data preprocessing methods,targeted challenges,and modeling and analysis techniques.Here we systematically summarize and analyze the ECGbased automatic analysis methods and applications.Specifically,we first reviewed 22 commonly used ECG public datasets and provided an overview of data preprocessing processes.Then we described some of the most widely used applications of ECG signals and analyzed the advanced methods involved in these applications.Finally,we elucidated some of the challenges in ECG analysis and provided suggestions for further research.
文摘Arrhythmia has been classified using a variety of methods.Because of the dynamic nature of electrocardiogram(ECG)data,traditional handcrafted approaches are difficult to execute,making the machine learning(ML)solutions more appealing.Patients with cardiac arrhythmias can benefit from competent monitoring to save their lives.Cardiac arrhythmia classification and prediction have greatly improved in recent years.Arrhythmias are a category of conditions in which the heart's electrical activity is abnormally rapid or sluggish.Every year,it is one of the main reasons of mortality for both men and women,worldwide.For the classification of arrhythmias,this work proposes a novel technique based on optimized feature selection and optimized K-nearest neighbors(KNN)classifier.The proposed method makes advantage of the UCI repository,which has a 279-attribute high-dimensional cardiac arrhythmia dataset.The proposed approach is based on dividing cardiac arrhythmia patients into 16 groups based on the electrocardiography dataset’s features.The purpose is to design an efficient intelligent system employing the dipper throated optimization method to categorize cardiac arrhythmia patients.This method of comprehensive arrhythmia classification outperforms earlier methods presented in the literature.The achieved classification accuracy using the proposed approach is 99.8%.
文摘Electrocardiogram(ECG)signal is a measure of the heart’s electrical activity.Recently,ECG detection and classification have benefited from the use of computer-aided systems by cardiologists.The goal of this paper is to improve the accuracy of ECG classification by combining the Dipper Throated Optimization(DTO)and Differential Evolution Algorithm(DEA)into a unified algorithm to optimize the hyperparameters of neural network(NN)for boosting the ECG classification accuracy.In addition,we proposed a new feature selection method for selecting the significant feature that can improve the overall performance.To prove the superiority of the proposed approach,several experimentswere conducted to compare the results achieved by the proposed approach and other competing approaches.Moreover,statistical analysis is performed to study the significance and stability of the proposed approach using Wilcoxon and ANOVA tests.Experimental results confirmed the superiority and effectiveness of the proposed approach.The classification accuracy achieved by the proposed approach is(99.98%).
文摘目的探究益气活血汤对不稳定型心绞痛(Unstable angina pectoris,UAP)老年患者的疗效及对其血流动力学和心电图的影响。方法选取2019年5月-2022年6月期间大连市友谊医院老年医学中心老年病科收治的92例UAP老年患者,按随机数字表法分为对照组和观察组,每组各46例。对照组给予常规治疗,观察组在对照组基础上给予益气活血汤治疗,均持续治疗4周。观察比较两组患者临床疗效、心电图改善情况,治疗前后血脂[总胆固醇(Total cholesterol,TC)、甘油三酯(Triglyceride,TG)、高密度脂蛋白胆固醇(High density lipoprotein cholesterol,HDL-C)、低密度脂蛋白胆固醇(Low density lipoprotein cholesterol,LDL-C)]水平、血流动力学(全血还原黏度、纤维蛋白原、红细胞聚集指数、血浆黏度)指标及不良反应发生情况。结果治疗后观察组临床总有效率91.30%(42/46)明显高于对照组73.91%(34/46),差异有统计学意义(P<0.05)。治疗后两组患者血脂TC、TG、LDL-C水平均较治疗前降低,HDL-C水平较治疗前升高,差异有统计学意义(P<0.05);且观察组TC、TG、LDL-C水平均明显低于对照组,HDL-C水平明显高于对照组,差异有统计学意义(P<0.05)。治疗后两组患者全血还原黏度、红细胞聚集指数、纤维蛋白原、血浆黏度均较治疗前降低,差异有统计学意义(P<0.05);且观察组血流动力学指标明显低于对照组,差异有统计学意义(P<0.05)。治疗后观察组心电图改善总有效率86.96%(40/46)明显高于对照组67.39%(31/46),差异有统计学意义(P<0.05)。治疗期间,两组患者不良反应发生率比较,差异无统计学意义(P>0.05)。结论益气活血汤治疗老年UAP的疗效显著,可有效改善患者血流动力学指标和心电图情况。